Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Vasc Med ; : 1358863X241231942, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38623630

RESUMO

BACKGROUND: Paclitaxel (PTX) is touted as an essential medicine due to its extensive use as a chemotherapeutic agent for various cancers and an antiproliferative agent for endovascular applications. Emerging studies in cardio-oncology implicate various vascular complications of chemotherapeutic agents. METHODS: We evaluated the inflammatory response induced by the systemic administration of PTX. The investigation included RNAseq analysis of primary human endothelial cells (ECs) treated with PTX to identify transcriptional changes in pro-inflammatory mediators. Additionally, we used dexamethasone (DEX), a well-known antiinflammatory compound, to assess its effectiveness in counteracting these PTX-induced changes. Further, we studied the effects of PTX on monocyte chemoattractant protein-1 (MCP-1) levels in the media of ECs. The study also extended to in vivo analysis, where a group of mice was injected with PTX and subsequently harvested at different times to assess the immediate and delayed effects of PTX on inflammatory mediators in blood and aortic ECs. RESULTS: Our RNAseq analysis revealed that PTX treatment led to significant transcriptional perturbations in pro-inflammatory mediators such as MCP-1 and CD137 within primary human ECs. These changes were effectively abrogated when DEX was administered. In vitro experiments showed a marked increase in MCP-1 levels in EC media following PTX treatment, which returned to baseline upon treatment with DEX. In vivo, we observed a threefold increase in MCP-1 levels in blood and aortic ECs 12 h post-PTX administration. Similar trends were noted for CD137 and other downstream mediators like tissue factor, vascular cell adhesion molecule 1, and E-selectin in aortic ECs. CONCLUSION: Our findings illustrate that PTX exposure induces an upregulation of atherothrombotic mediators, which can be alleviated with concurrent administration of DEX. Considering these observations, further long-term investigations should focus on understanding the systemic implications associated with PTX-based therapies and explore the clinical relevance of DEX in mitigating such risks.

2.
Res Sq ; 2023 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-36778300

RESUMO

Background: Paclitaxel is touted as an essential medicine due to its extensive use as a chemotherapeutic for various cancers and an antiproliferative agent for restenosis. Due to recent concerns related to long-term mortality, paclitaxel (PTX)-based endovascular therapy is now surrounded by controversies. Objective: Examine the inflammatory mediators driven by the systemic administration of PTX and explore the means to suppress these effects. Methods: RNAseq analysis, cell and mouse models. Results: RNAseq analysis of primary human endothelial cells (ECs) treated with PTX demonstrated transcriptional perturbations of a set of pro-inflammatory mediators, including monocyte chemoattractant protein-1 (MCP-1) and CD137, which were validated in EC lysates. These perturbations were abrogated with dexamethasone, a prototypic anti-inflammatory compound. The media of ECs pre-treated with PTX showed a significant increase in MCP-1 levels, which were reverted to baseline levels with DEX treatment. A group of mice harvested at different time points after PTX injection were analyzed for immediate and delayed effects of PTX. A 3-fold increase in MCP-1 was noted in blood and aortic ECs after 12 hours of PTX treatment. Similar changes in CD137 and downstream mediators such as tissue factor, VCAM-1 and E-selectin were noted in aortic ECs. Conclusions: Our study shows that systemic PTX exposure upregulates atherothrombotic markers, and co-delivery of DEX can subdue the untoward toxic effects. Long-term studies are needed to probe the mechanisms driving systemic complications of PTX-based therapies and evaluate the clinical potential of DEX to mitigate risk.

3.
J Am Soc Nephrol ; 32(11): 2834-2850, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34716244

RESUMO

BACKGROUND: CKD, characterized by retained uremic solutes, is a strong and independent risk factor for thrombosis after vascular procedures . Urem ic solutes such as indoxyl sulfate (IS) and kynurenine (Kyn) mediate prothrombotic effect through tissue factor (TF). IS and Kyn biogenesis depends on multiple enzymes, with therapeutic implications unexplored. We examined the role of indoleamine 2,3-dioxygenase-1 (IDO-1), a rate-limiting enzyme of kynurenine biogenesis, in CKD-associated thrombosis after vascular injury. METHODS: IDO-1 expression in mice and human vessels was examined. IDO-1-/- mice, IDO-1 inhibitors, an adenine-induced CKD, and carotid artery injury models were used. RESULTS: Both global IDO-1-/- CKD mice and IDO-1 inhibitor in wild-type CKD mice showed reduced blood Kyn levels, TF expression in their arteries, and thrombogenicity compared with respective controls. Several advanced IDO-1 inhibitors downregulated TF expression in primary human aortic vascular smooth muscle cells specifically in response to uremic serum. Further mechanistic probing of arteries from an IS-specific mouse model, and CKD mice, showed upregulation of IDO-1 protein, which was due to inhibition of its polyubiquitination and degradation by IS in vascular smooth muscle cells. In two cohorts of patients with advanced CKD, blood IDO-1 activity was significantly higher in sera of study participants who subsequently developed thrombosis after endovascular interventions or vascular surgery. CONCLUSION: Leveraging genetic and pharmacologic manipulation in experimental models and data from human studies implicate IS as an inducer of IDO-1 and a perpetuator of the thrombotic milieu and supports IDO-1 as an antithrombotic target in CKD.


Assuntos
Indicã/fisiologia , Indolamina-Pirrol 2,3,-Dioxigenase/antagonistas & inibidores , Indolamina-Pirrol 2,3,-Dioxigenase/sangue , Cinurenina/fisiologia , Terapia de Alvo Molecular , Complicações Pós-Operatórias/enzimologia , Insuficiência Renal Crônica/enzimologia , Trombose/enzimologia , Procedimentos Cirúrgicos Vasculares/efeitos adversos , Animais , Aorta , Lesões das Artérias Carótidas/complicações , Trombose das Artérias Carótidas/etiologia , Trombose das Artérias Carótidas/prevenção & controle , Meios de Cultura/farmacologia , Indução Enzimática/efeitos dos fármacos , Retroalimentação Fisiológica , Feminino , Células HEK293 , Humanos , Indolamina-Pirrol 2,3,-Dioxigenase/deficiência , Indolamina-Pirrol 2,3,-Dioxigenase/genética , Cinurenina/sangue , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Miócitos de Músculo Liso/efeitos dos fármacos , Complicações Pós-Operatórias/sangue , Complicações Pós-Operatórias/etiologia , Complicações Pós-Operatórias/prevenção & controle , Insuficiência Renal Crônica/tratamento farmacológico , Tromboplastina/metabolismo , Trombose/sangue , Trombose/etiologia , Trombose/prevenção & controle , Triptofano/metabolismo , Uremia/sangue
4.
Arterioscler Thromb Vasc Biol ; 40(10): e262-e272, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32814440

RESUMO

OBJECTIVE: The risk of thrombosis in myeloproliferative neoplasms, such as primary myelofibrosis varies depending on the type of key driving mutation (JAK2 [janus kinase 2], CALR [calreticulin], and MPL [myeloproliferative leukemia protein or thrombopoietin receptor]) and the accompanying mutations in other genes. In the current study, we sought to examine the propensity for thrombosis, as well as platelet activation properties in a mouse model of primary myelofibrosis induced by JAK2V617F (janus kinase 2 with valine to phenylalanine substitution on codon 617) mutation. Approach and Results: Vav1-hJAK2V617F transgenic mice show hallmarks of primary myelofibrosis, including significant megakaryocytosis and bone marrow fibrosis, with a moderate increase in red blood cells and platelet number. This mouse model was used to study responses to 2 models of vascular injury and to investigate platelet properties. Platelets derived from the mutated mice have reduced aggregation in response to collagen, reduced thrombus formation and thrombus size, as demonstrated using laser-induced or FeCl3-induced vascular injury models, and increased bleeding time. Strikingly, the mutated platelets had a significantly reduced number of dense granules, which could explain impaired ADP secretion upon platelet activation, and a diminished second wave of activation. CONCLUSIONS: Together, our study highlights for the first time the influence of a hyperactive JAK2 on platelet activation-induced ADP secretion and dense granule homeostasis, with consequent effects on platelet activation properties.


Assuntos
Coagulação Sanguínea , Plaquetas/enzimologia , Lesões das Artérias Carótidas/enzimologia , Janus Quinase 2/sangue , Megacariócitos/enzimologia , Ativação Plaquetária , Mielofibrose Primária/enzimologia , Trombose/enzimologia , Animais , Lesões das Artérias Carótidas/sangue , Lesões das Artérias Carótidas/genética , Modelos Animais de Doenças , Janus Quinase 2/genética , Camundongos Transgênicos , Mutação , Agregação Plaquetária , Mielofibrose Primária/sangue , Mielofibrose Primária/genética , Trombopoese , Trombose/sangue , Trombose/genética
5.
Am J Physiol Renal Physiol ; 319(3): F552-F561, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32686519

RESUMO

The function of site-specific phosphorylation of nucleophosmin (NPM), an essential Bax chaperone, in stress-induced cell death is unknown. We hypothesized that NPM threonine 95 (T95) phosphorylation both signals and promotes cell death. In resting cells, NPM exclusively resides in the nucleus and T95 is nonphosphorylated. In contrast, phosphorylated T95 NPM (pNPM T95) accumulates in the cytosol after metabolic stress, in multiple human cancer cell lines following γ-radiation, and in postischemic human kidney tissue. Based on the T95 phosphorylation consensus sequence, we hypothesized that glycogen synthase kinase-3ß (GSK-3ß) regulates cytosolic NPM translocation by phosphorylating T95 NPM. In a cell-free system, GSK-3ß phosphorylated a synthetic NPM peptide containing T95. In vitro, bidirectional manipulation of GSK-3ß activity substantially altered T95 phosphorylation, cytosolic NPM translocation, and cell survival during stress, mechanistically linking these lethal events. Furthermore, GSK-3ß inhibition in vivo decreased cytosolic pNPM T95 accumulation in kidney tissue after experimental ischemia. In patients with acute kidney injury, both cytosolic NPM accumulation in proximal tubule cells and NPM-rich intratubular casts were detected in frozen renal biopsy tissue. These observations show, for the first time, that GSK-3ß promotes cell death partly by phosphorylating NPM at T95, to promote cytosolic NPM accumulation. T95 NPM is also a rational therapeutic target to ameliorate ischemic renal cell injury and may be a universal injury marker in mammalian cells.


Assuntos
Apoptose/fisiologia , Proteínas Nucleares/metabolismo , Injúria Renal Aguda , Animais , Feminino , Glicogênio Sintase Quinase 3 beta/genética , Glicogênio Sintase Quinase 3 beta/metabolismo , Humanos , Túbulos Renais Proximais/citologia , Masculino , Camundongos , Proteínas Nucleares/química , Nucleofosmina , Fosforilação , Conformação Proteica , Estresse Fisiológico
6.
Am J Pathol ; 190(3): 602-613, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32113662

RESUMO

Casitas B-lineage lymphoma (c-Cbl) is a recently identified ubiquitin ligase of nuclear ß-catenin and a suppressor of colorectal cancer (CRC) growth in cell culture and mouse tumor xenografts. We hypothesized that reduction in c-Cbl in colonic epithelium is likely to increase the levels of nuclear ß-catenin in the intestinal crypt, augmenting CRC tumorigenesis in an adenomatous polyposis coli (APCΔ14/+) mouse model. Haploinsufficient c-Cbl mice (APCΔ14/+ c-Cbl+/-) displayed a significant (threefold) increase in atypical hyperplasia and adenocarcinomas in the small and large intestines; however, no differences were noted in the adenoma frequency. In contrast to the APCΔ14/+ c-Cbl+/+ mice, APCΔ14/+ c-Cbl+/- crypts showed nuclear ß-catenin throughout the length of the crypts and up-regulation of Axin2, a canonical Wnt target gene, and SRY-box transcription factor 9, a marker of intestinal stem cells. In contrast, haploinsufficiency of c-Cbl+/- alone was insufficient to induce tumorigenesis regardless of an increase in the number of intestinal epithelial cells with nuclear ß-catenin and SRY-box transcription factor 9 in APC+/+ c-Cbl+/- mice. This study demonstrates that haploinsufficiency of c-Cbl results in Wnt hyperactivation in intestinal crypts and accelerates CRC progression to adenocarcinoma in the milieu of APCΔ14/+, a phenomenon not found with wild-type APC. While emphasizing the role of APC as a gatekeeper in CRC, this study also demonstrates that combined partial loss of c-Cbl and inactivation of APC significantly contribute to CRC tumorigenesis.


Assuntos
Adenocarcinoma/genética , Proteína da Polipose Adenomatosa do Colo/metabolismo , Neoplasias do Colo/genética , Neoplasias Colorretais/genética , Haploinsuficiência , Linfoma/genética , Proteínas Proto-Oncogênicas c-cbl/metabolismo , Adenocarcinoma/patologia , Proteína da Polipose Adenomatosa do Colo/genética , Animais , Carcinogênese , Neoplasias do Colo/patologia , Neoplasias Colorretais/patologia , Progressão da Doença , Feminino , Regulação Neoplásica da Expressão Gênica , Linfoma/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Proto-Oncogênicas c-cbl/genética , Proteínas Wnt/genética , Proteínas Wnt/metabolismo , beta Catenina/genética , beta Catenina/metabolismo
7.
Am J Clin Oncol ; 43(2): 94-100, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31809329

RESUMO

PURPOSE: Cancer patients are at a higher risk of venous thromboembolism (VTE) than the general population. In the general population, blacks are at a higher risk of VTE compared with whites. The influence of race on cancer-associated VTE remains unexplored. We examined whether black cancer patients are at a higher risk of VTE and whether these differences are present in specific cancer types. DESIGN: A retrospective study was performed in the largest safety net hospital of New England using a cohort of cancer patients characterized by a substantial number of nonwhites. RESULTS: We identified 16,498 subjects with solid organ and hematologic malignancies from 2004 to 2018. Among them, we found 186 unique incident VTE events, of which the majority of the events accrued within the first 2 years of cancer diagnosis. Overall, blacks showed a 3-fold higher incidence of VTE (1.8%) compared with whites (0.6%; P<0.001). This difference was observed in certain cancer types such as lung, gastric and colorectal. In lung cancer, the odds of developing VTE in blacks was 2.77-times greater than those in white patients (confidence interval, 1.33-5.91; P=0.007). Despite the greater incidence of cancer-associated VTE in blacks, their Khorana risk score of VTE was not higher. CONCLUSIONS: In a diverse cancer cohort, we observed a higher incidence of cancer-associated VTE in blacks compared with patients from other races. This study indicates the consideration of race in the risk assessment of cancer-associated VTE. It could also lead to future mechanistic studies aiming at identifying reasons for differential VTE risk depending on cancer type.


Assuntos
Negro ou Afro-Americano/estatística & dados numéricos , Neoplasias/etnologia , Tromboembolia Venosa/etnologia , População Branca/estatística & dados numéricos , Anticoagulantes/uso terapêutico , Neoplasias da Mama/complicações , Neoplasias da Mama/etnologia , Neoplasias Colorretais/complicações , Neoplasias Colorretais/etnologia , Feminino , Humanos , Incidência , Neoplasias Pulmonares/complicações , Neoplasias Pulmonares/etnologia , Masculino , Neoplasias/complicações , Neoplasias da Próstata/complicações , Neoplasias da Próstata/etnologia , Estudos Retrospectivos , Estados Unidos/epidemiologia , Tromboembolia Venosa/etiologia
8.
Blood ; 134(26): 2399-2413, 2019 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-31877217

RESUMO

Patients with malignancy are at 4- to 7-fold higher risk of venous thromboembolism (VTE), a potentially fatal, yet preventable complication. Although general mechanisms of thrombosis are enhanced in these patients, malignancy-specific triggers and their therapeutic implication remain poorly understood. Here we examined a colon cancer-specific VTE model and probed a set of metabolites with prothrombotic propensity in the inferior vena cava (IVC) ligation model. Athymic mice injected with human colon adenocarcinoma cells exhibited significantly higher IVC clot weights, a biological readout of venous thrombogenicity, compared with the control mice. Targeted metabolomics analysis of plasma of mice revealed an increase in the blood levels of kynurenine and indoxyl sulfate (tryptophan metabolites) in xenograft-bearing mice, which correlated positively with the increase in the IVC clot size. These metabolites are ligands of aryl hydrocarbon receptor (AHR) signaling. Accordingly, plasma from the xenograft-bearing mice activated the AHR pathway and augmented tissue factor (TF) and plasminogen activator inhibitor 1 (PAI-1) levels in venous endothelial cells in an AHR-dependent manner. Consistent with these findings, the endothelium from the IVC of xenograft-bearing animals revealed nuclear AHR and upregulated TF and PAI-1 expression, telltale signs of an activated AHR-TF/PAI-1 axis. Importantly, pharmacological inhibition of AHR activity suppressed TF and PAI-1 expression in endothelial cells of the IVC and reduced clot weights in both kynurenine-injected and xenograft-bearing mice. Together, these data show dysregulated tryptophan metabolites in a mouse cancer model, and they reveal a novel link between these metabolites and the control of the AHR-TF/PAI-1 axis and VTE in cancer.


Assuntos
Neoplasias do Colo/complicações , Modelos Animais de Doenças , Metaboloma , Inibidor 1 de Ativador de Plasminogênio/metabolismo , Receptores de Hidrocarboneto Arílico/metabolismo , Tromboplastina/metabolismo , Tromboembolia Venosa/etiologia , Animais , Neoplasias do Colo/metabolismo , Neoplasias do Colo/patologia , Feminino , Humanos , Masculino , Camundongos , Camundongos Nus , Transdução de Sinais , Triptofano/metabolismo , Tromboembolia Venosa/metabolismo , Tromboembolia Venosa/patologia , Ensaios Antitumorais Modelo de Xenoenxerto
9.
Sci Rep ; 9(1): 20257, 2019 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-31882749

RESUMO

Casitas B lymphoma (c-Cbl) is an E3 ubiquitin ligase and a negative regulator of colorectal cancer (CRC). Despite its high expression in immune cells, the effect of c-Cbl on the tumor microenvironment remains poorly understood. Here we demonstrate that c-Cbl alters the tumor microenvironment and suppresses Programmed cell death-1 (PD-1) protein, an immune checkpoint receptor. Using syngeneic CRC xenografts, we observed significantly higher growth of xenografts and infiltrating immune cells in c-Cbl+/- compared to c-Cbl+/+ mice. Tumor-associated CD8+ T-lymphocytes and macrophages of c-Cbl+/- mice showed 2-3-fold higher levels of PD-1. Functionally, macrophages from c-Cbl+/- mice showed a 4-5-fold reduction in tumor phagocytosis, which was restored with an anti-PD-1 neutralizing antibody suggesting regulation of PD-1 by c-Cbl. Further mechanistic probing revealed that C-terminus of c-Cbl interacted with the cytoplasmic tail of PD-1. c-Cbl destabilized PD-1 through ubiquitination- proteasomal degradation depending on c-Cbl's RING finger function. This data demonstrates c-Cbl as an E3 ligase of PD-1 and a regulator of tumor microenvironment, both of which were unrecognized components of its tumor suppressive activity. Advancing immune checkpoint and c-Cbl biology, our study prompts for probing of PD-1 regulation by c-Cbl in conditions driven by immune checkpoint abnormalities such as cancers and autoimmune diseases.


Assuntos
Linfócitos T CD8-Positivos/metabolismo , Neoplasias Colorretais/genética , Receptor de Morte Celular Programada 1/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteínas Proto-Oncogênicas c-cbl/genética , Ubiquitina-Proteína Ligases/genética , Animais , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Regulação Neoplásica da Expressão Gênica , Humanos , Macrófagos/metabolismo , Camundongos Knockout , Fosforilação , Receptor de Morte Celular Programada 1/metabolismo , Proteínas Proto-Oncogênicas c-cbl/metabolismo , Carga Tumoral/genética , Microambiente Tumoral/genética , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação
10.
Kidney Int Rep ; 4(7): 955-962, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31317118

RESUMO

INTRODUCTION: The number of glomeruli and glomerulosclerosis evaluated on kidney biopsy slides constitute standard components of a renal pathology report. Prevailing methods for glomerular assessment remain manual, labor intensive, and nonstandardized. We developed a deep learning framework to accurately identify and segment glomeruli from digitized images of human kidney biopsies. METHODS: Trichrome-stained images (n = 275) from renal biopsies of 171 patients with chronic kidney disease treated at the Boston Medical Center from 2009 to 2012 were analyzed. A sliding window operation was defined to crop each original image to smaller images. Each cropped image was then evaluated by at least 3 experts into 3 categories: (i) no glomerulus, (ii) normal or partially sclerosed (NPS) glomerulus, and (iii) globally sclerosed (GS) glomerulus. This led to identification of 751 unique images representing nonglomerular regions, 611 images with NPS glomeruli, and 134 images with GS glomeruli. A convolutional neural network (CNN) was trained with cropped images as inputs and corresponding labels as output. Using this model, an image processing routine was developed to scan the test images to segment the GS glomeruli. RESULTS: The CNN model was able to accurately discriminate nonglomerular images from NPS and GS images (performance on test data: Accuracy: 92.67% ± 2.02% and Kappa: 0.8681 ± 0.0392). The segmentation model that was based on the CNN multilabel classifier accurately marked the GS glomeruli on the test data (Matthews correlation coefficient = 0.628). CONCLUSION: This work demonstrates the power of deep learning for assessing complex histologic structures from digitized human kidney biopsies.

11.
Cells ; 8(5)2019 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-31126146

RESUMO

Casitas B lineage lymphoma (c-Cbl) is a multifunctional protein with a ubiquitin E3 ligase activity capable of degrading diverse sets of proteins. Although previous work had focused mainly on c-Cbl mutations in humans with hematological malignancies, recent emerging evidence suggests a critical role of c-Cbl in angiogenesis and human solid organ tumors. The combination of its unique structure, modular function, and ability to channelize cues from a rich network of signaling cascades, empowers c-Cbl to assume a central role in these disease models. This review consolidates the structural and functional insights based on recent studies that highlight c-Cbl as a target with tantalizing therapeutic potential in various models of angiogenesis and tumorigenesis.


Assuntos
Carcinogênese/metabolismo , Neovascularização Patológica/enzimologia , Proteínas Proto-Oncogênicas c-cbl/metabolismo , Animais , Humanos , Camundongos , Terapia de Alvo Molecular , Fosfolipase C gama/metabolismo , Proteínas Proto-Oncogênicas c-cbl/química , Ubiquitinação , Fator A de Crescimento do Endotélio Vascular/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Via de Sinalização Wnt , beta Catenina/metabolismo
12.
Am J Pathol ; 188(8): 1921-1933, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30029779

RESUMO

The proto-oncogene ß-catenin drives colorectal cancer (CRC) tumorigenesis. Casitas B-lineage lymphoma (c-Cbl) inhibits CRC tumor growth through targeting nuclear ß-catenin by a poorly understood mechanism. In addition, the role of c-Cbl in human CRC remains largely underexplored. Using a novel quantitative histopathologic technique, we demonstrate that patients with high c-Cbl-expressing tumors had significantly better median survival (3.7 years) compared with low c-Cbl-expressing tumors (1.8 years; P = 0.0026) and were more than twice as likely to be alive at 3 years compared with low c-Cbl tumors (P = 0.0171). Our data further demonstrate that c-Cbl regulation of nuclear ß-catenin requires phosphorylation of c-Cbl Tyr371 because its mutation compromises its ability to target ß-catenin. The tyrosine 371 (Y371H) mutant interacted with but failed to ubiquitinate nuclear ß-catenin. The nuclear localization of the c-Cbl-Y371H mutant contributed to its dominant negative effect on nuclear ß-catenin. The biological importance of c-Cbl-Y371H was demonstrated in various systems, including a transgenic Wnt-8 zebrafish model. c-Cbl-Y371H mutant showed augmented Wnt/ß-catenin signaling, increased Wnt target genes, angiogenesis, and CRC tumor growth. This study demonstrates a strong link between c-Cbl and overall survival of patients with CRC and provides new insights into a possible role of Tyr371 phosphorylation in Wnt/ß-catenin regulation, which has important implications in tumor growth and angiogenesis in CRC.


Assuntos
Biomarcadores Tumorais/metabolismo , Neoplasias Colorretais/mortalidade , Proteínas Proto-Oncogênicas c-cbl/metabolismo , Tirosina/metabolismo , Proteína Wnt1/metabolismo , beta Catenina/metabolismo , Animais , Apoptose , Biomarcadores Tumorais/genética , Estudos de Casos e Controles , Proliferação de Células , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Feminino , Seguimentos , Humanos , Masculino , Pessoa de Meia-Idade , Mutação , Neovascularização Patológica , Fosforilação , Prognóstico , Proto-Oncogene Mas , Proteínas Proto-Oncogênicas c-cbl/genética , Taxa de Sobrevida , Células Tumorais Cultivadas , Proteína Wnt1/genética , Peixe-Zebra , beta Catenina/genética
13.
Kidney Int Rep ; 3(2): 464-475, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29725651

RESUMO

INTRODUCTION: Chronic kidney damage is routinely assessed semiquantitatively by scoring the amount of fibrosis and tubular atrophy in a renal biopsy sample. Although image digitization and morphometric techniques can better quantify the extent of histologic damage, we need more widely applicable ways to stratify kidney disease severity. METHODS: We leveraged a deep learning architecture to better associate patient-specific histologic images with clinical phenotypes (training classes) including chronic kidney disease (CKD) stage, serum creatinine, and nephrotic-range proteinuria at the time of biopsy, and 1-, 3-, and 5-year renal survival. Trichrome-stained images processed from renal biopsy samples were collected on 171 patients treated at the Boston Medical Center from 2009 to 2012. Six convolutional neural network (CNN) models were trained using these images as inputs and the training classes as outputs, respectively. For comparison, we also trained separate classifiers using the pathologist-estimated fibrosis score (PEFS) as input and the training classes as outputs, respectively. RESULTS: CNN models outperformed PEFS across the classification tasks. Specifically, the CNN model predicted the CKD stage more accurately than the PEFS model (κ = 0.519 vs. 0.051). For creatinine models, the area under curve (AUC) was 0.912 (CNN) versus 0.840 (PEFS). For proteinuria models, AUC was 0.867 (CNN) versus 0.702 (PEFS). AUC values for the CNN models for 1-, 3-, and 5-year renal survival were 0.878, 0.875, and 0.904, respectively, whereas the AUC values for PEFS model were 0.811, 0.800, and 0.786, respectively. CONCLUSION: The study demonstrates a proof of principle that deep learning can be applied to routine renal biopsy images.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA