Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Sci Adv ; 10(24): eadm8449, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38865459

RESUMO

The accumulation of protein aggregates is a hallmark of many diseases, including Alzheimer's disease. As a major pillar of the proteostasis network, autophagy mediates the degradation of protein aggregates. The autophagy cargo receptor p62 recognizes ubiquitin on proteins and cooperates with TAX1BP1 to recruit the autophagy machinery. Paradoxically, protein aggregates are not degraded in various diseases despite p62 association. Here, we reconstituted the recognition by the autophagy receptors of physiological and pathological Tau forms. Monomeric Tau recruits p62 and TAX1BP1 via the sequential actions of the chaperone and ubiquitylation machineries. In contrast, Tau fibrils from Alzheimer's disease brains are recognized by p62 but fail to recruit TAX1BP1. This failure is due to the masking of fibrils ubiquitin moieties by p62. Tau fibrils are resistant to deubiquitylation, and, thus, this nonproductive interaction of p62 with the fibrils is irreversible. Our results shed light on the mechanism underlying autophagy evasion by protein aggregates and their consequent accumulation in disease.


Assuntos
Autofagia , Proteína Sequestossoma-1 , Ubiquitinação , Proteínas tau , Humanos , Proteínas tau/metabolismo , Proteínas tau/química , Proteína Sequestossoma-1/metabolismo , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Ligação Proteica , Agregados Proteicos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Ubiquitina/metabolismo , Proteínas de Neoplasias
2.
Mol Cell ; 84(11): 2070-2086.e20, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38703770

RESUMO

The MYCN oncoprotein binds active promoters in a heterodimer with its partner protein MAX. MYCN also interacts with the nuclear exosome, a 3'-5' exoribonuclease complex, suggesting a function in RNA metabolism. Here, we show that MYCN forms stable high-molecular-weight complexes with the exosome and multiple RNA-binding proteins. MYCN binds RNA in vitro and in cells via a conserved sequence termed MYCBoxI. In cells, MYCN associates with thousands of intronic transcripts together with the ZCCHC8 subunit of the nuclear exosome targeting complex and enhances their processing. Perturbing exosome function results in global re-localization of MYCN from promoters to intronic RNAs. On chromatin, MYCN is then replaced by the MNT(MXD6) repressor protein, inhibiting MYCN-dependent transcription. RNA-binding-deficient alleles show that RNA-binding limits MYCN's ability to activate cell growth-related genes but is required for MYCN's ability to promote progression through S phase and enhance the stress resilience of neuroblastoma cells.


Assuntos
Proteína Proto-Oncogênica N-Myc , Proteínas Nucleares , Proteínas Oncogênicas , Proteínas de Ligação a RNA , Proteína Proto-Oncogênica N-Myc/metabolismo , Proteína Proto-Oncogênica N-Myc/genética , Humanos , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética , Proteínas Oncogênicas/metabolismo , Proteínas Oncogênicas/genética , Regiões Promotoras Genéticas , Linhagem Celular Tumoral , Neuroblastoma/metabolismo , Neuroblastoma/genética , Neuroblastoma/patologia , Exossomos/metabolismo , Exossomos/genética , Íntrons , Ligação Proteica , Núcleo Celular/metabolismo , Complexo Multienzimático de Ribonucleases do Exossomo/metabolismo , Complexo Multienzimático de Ribonucleases do Exossomo/genética , Regulação Neoplásica da Expressão Gênica , RNA/metabolismo , RNA/genética , Proteínas Repressoras/metabolismo , Proteínas Repressoras/genética , Proliferação de Células
3.
EMBO J ; 43(12): 2397-2423, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38760575

RESUMO

The nucleoside analogue decitabine (or 5-aza-dC) is used to treat several haematological cancers. Upon its triphosphorylation and incorporation into DNA, 5-aza-dC induces covalent DNA methyltransferase 1 DNA-protein crosslinks (DNMT1-DPCs), leading to DNA hypomethylation. However, 5-aza-dC's clinical outcomes vary, and relapse is common. Using genome-scale CRISPR/Cas9 screens, we map factors determining 5-aza-dC sensitivity. Unexpectedly, we find that loss of the dCMP deaminase DCTD causes 5-aza-dC resistance, suggesting that 5-aza-dUMP generation is cytotoxic. Combining results from a subsequent genetic screen in DCTD-deficient cells with the identification of the DNMT1-DPC-proximal proteome, we uncover the ubiquitin and SUMO1 E3 ligase, TOPORS, as a new DPC repair factor. TOPORS is recruited to SUMOylated DNMT1-DPCs and promotes their degradation. Our study suggests that 5-aza-dC-induced DPCs cause cytotoxicity when DPC repair is compromised, while cytotoxicity in wild-type cells arises from perturbed nucleotide metabolism, potentially laying the foundations for future identification of predictive biomarkers for decitabine treatment.


Assuntos
DNA (Citosina-5-)-Metiltransferase 1 , Decitabina , Ubiquitina-Proteína Ligases , Decitabina/farmacologia , Humanos , DNA (Citosina-5-)-Metiltransferase 1/metabolismo , DNA (Citosina-5-)-Metiltransferase 1/genética , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética , Metilação de DNA/efeitos dos fármacos , Antimetabólitos Antineoplásicos/farmacologia , Animais , Sumoilação/efeitos dos fármacos
4.
Cell Death Discov ; 10(1): 128, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38467608

RESUMO

Ubiquitin-specific peptidase 22 (USP22) is a deubiquitinating enzyme (DUB) that underlies tumorigenicity, proliferation, cell death and differentiation through deubiquitination of histone and non-histone targets. Ubiquitination determines stability, localization and functions of cell fate proteins and controls cell-protective signaling pathways to surveil cell cycle progression. In a variety of carcinomas, lymphomas and leukemias, ubiquitination regulates the tumor-suppressive functions of the promyelocytic leukemia protein (PML), but PML-specific DUBs, DUB-controlled PML ubiquitin sites and the functional consequences of PML (de)ubiquitination remain unclear. Here, we identify USP22 as regulator of PML and the oncogenic acute promyelocytic leukemia (APL) fusion PML-RARα protein stability and identify a destabilizing role of PML residue K394. Additionally, loss of USP22 upregulates interferon (IFN) and IFN-stimulated gene (ISG) expression in APL and induces PML-RARα stabilization and a potentiation of the cell-autonomous sensitivity towards all-trans retinoic acid (ATRA)-mediated differentiation. Our findings imply USP22-dependent surveillance of PML-RARα stability and IFN signaling as important regulator of APL pathogenesis, with implications for viral mimicry, differentiation and cell fate regulation in other leukemia subtypes.

5.
Sci Adv ; 9(49): eadl2108, 2023 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-38055822

RESUMO

The catalytic cycle of topoisomerase 2 (TOP2) enzymes proceeds via a transient DNA double-strand break (DSB) intermediate termed the TOP2 cleavage complex (TOP2cc), in which the TOP2 protein is covalently bound to DNA. Anticancer agents such as etoposide operate by stabilizing TOP2ccs, ultimately generating genotoxic TOP2-DNA protein cross-links that require processing and repair. Here, we identify RAD54 like 2 (RAD54L2) as a factor promoting TOP2cc resolution. We demonstrate that RAD54L2 acts through a novel mechanism together with zinc finger protein associated with tyrosyl-DNA phosphodiesterase 2 (TDP2) and TOP2 (ZATT/ZNF451) and independent of TDP2. Our work suggests a model wherein RAD54L2 recognizes sumoylated TOP2 and, using its ATPase activity, promotes TOP2cc resolution and prevents DSB exposure. These findings suggest RAD54L2-mediated TOP2cc resolution as a potential mechanism for cancer therapy resistance and highlight RAD54L2 as an attractive candidate for drug discovery.


Assuntos
Adutos de DNA , Proteínas de Ligação a DNA , Humanos , Adutos de DNA/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Diester Fosfórico Hidrolases/genética , DNA Topoisomerases Tipo II/genética , DNA/genética , Instabilidade Genômica , DNA Helicases/genética
6.
Mol Cell ; 83(23): 4272-4289.e10, 2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-37951215

RESUMO

Reactive aldehydes are produced by normal cellular metabolism or after alcohol consumption, and they accumulate in human tissues if aldehyde clearance mechanisms are impaired. Their toxicity has been attributed to the damage they cause to genomic DNA and the subsequent inhibition of transcription and replication. However, whether interference with other cellular processes contributes to aldehyde toxicity has not been investigated. We demonstrate that formaldehyde induces RNA-protein crosslinks (RPCs) that stall the ribosome and inhibit translation in human cells. RPCs in the messenger RNA (mRNA) are recognized by the translating ribosomes, marked by atypical K6-linked ubiquitylation catalyzed by the RING-in-between-RING (RBR) E3 ligase RNF14, and subsequently resolved by the ubiquitin- and ATP-dependent unfoldase VCP. Our findings uncover an evolutionary conserved formaldehyde-induced stress response pathway that protects cells against RPC accumulation in the cytoplasm, and they suggest that RPCs contribute to the cellular and tissue toxicity of reactive aldehydes.


Assuntos
RNA , Ubiquitina-Proteína Ligases , Humanos , RNA/metabolismo , Ubiquitinação , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Formaldeído/toxicidade , Aldeídos/toxicidade , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
7.
Nucleic Acids Res ; 50(20): 11600-11618, 2022 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-36350633

RESUMO

PARP1 mediates poly-ADP-ribosylation of proteins on chromatin in response to different types of DNA lesions. PARP inhibitors are used for the treatment of BRCA1/2-deficient breast, ovarian, and prostate cancer. Loss of DNA replication fork protection is proposed as one mechanism that contributes to the vulnerability of BRCA1/2-deficient cells to PARP inhibitors. However, the mechanisms that regulate PARP1 activity at stressed replication forks remain poorly understood. Here, we performed proximity proteomics of PARP1 and isolation of proteins on stressed replication forks to map putative PARP1 regulators. We identified TPX2 as a direct PARP1-binding protein that regulates the auto-ADP-ribosylation activity of PARP1. TPX2 interacts with DNA damage response proteins and promotes homology-directed repair of DNA double-strand breaks. Moreover, TPX2 mRNA levels are increased in BRCA1/2-mutated breast and prostate cancers, and high TPX2 expression levels correlate with the sensitivity of cancer cells to PARP-trapping inhibitors. We propose that TPX2 confers a mitosis-independent function in the cellular response to replication stress by interacting with PARP1.


Assuntos
Replicação do DNA , Poli(ADP-Ribose) Polimerase-1 , Proteômica , Quebras de DNA de Cadeia Dupla , Reparo do DNA , Poli(ADP-Ribose) Polimerase-1/genética , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia
8.
Nature ; 612(7938): 148-155, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36424410

RESUMO

Oncoproteins of the MYC family drive the development of numerous human tumours1. In unperturbed cells, MYC proteins bind to nearly all active promoters and control transcription by RNA polymerase II2,3. MYC proteins can also coordinate transcription with DNA replication4,5 and promote the repair of transcription-associated DNA damage6, but how they exert these mechanistically diverse functions is unknown. Here we show that MYC dissociates from many of its binding sites in active promoters and forms multimeric, often sphere-like structures in response to perturbation of transcription elongation, mRNA splicing or inhibition of the proteasome. Multimerization is accompanied by a global change in the MYC interactome towards proteins involved in transcription termination and RNA processing. MYC multimers accumulate on chromatin immediately adjacent to stalled replication forks and surround FANCD2, ATR and BRCA1 proteins, which are located at stalled forks7,8. MYC multimerization is triggered in a HUWE16 and ubiquitylation-dependent manner. At active promoters, MYC multimers block antisense transcription and stabilize FANCD2 association with chromatin. This limits DNA double strand break formation during S-phase, suggesting that the multimerization of MYC enables tumour cells to proliferate under stressful conditions.


Assuntos
RNA Polimerases Dirigidas por DNA , Humanos , Cromatina/genética , RNA Polimerases Dirigidas por DNA/metabolismo , Regiões Promotoras Genéticas/genética , RNA Polimerase II/metabolismo , Transcrição Gênica , Proteínas Supressoras de Tumor/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Quebras de DNA de Cadeia Dupla , Fase S , Sítios de Ligação , RNA Mensageiro/biossíntese
9.
Oncogene ; 41(40): 4560-4572, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36068335

RESUMO

Overexpression of MYC is a genuine cancer driver in lymphomas and related to poor prognosis. However, therapeutic targeting of the transcription factor MYC remains challenging. Here, we show that inhibition of the histone deacetylase 6 (HDAC6) using the HDAC6 inhibitor Marbostat-100 (M-100) reduces oncogenic MYC levels and prevents lymphomagenesis in a mouse model of MYC-induced aggressive B-cell lymphoma. M-100 specifically alters protein-protein interactions by switching the acetylation state of HDAC6 substrates, such as tubulin. Tubulin facilitates nuclear import of MYC, and MYC-dependent B-cell lymphoma cells rely on continuous import of MYC due to its high turn-over. Acetylation of tubulin impairs this mechanism and enables proteasomal degradation of MYC. M-100 targets almost exclusively B-cell lymphoma cells with high levels of MYC whereas non-tumor cells are not affected. M-100 induces massive apoptosis in human and murine MYC-overexpressing B-cell lymphoma cells. We identified the heat-shock protein DNAJA3 as an interactor of tubulin in an acetylation-dependent manner and overexpression of DNAJA3 resulted in a pronounced degradation of MYC. We propose a mechanism by which DNAJA3 associates with hyperacetylated tubulin in the cytoplasm to control MYC turnover. Taken together, our data demonstrate a beneficial role of HDAC6 inhibition in MYC-dependent B-cell lymphoma.


Assuntos
Linfoma de Células B , Tubulina (Proteína) , Acetilação , Animais , Proteínas de Choque Térmico HSP40/metabolismo , Proteínas de Choque Térmico/metabolismo , Desacetilase 6 de Histona/metabolismo , Inibidores de Histona Desacetilases/farmacologia , Histona Desacetilases/genética , Histona Desacetilases/metabolismo , Humanos , Linfoma de Células B/tratamento farmacológico , Linfoma de Células B/genética , Camundongos , Fatores de Transcrição/metabolismo , Tubulina (Proteína)/metabolismo
10.
iScience ; 25(9): 104892, 2022 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-36060052

RESUMO

PPM1D is a p53-regulated protein phosphatase that modulates the DNA damage response (DDR) and is frequently altered in cancer. Here, we employed chemical inhibition of PPM1D and quantitative mass spectrometry-based phosphoproteomics to identify the substrates of PPM1D upon induction of DNA double-strand breaks (DSBs) by etoposide. We identified 73 putative PPM1D substrates that are involved in DNA repair, regulation of transcription, and RNA processing. One-third of DSB-induced S/TQ phosphorylation sites are dephosphorylated by PPM1D, demonstrating that PPM1D only partially counteracts ATM/ATR/DNA-PK signaling. PPM1D-targeted phosphorylation sites are found in a specific amino acid sequence motif that is characterized by glutamic acid residues, high intrinsic disorder, and poor evolutionary conservation. We identified a functionally uncharacterized protein Kanadaptin as ATM and PPM1D substrate upon DSB induction. We propose that PPM1D plays a role during the response to DSBs by regulating the phosphorylation of DNA- and RNA-binding proteins in intrinsically disordered regions.

11.
PLoS One ; 17(4): e0266478, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35385564

RESUMO

Acute myeloid leukemia (AML) is a heterogeneous malignancy characterized by the accumulation of undifferentiated white blood cells (blasts) in the bone marrow. Valosin-containing protein (VCP) is an abundant molecular chaperone that extracts ubiquitylated substrates from protein complexes and cellular compartments prior to their degradation by the proteasome. We found that treatment of AML cell lines with the VCP inhibitor CB-5083 leads to an accumulation of ubiquitylated proteins, activation of unfolded protein response (UPR) and apoptosis. Using quantitative mass spectrometry-based proteomics we assessed the effects of VCP inhibition on the cellular ubiquitin-modified proteome. We could further show that CB-5083 decreases the survival of the AML cell lines THP-1 and MV4-11 in a concentration-dependent manner, and acts synergistically with the antimetabolite cytarabine and the BH3-mimetic venetoclax. Finally, we showed that prolonged treatment of AML cells with CB-5083 leads to development of resistance mediated by mutations in VCP. Taken together, inhibition of VCP leads to a lethal unfolded protein response in AML cells and might be a relevant therapeutic strategy for treatment of AML, particularly when combined with other drugs. The toxicity and development of resistance possibly limit the utility of VCP inhibitors and have to be further explored in animal models and clinical trials.


Assuntos
Apoptose , Leucemia Mieloide Aguda , Resposta a Proteínas não Dobradas , Proteína com Valosina , Linhagem Celular Tumoral , Humanos , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteína com Valosina/metabolismo
12.
Nat Commun ; 12(1): 7314, 2021 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-34916496

RESUMO

Transcription poses a threat to genomic stability through the formation of R-loops that can obstruct progression of replication forks. R-loops are three-stranded nucleic acid structures formed by an RNA-DNA hybrid with a displaced non-template DNA strand. We developed RNA-DNA Proximity Proteomics to map the R-loop proximal proteome of human cells using quantitative mass spectrometry. We implicate different cellular proteins in R-loop regulation and identify a role of the tumor suppressor DDX41 in opposing R-loop and double strand DNA break accumulation in promoters. DDX41 is enriched in promoter regions in vivo, and can unwind RNA-DNA hybrids in vitro. R-loop accumulation upon loss of DDX41 is accompanied with replication stress, an increase in the formation of double strand DNA breaks and transcriptome changes associated with the inflammatory response. Germline loss-of-function mutations in DDX41 lead to predisposition to acute myeloid leukemia in adulthood. We propose that R-loop accumulation and genomic instability-associated inflammatory response may contribute to the development of familial AML with mutated DDX41.


Assuntos
RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/metabolismo , Instabilidade Genômica , Proteômica , Estruturas R-Loop , Transcrição Gênica , Adulto , Linhagem Celular Tumoral , DNA/metabolismo , Quebras de DNA de Cadeia Dupla , Técnicas de Silenciamento de Genes , Genes Supressores de Tumor , Células HEK293 , Humanos , Leucemia Mieloide Aguda , Conformação de Ácido Nucleico , Hibridização de Ácido Nucleico , Regiões Promotoras Genéticas , Estruturas R-Loop/genética , RNA/metabolismo
13.
Cell Mol Life Sci ; 78(14): 5587-5604, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34100981

RESUMO

To clarify whether differential compartmentalization of Survivin impacts temozolomide (TMZ)-triggered end points, we established a well-defined glioblastoma cell model in vitro (LN229 and A172) and in vivo, distinguishing between its nuclear and cytoplasmic localization. Expression of nuclear export sequence (NES)-mutated Survivin (SurvNESmut-GFP) led to impaired colony formation upon TMZ. This was not due to enhanced cell death but rather due to increased senescence. Nuclear-trapped Survivin reduced homologous recombination (HR)-mediated double-strand break (DSB) repair, as evaluated by γH2AX foci formation and qPCR-based HR assay leading to pronounced induction of chromosome aberrations. Opposite, clones, expressing free-shuttling cytoplasmic but not nuclear-trapped Survivin, could repair TMZ-induced DSBs and evaded senescence. Mass spectrometry-based interactomics revealed, however, no direct interaction of Survivin with any of the repair factors. The improved TMZ-triggered HR activity in Surv-GFP was associated with enhanced mRNA and stabilized RAD51 protein expression, opposite to diminished RAD51 expression in SurvNESmut cells. Notably, cytoplasmic Survivin could significantly compensate for the viability under RAD51 knockdown. Differential Survivin localization also resulted in distinctive TMZ-triggered transcriptional pathways, associated with senescence and chromosome instability as shown by global transcriptome analysis. Orthotopic LN229 xenografts, expressing SurvNESmut exhibited diminished growth and increased DNA damage upon TMZ, as manifested by PCNA and γH2AX foci expression, respectively, in brain tissue sections. Consequently, those mice lived longer. Although tumors of high-grade glioma patients expressed majorly nuclear Survivin, they exhibited rarely NES mutations which did not correlate with survival. Based on our in vitro and xenograft data, Survivin nuclear trapping would facilitate glioma response to TMZ.


Assuntos
Núcleo Celular/metabolismo , Senescência Celular , Resistencia a Medicamentos Antineoplásicos , Glioblastoma/tratamento farmacológico , Recombinação Homóloga , Survivina/metabolismo , Temozolomida/farmacologia , Animais , Antineoplásicos Alquilantes/farmacologia , Apoptose , Biomarcadores Tumorais , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Núcleo Celular/genética , Proliferação de Células , Dano ao DNA , Reparo do DNA , Feminino , Regulação Neoplásica da Expressão Gênica , Glioblastoma/metabolismo , Glioblastoma/patologia , Humanos , Camundongos , Camundongos Nus , Survivina/genética , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
14.
Nat Commun ; 12(1): 3778, 2021 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-34145251

RESUMO

N6-methyladenosine (m6A) is the most abundant internal modification on mRNA which influences most steps of mRNA metabolism and is involved in several biological functions. The E3 ubiquitin ligase Hakai was previously found in complex with components of the m6A methylation machinery in plants and mammalian cells but its precise function remained to be investigated. Here we show that Hakai is a conserved component of the methyltransferase complex in Drosophila and human cells. In Drosophila, its depletion results in reduced m6A levels and altered m6A-dependent functions including sex determination. We show that its ubiquitination domain is required for dimerization and interaction with other members of the m6A machinery, while its catalytic activity is dispensable. Finally, we demonstrate that the loss of Hakai destabilizes several subunits of the methyltransferase complex, resulting in impaired m6A deposition. Our work adds functional and molecular insights into the mechanism of the m6A mRNA writer complex.


Assuntos
Adenosina/análogos & derivados , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Metiltransferases/metabolismo , RNA Mensageiro/genética , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Adenosina/metabolismo , Animais , Linhagem Celular , Drosophila melanogaster , Células HeLa , Humanos , Metilação , Metiltransferases/genética , Processamento Pós-Transcricional do RNA/genética , Splicing de RNA/genética
15.
Nat Cancer ; 2(3): 312-326, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33768209

RESUMO

Amplification of MYCN is the driving oncogene in a subset of high-risk neuroblastoma. The MYCN protein and the Aurora-A kinase form a complex during S phase that stabilizes MYCN. Here we show that MYCN activates Aurora-A on chromatin, which phosphorylates histone H3 at serine 10 in S phase, promotes the deposition of histone H3.3 and suppresses R-loop formation. Inhibition of Aurora-A induces transcription-replication conflicts and activates the Ataxia telangiectasia and Rad3 related (ATR) kinase, which limits double-strand break accumulation upon Aurora-A inhibition. Combined inhibition of Aurora-A and ATR induces rampant tumor-specific apoptosis and tumor regression in mouse models of neuroblastoma, leading to permanent eradication in a subset of mice. The therapeutic efficacy is due to both tumor cell-intrinsic and immune cell-mediated mechanisms. We propose that targeting the ability of Aurora-A to resolve transcription-replication conflicts is an effective therapy for MYCN-driven neuroblastoma (141 words).


Assuntos
Aurora Quinase A , Neuroblastoma , Animais , Apoptose/genética , Aurora Quinase A/genética , Linhagem Celular Tumoral , Camundongos , Proteína Proto-Oncogênica N-Myc/genética , Neuroblastoma/tratamento farmacológico
16.
Proteomics ; 21(10): e2000283, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33768672

RESUMO

Kinase fusions are considered oncogenic drivers in numerous types of cancer. In lung adenocarcinoma 5-10% of patients harbor kinase fusions. The most frequently detected kinase fusion involves the Anaplastic Lymphoma Kinase (ALK) and Echinoderm Microtubule-associated protein-Like 4 (EML4). In addition, oncogenic kinase fusions involving the tyrosine kinases RET and ROS1 are found in smaller subsets of patients. In this study, we employed quantitative mass spectrometry-based phosphoproteomics to define the cellular tyrosine phosphorylation patterns induced by different oncogenic kinase fusions identified in patients with lung adenocarcinoma. We show that exogenous expression of the kinase fusions in HEK 293T cells leads to widespread tyrosine phosphorylation. Direct comparison of different kinase fusions demonstrates that the kinase part and not the fusion partner primarily defines the phosphorylation pattern. The tyrosine phosphorylation patterns differed between ALK, ROS1, and RET fusions, suggesting that oncogenic signaling induced by these kinases involves the modulation of different cellular processes.


Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , Adenocarcinoma de Pulmão/genética , Humanos , Neoplasias Pulmonares/genética , Proteínas de Fusão Oncogênica/genética , Proteínas de Fusão Oncogênica/metabolismo , Fosforilação , Proteínas Tirosina Quinases/genética , Proteínas Tirosina Quinases/metabolismo , Proteômica , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas c-ret/metabolismo , Tirosina
17.
Mol Cell ; 81(4): 830-844.e13, 2021 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-33453168

RESUMO

The MYC oncoprotein globally affects the function of RNA polymerase II (RNAPII). The ability of MYC to promote transcription elongation depends on its ubiquitylation. Here, we show that MYC and PAF1c (polymerase II-associated factor 1 complex) interact directly and mutually enhance each other's association with active promoters. PAF1c is rapidly transferred from MYC onto RNAPII. This transfer is driven by the HUWE1 ubiquitin ligase and is required for MYC-dependent transcription elongation. MYC and HUWE1 promote histone H2B ubiquitylation, which alters chromatin structure both for transcription elongation and double-strand break repair. Consistently, MYC suppresses double-strand break accumulation in active genes in a strictly PAF1c-dependent manner. Depletion of PAF1c causes transcription-dependent accumulation of double-strand breaks, despite widespread repair-associated DNA synthesis. Our data show that the transfer of PAF1c from MYC onto RNAPII efficiently couples transcription elongation with double-strand break repair to maintain the genomic integrity of MYC-driven tumor cells.


Assuntos
Quebras de DNA de Cadeia Dupla , Reparo do DNA , Regiões Promotoras Genéticas , Proteínas Proto-Oncogênicas c-myc/metabolismo , Elongação da Transcrição Genética , ATPases Associadas a Diversas Atividades Celulares/genética , ATPases Associadas a Diversas Atividades Celulares/metabolismo , Linhagem Celular Tumoral , Histonas/genética , Histonas/metabolismo , Humanos , Proteínas Proto-Oncogênicas c-myc/genética , RNA Polimerase II/genética , RNA Polimerase II/metabolismo , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação
18.
EMBO Rep ; 22(2): e50163, 2021 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-33369872

RESUMO

Dynamic control of ubiquitination by deubiquitinating enzymes is essential for almost all biological processes. Ubiquitin-specific peptidase 22 (USP22) is part of the SAGA complex and catalyzes the removal of mono-ubiquitination from histones H2A and H2B, thereby regulating gene transcription. However, novel roles for USP22 have emerged recently, such as tumor development and cell death. Apart from apoptosis, the relevance of USP22 in other programmed cell death pathways still remains unclear. Here, we describe a novel role for USP22 in controlling necroptotic cell death in human tumor cell lines. Loss of USP22 expression significantly delays TNFα/Smac mimetic/zVAD.fmk (TBZ)-induced necroptosis, without affecting TNFα-mediated NF-κB activation or extrinsic apoptosis. Ubiquitin remnant profiling identified receptor-interacting protein kinase 3 (RIPK3) lysines 42, 351, and 518 as novel, USP22-regulated ubiquitination sites during necroptosis. Importantly, mutation of RIPK3 K518 reduced necroptosis-associated RIPK3 ubiquitination and amplified necrosome formation and necroptotic cell death. In conclusion, we identify a novel role of USP22 in necroptosis and further elucidate the relevance of RIPK3 ubiquitination as crucial regulator of necroptotic cell death.


Assuntos
Necroptose , Proteína Serina-Treonina Quinases de Interação com Receptores , Ubiquitina Tiolesterase , Apoptose/genética , Humanos , NF-kappa B/genética , NF-kappa B/metabolismo , Necrose , Proteína Serina-Treonina Quinases de Interação com Receptores/genética , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Transdução de Sinais , Ubiquitinação
19.
Genome Biol ; 20(1): 216, 2019 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-31640799

RESUMO

BACKGROUND: Cells have evolved quality control mechanisms to ensure protein homeostasis by detecting and degrading aberrant mRNAs and proteins. A common source of aberrant mRNAs is premature polyadenylation, which can result in non-functional protein products. Translating ribosomes that encounter poly(A) sequences are terminally stalled, followed by ribosome recycling and decay of the truncated nascent polypeptide via ribosome-associated quality control. RESULTS: Here, we demonstrate that the conserved RNA-binding E3 ubiquitin ligase Makorin Ring Finger Protein 1 (MKRN1) promotes ribosome stalling at poly(A) sequences during ribosome-associated quality control. We show that MKRN1 directly binds to the cytoplasmic poly(A)-binding protein (PABPC1) and associates with polysomes. MKRN1 is positioned upstream of poly(A) tails in mRNAs in a PABPC1-dependent manner. Ubiquitin remnant profiling and in vitro ubiquitylation assays uncover PABPC1 and ribosomal protein RPS10 as direct ubiquitylation substrates of MKRN1. CONCLUSIONS: We propose that MKRN1 mediates the recognition of poly(A) tails to prevent the production of erroneous proteins from prematurely polyadenylated transcripts, thereby maintaining proteome integrity.


Assuntos
Proteínas do Tecido Nervoso/metabolismo , Biossíntese de Proteínas , Ribonucleoproteínas/metabolismo , Regiões 3' não Traduzidas , Células HEK293 , Humanos , Proteína I de Ligação a Poli(A)/metabolismo , RNA Mensageiro/metabolismo , Ubiquitinação
20.
Blood ; 133(21): 2305-2319, 2019 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-30814062

RESUMO

Neural cell adhesion molecule 1 (NCAM1; CD56) is expressed in up to 20% of acute myeloid leukemia (AML) patients. NCAM1 is widely used as a marker of minimal residual disease; however, the biological function of NCAM1 in AML remains elusive. In this study, we investigated the impact of NCAM1 expression on leukemogenesis, drug resistance, and its role as a biomarker to guide therapy. Beside t(8;21) leukemia, NCAM1 expression was found in most molecular AML subgroups at highly heterogeneous expression levels. Using complementary genetic strategies, we demonstrated an essential role of NCAM1 in the regulation of cell survival and stress resistance. Perturbation of NCAM1 induced cell death or differentiation and sensitized leukemic blasts toward genotoxic agents in vitro and in vivo. Furthermore, Ncam1 was highly expressed in leukemic progenitor cells in a murine leukemia model, and genetic depletion of Ncam1 prolonged disease latency and significantly reduced leukemia-initiating cells upon serial transplantation. To further analyze the mechanism of the NCAM1-associated phenotype, we performed phosphoproteomics and transcriptomics in different AML cell lines. NCAM1 expression strongly associated with constitutive activation of the MAPK-signaling pathway, regulation of apoptosis, or glycolysis. Pharmacological inhibition of MEK1/2 specifically inhibited proliferation and sensitized NCAM1+ AML cells to chemotherapy. In summary, our data demonstrate that aberrant expression of NCAM1 is involved in the maintenance of leukemic stem cells and confers stress resistance, likely due to activation of the MAPK pathway. Targeting MEK1/2 sensitizes AML blasts to genotoxic agents, indicating a role for NCAM1 as a biomarker to guide AML treatment.


Assuntos
Biomarcadores Tumorais/metabolismo , Crise Blástica/metabolismo , Antígeno CD56/metabolismo , Resistencia a Medicamentos Antineoplásicos , Leucemia Mieloide Aguda/metabolismo , Proteínas de Neoplasias/metabolismo , Animais , Apoptose/genética , Biomarcadores Tumorais/genética , Crise Blástica/genética , Crise Blástica/patologia , Crise Blástica/terapia , Antígeno CD56/genética , Feminino , Glicólise/genética , Células HL-60 , Humanos , Células K562 , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patologia , Leucemia Mieloide Aguda/terapia , Sistema de Sinalização das MAP Quinases/genética , Masculino , Camundongos , Camundongos Endogâmicos NOD , Camundongos Knockout , Proteínas de Neoplasias/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA