Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cardiovasc Pathol ; 73: 107686, 2024 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-39168420

RESUMO

BACKGROUND: Pericardial fluid (PF) contains cells, proteins, and inflammatory mediators, such as cytokines, chemokines, growth factors, and matrix metalloproteinases. To date, we lack an adequate understanding of the inflammatory response that acute injury elicits in the pericardial space. OBJECTIVE: To characterize the inflammatory profile in the pericardial space acutely after ischemia/reperfusion. METHODS: Pigs were used to establish a percutaneous ischemia/reperfusion injury model. PF was removed from pigs at different time points postanesthesia or postischemia/reperfusion. Flow cytometry was used to characterize the immune cell composition of PF, while multiplex analysis was performed on the acellular portion of PF to determine the concentration of inflammatory mediators. There was a minimum of 3 pigs per group. RESULTS: While native PF mainly comprises macrophages, we show that neutrophils are the predominant inflammatory cell type in the pericardial space after injury. The combination of acute ischemia/reperfusion (IR) and repeatedly accessing the pericardial space significantly increases the concentration of interleukin-1 beta (IL-1ß) and interleukin-1 receptor antagonist (IL-1ra). IR significantly increases the pericardial concentration of TGFß1 but not TGFß2. We observed that repeated manipulation of the pericardial space can also drive a robust pro-inflammatory response, resulting in a significant increase in immune cells and the accumulation of potent inflammatory mediators in the pericardial space. CONCLUSION: In the present study, we show that both IR and surgical manipulation can drive robust inflammatory processes in the pericardial space, consisting of an increase in inflammatory cytokines and alteration in the number and composition of immune cells.

2.
Cell Death Discov ; 9(1): 456, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38097554

RESUMO

MALT1 (mucosa-associated lymphoid tissue lymphoma translocation protein 1) is a human paracaspase protein with proteolytic activity via its caspase-like domain. The pharmacological inhibition of MALT1 by MI-2, a specific chemical inhibitor, diminishes the response of endothelial cells to inflammatory stimuli. However, it is largely unknown how MALT1 regulates the functions of vascular smooth muscle cells (SMCs). This study aims to investigate the impact of MALT1 inhibition by MI-2 on the functions of vascular SMCs, both in vitro and in vivo. MI-2 treatment led to concentration- and time-dependent cell death of cultured aortic SMCs, which was rescued by the iron chelator deferoxamine (DFO) or ferrostatin-1 (Fer-1), a specific inhibitor of ferroptosis, but not by inhibitors of apoptosis (Z-VAD-fmk), pyroptosis (Z-YVAD-fmk), or necrosis (Necrostatin-1, Nec-1). MI-2 treatment downregulated the expression of glutathione peroxidase 4 (GPX4) and ferritin heavy polypeptide 1 (FTH1), which was prevented by pre-treatment with DFO or Fer-1. MI-2 treatment also activated autophagy, which was inhibited by Atg7 deficiency or bafilomycin A1 preventing MI-2-induced ferroptosis. MI-2 treatment reduced the cleavage of cylindromatosis (CYLD), a specific substrate of MALT1. Notably, MI-2 treatment led to a rapid loss of contractility in mouse aortas, which was prevented by co-incubation with Fer-1. Moreover, local application of MI-2 significantly reduced carotid neointima lesions and atherosclerosis in C57BL/6J mice and apolipoprotein-E knockout (ApoE-/-) mice, respectively, which were both ameliorated by co-treatment with Fer-1. In conclusion, the present study demonstrated that MALT1 inhibition induces ferroptosis of vascular SMCs, likely contributing to its amelioration of proliferative vascular diseases.

3.
Cell Death Discov ; 9(1): 49, 2023 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-36750553

RESUMO

Neointima lesion and atherosclerosis are proliferative vascular diseases associated with deregulated proliferation of vascular smooth muscle cells (SMCs). CFI-400945 is a novel, highly effective anticancer drug that inhibits polo-like kinase 4 (PLK4) and targets mitosis. In this study, we aim to investigate how CFI-400945 affects the development of proliferative vascular diseases. In C57BL/6 mice, neointima formation was generated by complete carotid ligation. In apolipoprotein E knockout (ApoE-/-) mice fed a high-fat diet, atherosclerosis was induced by partial carotid ligation. CFI-400945 was directly applied to carotid arteries via a perivascular collar. Our results showed that CFI-400945 drastically inhibited neointima formation but significantly accelerated atherosclerosis. In vitro studies showed that CFI-400945 treatment induced SMC polyploidization and arrested cells in the G2/M phase. CFI-400945 treatment upregulated p53 and p27 expression but decreased p21 and cyclin B1 expression. CFI-400945 also induced SMC apoptosis, which was inhibited by hydroxyurea, a DNA synthesis inhibitor that inhibits polyploidization. Furthermore, CFI-400945 caused supernumerary centrosomes, leading to mitotic failure, resulting in polyploidization. In conclusion, CFI-400945 prevents carotid arterial neointima formation in C57BL/6 mice but accelerates atherosclerosis in ApoE-/- mice, likely through mitotic arrest and subsequent induction of polyploidization and apoptosis.

4.
J Thorac Cardiovasc Surg ; 165(3): e122-e140, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-35058062

RESUMO

OBJECTIVE: After myocardial infarction, we previously showed that epicardial implantation of porcine small intestinal submucosal extracellular matrix (SIS-ECM) improves postinfarct cardiac function through fibroblast-mediated angiogenic and antifibrotic pathways. Herein, we characterize how SIS-ECM also coordinates a reparative cardiac inflammatory response. METHODS: RNA sequencing and multiplex characterized modulation of fibroblast transcriptional and paracrine activity by SIS-ECM. Inhibitors of fibroblast growth factor 2 and toll-like receptor 9 elucidated mechanism. Mice received coronary ligation (infarction) and either SIS-ECM implantation (treatment) or sham surgery (control). Flow cytometry of SIS-ECM and the murine myocardium quantified monocytes, neutrophils, and proangiogenic subtypes. Microscopy tracked fibroblasts and immune cells, and characterized myocardial angiogenesis. RESULTS: SIS-ECM increased fibroblast transcription of inflammatory pathways and production of angiogenic vascular endothelial growth factor and inflammatory cytokines via fibroblast growth factor 2 and toll-like receptor 9-dependent pathways. Two-photon microscopy showed that SIS-ECM became engrafted by native fibroblasts and leukocytes, subsequently increasing release of inflammatory cytokines and angiogenic vascular endothelial growth factor. On flow cytometry, SIS-ECM implantation increased day-7 myocardial counts of neutrophils, inflammatory monocytes, and proangiogenic vascular endothelial growth factor recptor 1 subtypes. SIS-ECM has a higher proportion of proangiogenic leukocytes compared with the myocardium. Resonant confocal microscopy showed neovascularization near SIS-ECM. CONCLUSIONS: SIS-ECM promotes engraftment by native fibroblasts and leukocytes, and modulates fibroblast activity via fibroblast growth factor 2 and toll-like receptor 9 to potentiate a proangiogenic inflammatory response. Subsequently, the material increases myocardial counts of reparative proangiogenic leukocytes that can induce neovascularization. This reparative inflammatory response may explain previously reported functional improvements. Fibroblast growth factor 2 and toll-like receptor 9 mechanisms can be leveraged to design next-generation materials for postinfarct cardiac repair.


Assuntos
Materiais Biocompatíveis , Miocardite , Camundongos , Animais , Suínos , Materiais Biocompatíveis/metabolismo , Receptor Toll-Like 9/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Fator 2 de Crescimento de Fibroblastos/metabolismo , Miocárdio/metabolismo , Fatores de Crescimento do Endotélio Vascular/metabolismo , Citocinas/metabolismo , Inflamação/metabolismo
5.
Circ Res ; 132(2): e59-e77, 2023 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-36583384

RESUMO

BACKGROUND: PKA (protein kinase A)-mediated phosphorylation of cardiac RyR2 (ryanodine receptor 2) has been extensively studied for decades, but the physiological significance of PKA phosphorylation of RyR2 remains poorly understood. Recent determination of high-resolution 3-dimensional structure of RyR2 in complex with CaM (calmodulin) reveals that the major PKA phosphorylation site in RyR2, serine-2030 (S2030), is located within a structural pathway of CaM-dependent inactivation of RyR2. This novel structural insight points to a possible role of PKA phosphorylation of RyR2 in CaM-dependent inactivation of RyR2, which underlies the termination of Ca2+ release and induction of cardiac Ca2+ alternans. METHODS: We performed single-cell endoplasmic reticulum Ca2+ imaging to assess the impact of S2030 mutations on Ca2+ release termination in human embryonic kidney 293 cells. Here we determined the role of the PKA site RyR2-S2030 in a physiological setting, we generated a novel mouse model harboring the S2030L mutation and carried out confocal Ca2+ imaging. RESULTS: We found that mutations, S2030D, S2030G, S2030L, S2030V, and S2030W reduced the endoplasmic reticulum luminal Ca2+ level at which Ca2+ release terminates (the termination threshold), whereas S2030P and S2030R increased the termination threshold. S2030A and S2030T had no significant impact on release termination. Furthermore, CaM-wild-type increased, whereas Ca2+ binding deficient CaM mutant (CaM-M [a loss-of-function CaM mutation with all 4 EF-hand motifs mutated]), PKA, and Ca2+/CaMKII (CaM-dependent protein kinase II) reduced the termination threshold. The S2030L mutation abolished the actions of CaM-wild-type, CaM-M, and PKA, but not CaMKII, in Ca2+ release termination. Moreover, we showed that isoproterenol and CaM-M suppressed pacing-induced Ca2+ alternans and accelerated Ca2+ transient recovery in intact working hearts, whereas CaM-wild-type exerted an opposite effect. The impact of isoproterenol was partially and fully reversed by the PKA inhibitor N-[2-(p-bromocinnamylamino)ethyl]-5-isoquinoline-sulfonamide and the CaMKII inhibitor N-[2-[N-(4-chlorocinnamyl)-N-methylaminomethyl]phenyl]-N-(2-hydroxyethyl)-4-methoxybenzenesulfonamide individually and together, respectively. S2030L abolished the impact of CaM-wild-type, CaM-M, and N-[2-(p-bromocinnamylamino)ethyl]-5-isoquinoline-sulfonamide-sensitive component, but not the N-[2-[N-(4-chlorocinnamyl)-N-methylaminomethyl]phenyl]-N-(2-hydroxyethyl)-4-methoxybenzenesulfonamide-sensitive component, of isoproterenol.


Assuntos
Canal de Liberação de Cálcio do Receptor de Rianodina , Serina , Camundongos , Animais , Humanos , Isoproterenol/farmacologia , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Serina/metabolismo , Serina/farmacologia , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Calmodulina/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/genética , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Isoquinolinas/farmacologia , Sulfonamidas/farmacologia , Cálcio/metabolismo , Miócitos Cardíacos/metabolismo , Retículo Sarcoplasmático/metabolismo
6.
Curr Eye Res ; 47(3): 426-435, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34674590

RESUMO

PURPOSE: Retinoblastoma is the most frequent intraocular cancer in children. It is also one of the most common causes for enucleation and carries a significant morbidity rate in affected individuals. Hence, studies on its pathophysiological and growth regulatory mechanisms are urgently needed to identify more effective novel therapeutics. METHODS: Using the Y79 retinoblastoma cell line, we investigated the electrophysiological and functional activities of the T-type voltage-gated calcium channel Cav3.1, that is constitutively expressed in these cells. We also analyzed the Akt and MAPK signaling pathways downstream of the epidermal growth factor receptor (EGFR) to understand the mechanism responsible for the inhibition of Cav3.1. RESULTS: We demonstrate that the EGFR inhibitor Afatinib significantly reduced cell viability and Cav3.1 mRNA expression and electrophysiological activity. At low concentrations (1 µM), Afatinib reduced the amplitude of Cav3.1 current density, whereas at a high concentration (10 µM), it completely abolished the voltage-gated calcium current. Our results show that inhibition of the MAPK pathway by a specific inhibitor VX-11e affected the Cav3.1 current in a dose-dependent manner. VX-11e (50 nM-1 µM) treatment reduced Cav3.1 current densities in Y79 cells, with complete abolishment of Cav3.1 current at higher concentrations (5 µM). We also demonstrate that the specific inhibition of the Akt kinase (using MK-2206) had no effect on the Cav3.1 currents. CONCLUSION: Our study provides a functional relationship between the MAPK pathway and EGFR signaling and indicates that the MAPK signaling pathway mediates the control of Cav3.1 by EGFR in retinoblastoma.


Assuntos
Canais de Cálcio Tipo T , Receptores ErbB , Sistema de Sinalização das MAP Quinases , Neoplasias da Retina , Retinoblastoma , Afatinib , Canais de Cálcio Tipo T/genética , Canais de Cálcio Tipo T/metabolismo , Receptores ErbB/genética , Receptores ErbB/metabolismo , Humanos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Neoplasias da Retina/tratamento farmacológico , Retinoblastoma/tratamento farmacológico
7.
Arterioscler Thromb Vasc Biol ; 42(1): 67-86, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34809446

RESUMO

OBJECTIVE: PCSK9 (proprotein convertase subtilisin/kexin type 9) plays a critical role in cholesterol metabolism via the PCSK9-LDLR (low-density lipoprotein receptor) axis in the liver; however, evidence indicates that PCSK9 directly contributes to the pathogenesis of various diseases through mechanisms independent of its LDL-cholesterol regulation. The objective of this study was to determine how PCSK9 directly acts on vascular smooth muscle cells (SMCs), contributing to degenerative vascular disease. Approach and Results: We first examined the effects of PCSK9 on cultured human aortic SMCs. Overexpression of PCSK9 downregulated the expression of ApoER2 (apolipoprotein E receptor 2), a known target of PCSK9. Treatment with soluble recombinant human ApoER2 or the DNA synthesis inhibitor, hydroxyurea, inhibited PCSK9-induced polyploidization and other cellular responses of human SMCs. Treatment with antibodies against ApoER2 resulted in similar effects to those observed with PCSK9 overexpression. Inducible, SMC-specific knockout of Pcsk9 accelerated neointima formation in mouse carotid arteries and reduced age-related arterial stiffness. PCSK9 was expressed in SMCs of human atherosclerotic lesions and abundant in the "shoulder" regions of vulnerable atherosclerotic plaques. PCSK9 was also expressed in SMCs of abdominal aortic aneurysm, which was inversely related to the expression of smooth muscle α-actin. CONCLUSIONS: Our findings demonstrate that PCSK9 inhibits proliferation and induces polyploidization, senescence, and apoptosis, which may be relevant to various degenerative vascular diseases.


Assuntos
Apoptose , Aterosclerose/enzimologia , Proliferação de Células , Senescência Celular , Músculo Liso Vascular/enzimologia , Miócitos de Músculo Liso/enzimologia , Pró-Proteína Convertase 9/metabolismo , Animais , Aterosclerose/genética , Aterosclerose/patologia , Aterosclerose/fisiopatologia , Células Cultivadas , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Músculo Liso Vascular/patologia , Músculo Liso Vascular/fisiopatologia , Miócitos de Músculo Liso/patologia , Neointima , Placa Aterosclerótica , Pró-Proteína Convertase 9/genética , Transdução de Sinais , Rigidez Vascular
8.
Circ Res ; 128(4): e63-e83, 2021 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-33375811

RESUMO

RATIONALE: Ca2+ alternans plays an essential role in cardiac alternans that can lead to ventricular fibrillation, but the mechanism underlying Ca2+ alternans remains undefined. Increasing evidence suggests that Ca2+ alternans results from alternations in the inactivation of cardiac RyR2 (ryanodine receptor 2). However, what inactivates RyR2 and how RyR2 inactivation leads to Ca2+ alternans are unknown. OBJECTIVE: To determine the role of CaM (calmodulin) on Ca2+ alternans in intact working mouse hearts. METHODS AND RESULTS: We used an in vivo local gene delivery approach to alter CaM function by directly injecting adenoviruses expressing CaM-wild type, a loss-of-function CaM mutation, CaM (1-4), and a gain-of-function mutation, CaM-M37Q, into the anterior wall of the left ventricle of RyR2 wild type or mutant mouse hearts. We monitored Ca2+ transients in ventricular myocytes near the adenovirus-injection sites in Langendorff-perfused intact working hearts using confocal Ca2+ imaging. We found that CaM-wild type and CaM-M37Q promoted Ca2+ alternans and prolonged Ca2+ transient recovery in intact RyR2 wild type and mutant hearts, whereas CaM (1-4) exerted opposite effects. Altered CaM function also affected the recovery from inactivation of the L-type Ca2+ current but had no significant impact on sarcoplasmic reticulum Ca2+ content. Furthermore, we developed a novel numerical myocyte model of Ca2+ alternans that incorporates Ca2+-CaM-dependent regulation of RyR2 and the L-type Ca2+ channel. Remarkably, the new model recapitulates the impact on Ca2+ alternans of altered CaM and RyR2 functions under 9 different experimental conditions. Our simulations reveal that diastolic cytosolic Ca2+ elevation as a result of rapid pacing triggers Ca2+-CaM dependent inactivation of RyR2. The resultant RyR2 inactivation diminishes sarcoplasmic reticulum Ca2+ release, which, in turn, reduces diastolic cytosolic Ca2+, leading to alternations in diastolic cytosolic Ca2+, RyR2 inactivation, and sarcoplasmic reticulum Ca2+ release (ie, Ca2+ alternans). CONCLUSIONS: Our results demonstrate that inactivation of RyR2 by Ca2+-CaM is a major determinant of Ca2+ alternans, making Ca2+-CaM dependent regulation of RyR2 an important therapeutic target for cardiac alternans.


Assuntos
Sinalização do Cálcio , Coração/fisiologia , Miócitos Cardíacos/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Potenciais de Ação , Animais , Canais de Cálcio Tipo L/metabolismo , Calmodulina/metabolismo , Células Cultivadas , Frequência Cardíaca , Camundongos , Camundongos Endogâmicos C57BL , Contração Miocárdica , Miócitos Cardíacos/fisiologia
9.
Can J Cardiol ; 36(4): 543-553, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31837891

RESUMO

BACKGROUND: Empagliflozin, an SGLT2 inhibitor, has shown remarkable reductions in cardiovascular mortality and heart failure admissions (EMPA-REG OUTCOME). However, the mechanism underlying the heart failure protective effects of empagliflozin remains largely unknown. Cardiac fibroblasts play an integral role in the progression of structural cardiac remodelling and heart failure, in part, by regulating extracellular matrix (ECM) homeostasis. The objective of this study was to determine if empagliflozin has a direct effect on human cardiac myofibroblast-mediated ECM remodelling. METHODS: Cardiac fibroblasts were isolated via explant culture from human atrial tissue obtained at open heart surgery. Collagen gel contraction assay was used to assess myofibroblast activity. Cell morphology and cell-mediated ECM remodelling was examined with the use of confocal microscopy. Gene expression of profibrotic markers was assessed with the use of reverse-transcription quantitative polymerase chain reaction. RESULTS: Empagliflozin significantly attenuated transforming growth factor ß1-induced fibroblast activation via collagen gel contraction after 72-hour exposure, with escalating concentrations (0.5 µmol/L, 1 µmol/L, and 5 µmol/L) resulting in greater attenuation. Morphologic assessment showed that myofibroblasts exposed to empagliflozin were smaller in size with shorter and fewer number of extensions, indicative of a more quiescent phenotype. Moreover, empagliflozin significantly attenuated cell-mediated ECM remodelling as measured by collagen fibre alignment index. Gene expression profiling revealed significant suppression of critical profibrotic markers by empagliflozin, including COL1A1, ACTA2, CTGF, FN1, and MMP-2. CONCLUSIONS: We provide novel data showing a direct effect of empagliflozin on human cardiac myofibroblast phenotype and function by attenuation of myofibroblast activity and cell-mediated collagen remodelling. These data provide critical insights into the profound effects of empagliflozin as noted in the EMPA-REG OUTCOME study.


Assuntos
Compostos Benzidrílicos/farmacologia , Matriz Extracelular/efeitos dos fármacos , Matriz Extracelular/fisiologia , Glucosídeos/farmacologia , Miocárdio/citologia , Miofibroblastos/efeitos dos fármacos , Inibidores do Transportador 2 de Sódio-Glicose/farmacologia , Células Cultivadas , Humanos
10.
Immunity ; 51(1): 131-140.e5, 2019 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-31315031

RESUMO

Macrophages play an important role in structural cardiac remodeling and the transition to heart failure following myocardial infarction (MI). Previous research has focused on the impact of blood-derived monocytes on cardiac repair. Here we examined the contribution of resident cavity macrophages located in the pericardial space adjacent to the site of injury. We found that disruption of the pericardial cavity accelerated maladaptive post-MI cardiac remodeling. Gata6+ macrophages in mouse pericardial fluid contributed to the reparative immune response. Following experimental MI, these macrophages invaded the epicardium and lost Gata6 expression but continued to perform anti-fibrotic functions. Loss of this specialized macrophage population enhanced interstitial fibrosis after ischemic injury. Gata6+ macrophages were present in human pericardial fluid, supporting the notion that this reparative function is relevant in human disease. Our findings uncover an immune cardioprotective role for the pericardial tissue compartment and argue for the reevaluation of surgical procedures that remove the pericardium.


Assuntos
Fibrose/prevenção & controle , Fator de Transcrição GATA6/metabolismo , Coração/fisiologia , Macrófagos/imunologia , Infarto do Miocárdio/imunologia , Miocárdio/patologia , Pericárdio/imunologia , Animais , Movimento Celular , Células Cultivadas , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Remodelação Ventricular
11.
J Thorac Cardiovasc Surg ; 157(1): 109-119.e2, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30528439

RESUMO

OBJECTIVES: Fluoroquinolone (FQ) antibiotics are associated with adverse aortic clinical events. We assessed human aortic myofibroblast-mediated extracellular matrix (ECM) dysregulation as a possible cellular mechanism underlying FQ-associated aortopathy. METHODS: Human aortic myofibroblasts were isolated from patients with aortopathy undergoing elective ascending aortic resection (N = 9). The capacity for extracellular matrix degradation in cells exposed to FQ was assessed by multiplex analysis of secreted matrix metalloproteinases relative to tissue inhibitors of matrix metalloproteinases (TIMPs). Direct evaluation of extracellular matrix degradation was investigated in human aortic cells using a 3-dimensional gelatin-fluorescein isothiocyanate fluorescence microgel assay. Aortic cellular collagen-1 expression following FQ exposure was determined by immunoblotting and immunofluorescent staining. Cell apoptosis, necrosis, and metabolic viability was determined by annexin-V, propidium iodide staining, and water-soluble tetrazolium salt (WST1) assay. RESULTS: FQ exposure significantly decreased aortic cell TIMP-1 (P = .004) and TIMP-2 (P = .0004) protein expression compared with vehicle control. The ratio of matrix metalloproteinase-9/TIMP-2 was increased suggesting an increased capacity for extracellular matrix degradation (P = .01). In collagen gels, we show a trend toward increased aortic myofibroblast-mediated collagen fiber degradation with FQ exposure (P = .09). Similarly, FQ exposure attenuated collagen-1 expression as assessed by immunoblotting (P = .002) and immunofluorescence (P = .02). Cell apoptosis, necrosis, and metabolic viability was not significantly influenced by FQ exposure. CONCLUSIONS: For the first time, we document a putative mechanism underlying FQ-associated aortopathy whereby decreased TIMP expression with impaired compensatory collagen-1 expression results in human aortic myofibroblast-mediated extracellular matrix dysregulation. These novel data may provide a cellular and molecular mechanism to explain the established clinical association between FQ exposure and acute aortic events.


Assuntos
Aorta/citologia , Doenças da Aorta/induzido quimicamente , Matriz Extracelular/efeitos dos fármacos , Fluoroquinolonas/efeitos adversos , Miofibroblastos/efeitos dos fármacos , Aorta/efeitos dos fármacos , Aorta/fisiopatologia , Doenças da Aorta/fisiopatologia , Apoptose/efeitos dos fármacos , Células Cultivadas , Matriz Extracelular/fisiologia , Feminino , Imunofluorescência , Humanos , Immunoblotting , Masculino , Pessoa de Meia-Idade , Miofibroblastos/fisiologia , Inibidores Teciduais de Metaloproteinases/antagonistas & inibidores
12.
J Thorac Cardiovasc Surg ; 156(4): 1598-1608.e1, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29859675

RESUMO

OBJECTIVE: Intrapericardial fibrous adhesions increase the risk of sternal reentry. Proteoglycan 4/lubricin (PRG4) is a mucin-like glycoprotein that lubricates tissue compartments and prevents inflammation. We characterized PRG4 expression in human pericardium and examined its effects in vitro on human cardiac myofibroblast fibrotic activity and in vivo as a measure of its therapeutic potential to prevent adhesions. METHODS: Full-length PRG4 expression was determined using Western blot analysis and amplified luminescent proximity homogeneous assay in human pericardial tissues obtained at cardiotomy. The in vitro effects of PRG4 were investigated on human cardiac myofibroblasts for cell adhesion, collagen gel contraction, and cell-mediated extracellular matrix remodeling. The influence of PRG4 on pericardial homeostasis was determined in a chronic porcine animal model. RESULTS: PRG4 is expressed in human pericardial fluid and colocalized with pericardial mesothelial cells. Recombinant human PRG4 prevented human cardiac myofibroblast attachment and reduced myofibroblast activity assessed using collagen gel contraction assay (64.6% ± 8.1% vs 47.1% ± 6.8%; P = .02). Using a microgel assay, human cardiac myofibroblast mediated collagen fiber remodeling was attenuated by PRG4 (1.17 ± 0.03 vs 0.90 ± 0.05; P = .002). In vivo, removal of pericardial fluid alone induced severe intrapericardial adhesion formation, tissue thickening, and inflammatory fluid collections. Restoration of intrapericardial PRG4 was protective against fibrous adhesions and preserved the pericardial space. CONCLUSIONS: For the first time, we show that PRG4 is expressed in human pericardial fluid and regulates local fibrotic myofibroblast activity. Loss of PRG4-enriched pericardial fluid after cardiotomy might induce adhesion formation. Therapeutic restoration of intrapericardial PRG4 might prevent fibrous/inflammatory adhesions and reduce the risk of sternal reentry.


Assuntos
Miofibroblastos/efeitos dos fármacos , Pericárdio/efeitos dos fármacos , Proteoglicanas/farmacologia , Doenças Torácicas/prevenção & controle , Animais , Adesão Celular/efeitos dos fármacos , Células Cultivadas , Colágeno/metabolismo , Modelos Animais de Doenças , Matriz Extracelular/efeitos dos fármacos , Matriz Extracelular/metabolismo , Matriz Extracelular/patologia , Humanos , Miofibroblastos/metabolismo , Miofibroblastos/patologia , Líquido Pericárdico/metabolismo , Pericárdio/metabolismo , Pericárdio/patologia , Proteoglicanas/metabolismo , Sus scrofa , Doenças Torácicas/metabolismo , Doenças Torácicas/patologia , Aderências Teciduais
13.
Exp Physiol ; 103(5): 666-682, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29493027

RESUMO

NEW FINDINGS: What is the central question of this study? Although electrophysiological and biophysical characteristics of heart fibroblasts have been studied in detail, their responses to prominent paracrine agents in the myocardium have not been addressed adequately. Our experiments characterize changes in cellular electrophysiology and intracellular calcium in response to ATP. What is the main finding and its importance? In rat ventricular fibroblasts maintained in cell culture, we find that ATP activates a specific subset of Ca2+ -activated Cl- channels as a consequence of binding to P2Y purinoceptors and then activating phospholipase C. This response is not dependent on [Ca2+ ]o but requires an increase in [Ca2+ ]i and is modulated by the type of nucleotide that is the purinergic agonist. ABSTRACT: Effects of ATP on enzymatically isolated rat ventricular fibroblasts maintained in short-term (36-72 h) cell culture were examined. Immunocytochemical staining of these cells revealed that a fibroblast, as opposed to a myofibroblast, phenotype was predominant. ATP, ADP or uridine 5'-triphosphate (UTP) all produced large increases in [Ca2+ ]i . Voltage-clamp studies (amphotericin-perforated patch) showed that ATP (1-100 µm) activated an outwardly rectifying current, with a reversal potential very close to the Nernst potential for Cl- . In contrast, ADP was much less effective, and UTP produced no detectable current. The non-selective Cl- channel blockers niflumic acid, DIDS and NPPB (each at 100 µm), blocked the responses to 100 µm ATP. An agonist for P2Y purinoceptors, 2-MTATP, activated a very similar outwardly rectifying C1- current. The P2Y receptor antagonists, suramin and PPADS (100 µm each), significantly inhibited the Cl- current produced by 100 µm ATP. ATP was able to activate this Cl- current when [Ca2+ ]o was removed, but not when [Ca2+ ]i was buffered with BAPTA-AM. In the presence of the phospholipase C inhibitor U73122, this Cl- current could not be activated. PCR analysis revealed strong signals for a number of P2Y purinoceptors and for the Ca2+ -activated Cl- channel, TMEM16F (also denoted ANO6). In summary, these results demonstrate that activation of P2Y receptors by ATP causes a phospholipase C-dependent increase in [Ca2+ ]i , followed by activation of a Ca2+ -dependent Cl- current in rat ventricular fibroblasts.


Assuntos
Trifosfato de Adenosina/metabolismo , Cálcio/metabolismo , Cloretos/metabolismo , Fibroblastos/metabolismo , Animais , Células Cultivadas , Fibroblastos/efeitos dos fármacos , Ventrículos do Coração/efeitos dos fármacos , Ventrículos do Coração/metabolismo , Masculino , Antagonistas do Receptor Purinérgico P2Y/farmacologia , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Fosfolipases Tipo C/metabolismo
14.
Artigo em Inglês | MEDLINE | ID: mdl-27154360

RESUMO

BACKGROUND: We have recently shown that Calanus oil, which is extracted from the marine copepod Calanus finmarchicus, reduces fat deposition, suppresses adipose tissue inflammation and improves insulin sensitivity in high fat-fed rodents. This study expands upon our previous observations by examining whether dietary supplementation with Calanus oil could antagonize angiotensin II (Ang II)-induced hypertension and ventricular remodeling in mice given a high fat diet (HFD). METHODS: C57BL/6J mice were initially subjected to 8 weeks of HFD with or without 2% (w/w) Calanus oil. Thereafter, animals within each group were randomized for the administration of either Ang II (1µg/kg/min) or saline for another two weeks, while still on the same dietary regimen. RESULTS: Ang II caused a marked decline in body and organ weights in mice receiving non-supplemented HFD, a response which was clearly attenuated in mice receiving Calanus oil supplementation. Furthermore, Ang II-induced elevation in blood pressure was also attenuated in the Calanus oil-supplemented group. As expected, infusion of Ang II produced hypertrophy and up-regulation of marker genes (mRNA level) of both hypertrophy and fibrosis in cardiac muscle, but this response was unaffected by dietary Calanus oil. Fibrosis and inflammation were up-regulated also in the aorta following Ang II infusion. However, the inflammatory response was blocked by Calanus oil supplementation. A final, and unexpected, finding was that dietary intake of Calanus oil caused a robust increase in the level of O-GlcNAcylation in cardiac tissue. CONCLUSION: These results suggest that dietary intake of oil from the marine copepod Calanus finmarchicus could be a beneficial addition to conventional hypertension treatment. The compound attenuates inflammation and the severe metabolic stress caused by Ang II infusion. Although the present study suggests that the anti-hypertensive effect of the oil (or its n-3 PUFAs constituents) is related to its anti-inflammatory action in the vessel wall, other mechanisms such as interaction with intracellular calcium mechanisms or a direct antagonistic effect on Ang II receptors should be examined.


Assuntos
Angiotensina II/efeitos adversos , Anti-Inflamatórios/administração & dosagem , Gorduras Insaturadas na Dieta/administração & dosagem , Hipertensão/dietoterapia , Animais , Anti-Inflamatórios/farmacologia , Aorta/efeitos dos fármacos , Peso Corporal/efeitos dos fármacos , Copépodes/química , Dieta Hiperlipídica , Gorduras Insaturadas na Dieta/farmacologia , Hipertensão/induzido quimicamente , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Tamanho do Órgão/efeitos dos fármacos , Distribuição Aleatória , Resultado do Tratamento
15.
J Transl Med ; 13: 147, 2015 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-25948488

RESUMO

BACKGROUND: Tissue fibrosis and chamber remodeling is a hallmark of the failing heart and the final common pathway for heart failure of diverse etiologies. Sustained elevation of pro-fibrotic cytokine transforming growth factor-beta1 (TGFß1) induces cardiac myofibroblast-mediated fibrosis and progressive structural tissue remodeling. OBJECTIVES: We examined the effects of low molecular weight fibroblast growth factor (LMW-FGF-2) on human cardiac myofibroblast-mediated extracellular matrix (ECM) dysregulation and remodeling. METHODS: Human cardiac biopsies were obtained during open-heart surgery and myofibroblasts were isolated, passaged, and seeded within type I collagen matrices. To induce myofibroblast activation and ECM remodeling, myofibroblast-seeded collagen gels were exposed to TGFß1. The extent of ECM contraction, myofibroblast activation, ECM dysregulation, and cell apoptosis was determined in the presence of LMW-FGF-2 and compared to its absence. Using a novel floating nylon-grid supported thin collagen gel culture platform system, myofibroblast activation and local ECM remodeling around isolated single cells was imaged using confocal microscopy and quantified by image analysis. RESULTS: TGFß1 induced significant myofibroblast activation and ECM dysregulation as evidenced by collagen gel contraction, structural ECM remodeling, collagen synthesis, ECM degradation, and altered TIMP expression. LMW-FGF-2 significantly attenuated TGFß1 induced myofibroblast-mediated ECM remodeling. These observations were similar using either ventricular or atrial-derived cardiac myofibroblasts. In addition, for the first time using individual cells, LMW-FGF-2 was observed to attenuate cardiac myofibroblast activation and prevent local cell-mediated ECM perturbations. CONCLUSIONS: LMW-FGF-2 attenuates human cardiac myofibroblast-mediated ECM remodeling and may prevent progressive maladaptive chamber remodeling and tissue fibrosis for patients with diverse structural heart diseases.


Assuntos
Matriz Extracelular/metabolismo , Fator 2 de Crescimento de Fibroblastos/farmacologia , Miofibroblastos/metabolismo , Apoptose , Biópsia , Diferenciação Celular , Colágeno/metabolismo , Feminino , Fibrose , Coração/fisiologia , Insuficiência Cardíaca/fisiopatologia , Humanos , Imuno-Histoquímica , Masculino , Microscopia Confocal , Miocárdio/metabolismo , Inibidores Teciduais de Metaloproteinases/metabolismo , Fator de Crescimento Transformador beta1/metabolismo
16.
Circ Arrhythm Electrophysiol ; 8(2): 420-8, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25648353

RESUMO

BACKGROUND: N629D KCNH2 is a human missense long-QT2 mutation. Previously, we reported that the N629D/N629D mutation embryos disrupted cardiac looping, right ventricle development, and ablated IKr activity at E9.5. The present study evaluates the role of KCNH2 in vasculogenesis. METHODS AND RESULTS: N629D/N629D yolk sac vessels and aorta consist of sinusoids without normal arborization. Isolated E9.5 +/+ first branchial arches showed normal outgrowth of mouse ERG-positive/α-smooth muscle actin coimmunolocalized cells; however, outgrowth was grossly reduced in N629D/N629D. N629D/N629D aortas showed fewer α-smooth muscle actin positive cells that were not coimmunolocalized with mouse ERG cells. Transforming growth factor-ß treatment of isolated N629D/N629D embryoid bodies partially rescued this phenotype. Cultured N629D/N629D embryos recapitulate the same cardiovascular phenotypes as seen in vivo. Transforming growth factor-ß treatment significantly rescued these embryonic phenotypes. Both in vivo and in vitro, dofetilide treatment, over a narrow window of time, entirely recapitulated the N629D/N629D fetal phenotypes. Exogenous transforming growth factor-ß treatment also rescued the dofetilide-induced phenotype toward normal. CONCLUSIONS: Loss of function of KCNH2 mutations results in defects in cardiogenesis and vasculogenesis. Because many medications inadvertently block the KCNH2 potassium current, these novel findings seem to have clinical relevance.


Assuntos
Anormalidades Induzidas por Medicamentos/prevenção & controle , Células-Tronco Embrionárias/efeitos dos fármacos , Canais de Potássio Éter-A-Go-Go/antagonistas & inibidores , Canais de Potássio Éter-A-Go-Go/genética , Morte Fetal , Cardiopatias Congênitas/prevenção & controle , Mutação de Sentido Incorreto , Neovascularização Fisiológica/efeitos dos fármacos , Fenetilaminas/toxicidade , Bloqueadores dos Canais de Potássio/toxicidade , Sulfonamidas/toxicidade , Fator de Crescimento Transformador beta/farmacologia , Malformações Vasculares/prevenção & controle , Anormalidades Induzidas por Medicamentos/embriologia , Anormalidades Induzidas por Medicamentos/genética , Anormalidades Induzidas por Medicamentos/metabolismo , Animais , Células Cultivadas , Canal de Potássio ERG1 , Técnicas de Cultura Embrionária , Células-Tronco Embrionárias/metabolismo , Canais de Potássio Éter-A-Go-Go/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Genótipo , Cardiopatias Congênitas/induzido quimicamente , Cardiopatias Congênitas/embriologia , Cardiopatias Congênitas/genética , Cardiopatias Congênitas/metabolismo , Humanos , Camundongos da Linhagem 129 , Camundongos Transgênicos , Morfogênese/efeitos dos fármacos , Fenótipo , Transdução de Sinais , Malformações Vasculares/induzido quimicamente , Malformações Vasculares/embriologia , Malformações Vasculares/genética , Malformações Vasculares/metabolismo
17.
Cardiovasc Res ; 97(2): 339-48, 2013 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-23118129

RESUMO

AIMS: Endothelial SK(Ca) and IK(Ca) channels play an important role in the regulation of vascular function and systemic blood pressure. Based on our previous findings that small molecule activators of SK(Ca) and IK(Ca) channels (i.e. NS309 and SKA-31) can inhibit myogenic tone in isolated resistance arteries, we hypothesized that this class of compounds may induce effective vasodilation in an intact vascular bed, such as the coronary circulation. METHODS AND RESULTS: In a Langendorff-perfused, beating rat heart preparation, acute bolus administrations of SKA-31 (0.01-5 µg) dose-dependently increased total coronary flow (25-30%) in both male and female hearts; these responses were associated with modest, secondary increases in left ventricular (LV) systolic pressure and heart rate. SKA-31 evoked responses in coronary flow, LV pressure, and heart rate were qualitatively comparable to acute responses evoked by bradykinin (1 µg) and adenosine (10 µg). In the presence of apamin and TRAM-34, selective blockers of SK(Ca) and IK(Ca) channels, respectively, SKA-31 and bradykinin-induced responses were largely inhibited, whereas the adenosine-induced changes were blocked by ∼40%; TRAM-34 alone produced less inhibition. Sodium nitroprusside (SNP, 0.2 µg bolus dose) evoked changes in coronary flow, LV pressure, and heart rate were similar to those induced by SKA-31, but were unaffected by apamin + TRAM-34. The NOS inhibitor L-NNA reduced bradykinin- and adenosine-evoked changes, but did not affect responses to either SKA-31 or SNP. CONCLUSION: Our study demonstrates that SKA-31 can rapidly and reversibly induce dilation of the coronary circulation in intact functioning hearts under basal flow and contractility conditions.


Assuntos
Benzotiazóis/farmacologia , Circulação Coronária/efeitos dos fármacos , Canais de Potássio Cálcio-Ativados/efeitos dos fármacos , Animais , Apamina/farmacologia , Relação Dose-Resposta a Droga , Feminino , Frequência Cardíaca/efeitos dos fármacos , Masculino , Óxido Nítrico Sintase Tipo III/fisiologia , Nitroprussiato/farmacologia , Pirazóis/farmacologia , Ratos , Ratos Sprague-Dawley , Sístole/efeitos dos fármacos
18.
Cell Regen ; 1(1): 3, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-25408866

RESUMO

BACKGROUND: Cell-based therapies show promise in repairing cardiac tissue and improving contractile performance following a myocardial infarction. Despite this, ischemia-induced death of transplanted cells remains a major hurdle to the efficacy of treatment. 'Superhealer' MRL/MpJ mesenchymal stem cells (MRL-MSCs) have been reported to exhibit increased engraftment resulting in reduced infarct size and enhanced contractile function. This study determines whether intrinsic differences in mitochondrial oxidative phosphorylation (OXPHOS) assist in explaining the enhanced cellular survival and engraftment of MRL-MSCs. FINDINGS: Compared to wild type MSCs (WT-MSCs), mitochondria from intact MRL-MSCs exhibited an increase in routine respiration and maximal electron transport capacity by 2.0- and 3.5-fold, respectively. When routine oxygen utilization is expressed as a portion of maximal cellular oxygen flux, the MRL-MSCs have a greater spare respiratory capcity. Additionally, glutamate/malate succinate-supported oxygen consumption in permeabilized cells was elevated approximately 1.25- and 1.4-fold in the MRL-MSCs, respectively. CONCLUSION: The results from intact and permeabilized MSCs indicate MRL-MSCs exhibit a greater reliance on and capacity for aerobic metabolism. The greater capacity for oxidative metabolism may provide a protective effect by increasing ATP synthesis per unit substrate and prevent glycolysis-mediated acidosis and subsequent cell death upon transplantation into the glucose-and oxygen-deprived environment of the infarcted heart.

19.
Cell Physiol Biochem ; 28(6): 1169-80, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22179005

RESUMO

Acute Myeloid Leukemia (AML) accounts for approximately one fifth of all childhood leukemia yet is responsible for a significant proportion of morbidity and mortality in this population. For this reason, research to identify novel targets for the development of effective AML therapeutics has intensified in the recent past. The THP-1 cell line, which was originally established from an infant diagnosed with AML, provides an experimental model for functional, pre-clinical therapeutics and target identification studies of AML. Here we show the expression of the voltage gated potassium channel Kv11.1 in THP-1 cells as opposed to normal hematopoietic stem cells. In addition, curcumin, a natural polyphenol derived from the plant Curcuma longa, effectively blocked Kv11.1 activity and also inhibited the proliferation of these cells. Curcumin was rapidly internalized by THP-1 cells and possibly exerts potential growth inhibitory activity by interacting with intracellular epitopes of the ion channel. Inhibition of ionic currents carried by Kv11.1 resulted in depolarization of cell membrane potential. We propose that the inhibition of Kv11.1 activity by curcumin may lead to interference with leukemic cell physiology and consequently the suppression of survival and proliferation of AML cells.


Assuntos
Antineoplásicos/farmacologia , Curcumina/farmacologia , Canais de Potássio Éter-A-Go-Go/antagonistas & inibidores , Potássio/metabolismo , Antineoplásicos/uso terapêutico , Linhagem Celular , Proliferação de Células , Curcuma/química , Curcumina/uso terapêutico , Canal de Potássio ERG1 , Canais de Potássio Éter-A-Go-Go/metabolismo , Canais de Potássio Éter-A-Go-Go/fisiologia , Humanos , Lactente , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/metabolismo , Potenciais da Membrana/efeitos dos fármacos , Isoformas de Proteínas/antagonistas & inibidores , Isoformas de Proteínas/metabolismo , Isoformas de Proteínas/fisiologia
20.
J Physiol ; 589(Pt 21): 5071-89, 2011 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-21911614

RESUMO

Potassium channels that regulate resting membrane potential (RMP) of human articular chondrocytes (HACs) of the tibial joint maintained in short-term (0-3 days) non-confluent cell culture were studied using patch-clamp techniques. Quantitative PCR showed that transcripts of genes for two-pore domain K(+) channels (KCNK1, KCNK5 and KCNK6), and 'BK' Ca(2+)-activated K(+) channels (KCNMA1) were abundantly expressed. Immunocytological methods detected α-subunits for BK and K(2p)5.1 (TASK-2) K(+) channels. Electrophysiological recordings identified three distinct K(+) currents in isolated HACs: (i) a voltage- and time-dependent 'delayed rectifier', blocked by 100 nM α-dendrotoxin, (ii) a large 'noisy' voltage-dependent current that was blocked by low concentrations of tetraethylammonium (TEA; 50% blocking dose = 0.15 mM) and iberiotoxin (52% block, 100 nM) and (iii) a voltage-independent 'background' K(+) current that was blocked by acidic pH (5.5-6), was increased by alkaline pH (8.5), and was not blocked by TEA, but was blocked by the local anaesthetic bupivacaine (0.25 mM). The RMP of isolated HACs was very slightly affected by 5 mM TEA, which was sufficient to block both voltage-dependent K(+) currents, suggesting that these currents probably contributed little to maintaining RMP under 'resting' conditions (i.e. low internal [Ca(2+)]). Increases in external K(+) concentration depolarized HACs by 30 mV in response to a 10-fold increase in [K(+)], indicating a significant but not exclusive role for K(+) current in determining RMP. Increases in external [K(+)] in voltage-clamped HACs revealed a voltage-independent K(+) current whose inward current magnitude increased with external [K(+)]. Block of this current by bupivacaine (0.25-1 mM) in 5 and 25 mM external [K(+)] resulted in a large (8-25 mV) depolarization of RMP. The biophysical and pharmacological properties of the background K(+) current, together with expression of mRNA and α-subunit protein for TASK-2, strongly suggest that these two-pore domain K(+) channels contribute significantly to stabilizing the RMP of HACs.


Assuntos
Condrócitos/fisiologia , Subunidades alfa do Canal de Potássio Ativado por Cálcio de Condutância Alta/fisiologia , Canais de Potássio de Domínios Poros em Tandem/fisiologia , Bloqueadores dos Canais de Cálcio/farmacologia , Células Cultivadas , Venenos Elapídicos/farmacologia , Humanos , Subunidades alfa do Canal de Potássio Ativado por Cálcio de Condutância Alta/genética , Potenciais da Membrana/efeitos dos fármacos , Técnicas de Patch-Clamp , Peptídeos/farmacologia , Potássio/fisiologia , Canais de Potássio de Domínios Poros em Tandem/genética , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Tetraetilamônio/farmacologia , Tíbia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA