Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Appl Environ Microbiol ; 77(23): 8234-40, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21965410

RESUMO

Shewanella oneidensis MR-1 is a facultative anaerobe that derives energy by coupling organic matter oxidation to the reduction of a wide range of electron acceptors. Here, we quantitatively assessed the lactate and pyruvate metabolism of MR-1 under three distinct conditions: electron acceptor-limited growth on lactate with O(2), lactate with fumarate, and pyruvate fermentation. The latter does not support growth but provides energy for cell survival. Using physiological and genetic approaches combined with flux balance analysis, we showed that the proportion of ATP produced by substrate-level phosphorylation varied from 33% to 72.5% of that needed for growth depending on the electron acceptor nature and availability. While being indispensable for growth, the respiration of fumarate does not contribute significantly to ATP generation and likely serves to remove formate, a product of pyruvate formate-lyase-catalyzed pyruvate disproportionation. Under both tested respiratory conditions, S. oneidensis MR-1 carried out incomplete substrate oxidation, whereby the tricarboxylic acid (TCA) cycle did not contribute significantly. Pyruvate dehydrogenase was not involved in lactate metabolism under conditions of O(2) limitation but was required for anaerobic growth, likely by supplying reducing equivalents for biosynthesis. The results suggest that pyruvate fermentation by S. oneidensis MR-1 cells represents a combination of substrate-level phosphorylation and respiration, where pyruvate serves as an electron donor and an electron acceptor. Pyruvate reduction to lactate at the expense of formate oxidation is catalyzed by a recently described new type of oxidative NAD(P)H-independent d-lactate dehydrogenase (Dld-II). The results further indicate that pyruvate reduction coupled to formate oxidation may be accompanied by the generation of proton motive force.


Assuntos
Fumaratos/metabolismo , Ácido Láctico/metabolismo , Oxigênio/metabolismo , Ácido Pirúvico/metabolismo , Shewanella/crescimento & desenvolvimento , Shewanella/metabolismo , Trifosfato de Adenosina/biossíntese , Metabolismo Energético , Fermentação , Formiatos/metabolismo , Força Próton-Motriz
2.
Proc Natl Acad Sci U S A ; 108(23): 9384-9, 2011 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-21606337

RESUMO

Some bacterial species are able to utilize extracellular mineral forms of iron and manganese as respiratory electron acceptors. In Shewanella oneidensis this involves decaheme cytochromes that are located on the bacterial cell surface at the termini of trans-outer-membrane electron transfer conduits. The cell surface cytochromes can potentially play multiple roles in mediating electron transfer directly to insoluble electron sinks, catalyzing electron exchange with flavin electron shuttles or participating in extracellular intercytochrome electron exchange along "nanowire" appendages. We present a 3.2-Å crystal structure of one of these decaheme cytochromes, MtrF, that allows the spatial organization of the 10 hemes to be visualized for the first time. The hemes are organized across four domains in a unique crossed conformation, in which a staggered 65-Å octaheme chain transects the length of the protein and is bisected by a planar 45-Å tetraheme chain that connects two extended Greek key split ß-barrel domains. The structure provides molecular insight into how reduction of insoluble substrate (e.g., minerals), soluble substrates (e.g., flavins), and cytochrome redox partners might be possible in tandem at different termini of a trifurcated electron transport chain on the cell surface.


Assuntos
Proteínas da Membrana Bacteriana Externa/química , Grupo dos Citocromos c/química , Citocromos/química , Heme/química , Sequência de Aminoácidos , Proteínas da Membrana Bacteriana Externa/genética , Proteínas da Membrana Bacteriana Externa/metabolismo , Sítios de Ligação/genética , Cristalografia por Raios X , Cisteína/química , Cisteína/genética , Cisteína/metabolismo , Grupo dos Citocromos c/genética , Grupo dos Citocromos c/metabolismo , Citocromos/genética , Citocromos/metabolismo , Dissulfetos/química , Espectroscopia de Ressonância de Spin Eletrônica , Transporte de Elétrons , Mononucleotídeo de Flavina/química , Mononucleotídeo de Flavina/metabolismo , Mononucleotídeo de Flavina/farmacologia , Heme/metabolismo , Ferro/química , Ferro/metabolismo , Ferro/farmacologia , Modelos Moleculares , Dados de Sequência Molecular , Oxirredução/efeitos dos fármacos , Potenciometria , Ligação Proteica , Estrutura Terciária de Proteína , Shewanella/genética , Shewanella/metabolismo
3.
PLoS Comput Biol ; 6(6): e1000822, 2010 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-20589080

RESUMO

Shewanellae are gram-negative facultatively anaerobic metal-reducing bacteria commonly found in chemically (i.e., redox) stratified environments. Occupying such niches requires the ability to rapidly acclimate to changes in electron donor/acceptor type and availability; hence, the ability to compete and thrive in such environments must ultimately be reflected in the organization and utilization of electron transfer networks, as well as central and peripheral carbon metabolism. To understand how Shewanella oneidensis MR-1 utilizes its resources, the metabolic network was reconstructed. The resulting network consists of 774 reactions, 783 genes, and 634 unique metabolites and contains biosynthesis pathways for all cell constituents. Using constraint-based modeling, we investigated aerobic growth of S. oneidensis MR-1 on numerous carbon sources. To achieve this, we (i) used experimental data to formulate a biomass equation and estimate cellular ATP requirements, (ii) developed an approach to identify cycles (such as futile cycles and circulations), (iii) classified how reaction usage affects cellular growth, (iv) predicted cellular biomass yields on different carbon sources and compared model predictions to experimental measurements, and (v) used experimental results to refine metabolic fluxes for growth on lactate. The results revealed that aerobic lactate-grown cells of S. oneidensis MR-1 used less efficient enzymes to couple electron transport to proton motive force generation, and possibly operated at least one futile cycle involving malic enzymes. Several examples are provided whereby model predictions were validated by experimental data, in particular the role of serine hydroxymethyltransferase and glycine cleavage system in the metabolism of one-carbon units, and growth on different sources of carbon and energy. This work illustrates how integration of computational and experimental efforts facilitates the understanding of microbial metabolism at a systems level.


Assuntos
Biologia Computacional/métodos , Modelos Biológicos , Shewanella/crescimento & desenvolvimento , Shewanella/metabolismo , Trifosfato de Adenosina/metabolismo , Biomassa , Ácido Láctico/metabolismo , Modelos Lineares , Redes e Vias Metabólicas , Oxigênio/metabolismo , Fenótipo , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA