Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Stem Cell Res ; 33: 156-165, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30368192

RESUMO

A platform for studying spinal cord organogenesis in vivo where embryonic stem cell (ESC)-derived neural progenitor cells (NPC) self-organize into spinal cord-like tissue after transplantation in subarachnoid space of the spinal cord has been described. We advance the applicability of this platform by imaging in vivo the formed graft through T2w magnetic resonance imaging (MRI). Furthermore, we used diffusion tensor imaging (DTI) to verify the stereotypical organization of the graft showing that it mimics the host spinal cord. Within the graft white matter (WM) we identified astrocytes that form glial limitans, myelinating oligodendrocytes, and myelinated axons with paranodes. Within the graft grey matter (GM) we identified cholinergic, glutamatergic, serotonergic and dopaminergic neurons. Furthermore, we demonstrate the presence of ESC-derived complex vasculature that includes the presence of blood brain barrier. In addition to the formation of mature spinal cord tissue, we describe factors that drive this process. Specifically, we identify Flk1+ cells as necessary for spinal cord formation, and synaptic connectivity with the host spinal cord and formation of host-graft chimeric vasculature as contributing factors. This model can be used to study spinal cord organogenesis, and as an in vivo drug discovery platform for screening potential therapeutic compounds and their toxicity.


Assuntos
Células-Tronco Embrionárias/transplante , Organogênese/genética , Transplante de Células-Tronco/métodos , Animais , Diferenciação Celular , Humanos , Camundongos
2.
Sci Rep ; 6: 27512, 2016 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-27282805

RESUMO

Patients with tumors that metastasize to bone frequently suffer from debilitating pain, and effective therapies for treating bone cancer are lacking. This study employed a novel strategy in which herpes simplex virus (HSV) carrying a small interfering RNA (siRNA) targeting platelet-derived growth factor (PDGF) was used to alleviate bone cancer pain. HSV carrying PDGF siRNA was established and intrathecally injected into the cavum subarachnoidale of animals suffering from bone cancer pain and animals in the negative group. Sensory function was assessed by measuring thermal and mechanical hyperalgesia. The mechanism by which PDGF regulates pain was also investigated by comparing the differential expression of pPDGFRα/ß and phosphorylated ERK and AKT. Thermal and mechanical hyperalgesia developed in the rats with bone cancer pain, and these effects were accompanied by bone destruction in the tibia. Intrathecal injection of PDGF siRNA and morphine reversed thermal and mechanical hyperalgesia in rats with bone cancer pain. In addition, we observed attenuated astrocyte hypertrophy, down-regulated pPDGFRα/ß levels, reduced levels of the neurochemical SP, a reduction in CGRP fibers and changes in pERK/ERK and pAKT/AKT ratios. These results demonstrate that PDGF siRNA can effectively treat pain induced by bone cancer by blocking the AKT-ERK signaling pathway.


Assuntos
Neoplasias Ósseas/complicações , Dor do Câncer/tratamento farmacológico , Dor do Câncer/etiologia , Fator de Crescimento Derivado de Plaquetas/administração & dosagem , RNA Interferente Pequeno/administração & dosagem , Medula Espinal/efeitos dos fármacos , Animais , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Dor do Câncer/metabolismo , Regulação para Baixo/efeitos dos fármacos , Feminino , Hiperalgesia/tratamento farmacológico , Hiperalgesia/metabolismo , Morfina/farmacologia , Ratos , Ratos Sprague-Dawley , Receptores do Fator de Crescimento Derivado de Plaquetas/metabolismo , Transdução de Sinais/efeitos dos fármacos , Simplexvirus/metabolismo , Medula Espinal/metabolismo , Tíbia/efeitos dos fármacos , Tíbia/metabolismo
3.
J Neuroinflammation ; 11: 66, 2014 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-24690089

RESUMO

BACKGROUND: We sought to investigate the effects of co-grafting neural stem cells (NSCs) with olfactory ensheathing cells (OECs) on neurological behavior in rats subjected to traumatic brain injury (TBI) and explore underlying molecular mechanisms. METHODS: TBI was established by percussion device made through a weight drop (50 g) from a 30 cm height. Cultured NSCs and OECs isolated from rats were labeled by Hoechst 33342 (blue) and chloromethyl-benzamidodialkyl carbocyanine (CM-Dil) (red), respectively. Then, NSCs and/or OECs, separately or combined, were transplanted into the area surrounding the injury site. Fourteen days after transplantation, neurological severity score (NSS) were recorded. The brain tissue was harvested and processed for immunocytochemistry, terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL), and reverse transcription-polymerase chain reaction (RT-PCR). RESULTS: Significant neurological function improvement was observed in the three transplant groups, compared to the TBI group, and co-transplantation gave rise to the best improvement. Morphological evaluation showed that the number of neurons in cortex from combination implantation was more than for other groups (P <0.05); conversely, the number of apoptotic cells showed a significant decrease by TUNEL staining. Transplanted NSCs and OECs could survive and migrate in the brain, and the number of neurons differentiating from NSCs in the co-transplantation group was significantly greater than in the NSCs group. At the molecular level, the expressions of IL-6 and BAD in the co-graft group were found to be down regulated significantly, when compared to either the NSC or OEC alone groups. CONCLUSION: The present study demonstrates for the first time the optimal effects of co-grafting NSCs and OECs as a new strategy for the treatment of TBI via an anti-inflammation mechanism.


Assuntos
Lesões Encefálicas/terapia , Transplante de Células/métodos , Citocinas/metabolismo , Células-Tronco Neurais/transplante , Bulbo Olfatório/citologia , Células de Schwann/transplante , Animais , Apoptose , Benzimidazóis , Carbocianinas , Diferenciação Celular , Células Cultivadas , Citocinas/genética , Modelos Animais de Doenças , Feminino , Células-Tronco Neurais/fisiologia , Exame Neurológico , Fosfopiruvato Hidratase/metabolismo , Ratos , Ratos Sprague-Dawley , Células de Schwann/fisiologia
4.
Stem Cells ; 31(1): 83-91, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23097328

RESUMO

Chronic neuropathic pain is a common and debilitating consequence of spinal cord injury (SCI). In a rat contusion injury model, we observed that chronic neuropathic pain is present on day 7 after SCI and persists for the entire 56-day observation period. However, currently available pain therapies are inadequate for SCI-induced neuropathic pain. In this study, we show that spinal transplantation of mouse embryonic stem cell-derived oligodendrocyte progenitor cells (OPCs) enhances remyelination in the injured spinal cord and reduces SCI-induced chronic neuropathic pain. Moreover, we found that SCI reduces the protein level of neuregulin-1 and ErbB4 in the injured spinal cord and that OPC transplantation enhances the spinal expression of both proteins after SCI. Finally, intrathecal injection of neuregulin-1 small interfering RNA, but not the control nontarget RNA, diminishes OPC transplantation-produced remyelination and reverses the antinociceptive effect of OPC transplantation. Our findings suggest that the transplantation of embryonic stem cell-derived OPCs is an appropriate therapeutic intervention for treatment of SCI-induced chronic neuropathic pain, and that neuregulin-1/ErbB signaling plays an important role in central remyelination under pathological conditions and contributes to the alleviation of such pain.


Assuntos
Receptores ErbB/metabolismo , Neuralgia/terapia , Neuregulina-1/metabolismo , Oligodendroglia/citologia , Oligodendroglia/transplante , Traumatismos da Medula Espinal/terapia , Transplante de Células-Tronco , Animais , Diferenciação Celular , Células-Tronco Embrionárias/citologia , Camundongos , Modelos Animais , Neuralgia/metabolismo , Neuregulina-1/genética , Oligodendroglia/metabolismo , Interferência de RNA , RNA Interferente Pequeno/administração & dosagem , Ratos , Receptor ErbB-4 , Recuperação de Função Fisiológica , Transdução de Sinais , Traumatismos da Medula Espinal/metabolismo
5.
Neurosurg Clin N Am ; 18(1): 143-68, xi, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17244561

RESUMO

Although neural regeneration is an active research field today, no current treatments can aid regeneration after spinal cord injury. This article reviews the feasibility of spinal cord repair and provides an overview of the range of strategies scientists are taking toward regeneration. The major focus of this article is the future role of stem cell transplantation and similar rehabilitative restorative approaches designed to optimize spontaneous regeneration by mobilizing endogenous stem cells and facilitating other cellular mechanisms of regeneration, such as axonal growth and myelination.


Assuntos
Regeneração Nervosa/fisiologia , Recuperação de Função Fisiológica/fisiologia , Traumatismos da Medula Espinal/fisiopatologia , Traumatismos da Medula Espinal/terapia , Transplante de Células-Tronco , Animais , Terapia por Estimulação Elétrica , Humanos , Traumatismos da Medula Espinal/patologia , Células-Tronco/fisiologia
6.
Methods Mol Biol ; 325: 47-57, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16761718

RESUMO

The use of cell fusion to study exchange of information at the molecular level between the nucleus and the cytoplasm of cells during regulation of gene expression was pioneered by Harris and Ringertz more than three decades ago. The ability to make heterokaryons with cells from different species or genetic strains is especially useful because genetic differences in gene products allow the origin of trans-acting regulatory factors to be determined. Heterokaryons between adult nucleated erythroid cells of one species and embryonic/larval nucleated erythroid cells of another species, for example, show cross-induction between the two types of nuclei, resulting in reprogramming of the adult nucleus to embryonic/larval globin gene expression and/or reprogramming of the embryonic/larval cell nucleus to adult globin expression. These experiments provided definitive evidence that developmental program switching is mediated by trans-acting factors. Other possible uses of this cell fusion protocol in stem cell biology and transplantation of genetically engineered cells for tissue regeneration are briefly discussed.


Assuntos
Técnicas de Cultura de Células/métodos , Núcleo Celular/metabolismo , Técnicas Genéticas , Células Híbridas , Animais , Comunicação Celular , Fusão Celular , Clonagem de Organismos/métodos , Hemoglobinas/genética , Camundongos , Microscopia de Contraste de Fase , Matriz Nuclear , Polietilenoglicóis/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA