Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Basic Res Cardiol ; 113(6): 43, 2018 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-30310998

RESUMO

Due to its poor capacity for regeneration, the heart is particularly sensitive to the loss of contractile cardiomyocytes. The onslaught of damage caused by ischaemia and reperfusion, occurring during an acute myocardial infarction and the subsequent reperfusion therapy, can wipe out upwards of a billion cardiomyocytes. A similar program of cell death can cause the irreversible loss of neurons in ischaemic stroke. Similar pathways of lethal cell injury can contribute to other pathologies such as left ventricular dysfunction and heart failure caused by cancer therapy. Consequently, strategies designed to protect the heart from lethal cell injury have the potential to be applicable across all three pathologies. The investigators meeting at the 10th Hatter Cardiovascular Institute workshop examined the parallels between ST-segment elevation myocardial infarction (STEMI), ischaemic stroke, and other pathologies that cause the loss of cardiomyocytes including cancer therapeutic cardiotoxicity. They examined the prospects for protection by remote ischaemic conditioning (RIC) in each scenario, and evaluated impasses and novel opportunities for cellular protection, with the future landscape for RIC in the clinical setting to be determined by the outcome of the large ERIC-PPCI/CONDI2 study. It was agreed that the way forward must include measures to improve experimental methodologies, such that they better reflect the clinical scenario and to judiciously select combinations of therapies targeting specific pathways of cellular death and injury.


Assuntos
Cardiologia , Oncologia , Infarto do Miocárdio , Acidente Vascular Cerebral , Animais , Antineoplásicos/efeitos adversos , Cardiologia/métodos , Cardiologia/tendências , Citoproteção , Humanos , Precondicionamento Isquêmico Miocárdico/métodos , Oncologia/métodos , Oncologia/tendências , Traumatismo por Reperfusão Miocárdica/prevenção & controle
2.
Cardiovasc Drugs Ther ; 30(2): 229-32, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26780906

RESUMO

In animal models platelet P2Y12 receptor antagonists put the heart into a protected state, not as a result of suppressed thrombosis but rather through protective signaling, similar to that for ischemic postconditioning. While both ischemic postconditioning and the P2Y12 blocker cangrelor protect blood-perfused hearts, only the former protects buffer-perfused hearts indicating that the blocker requires a blood-borne constituent or factor to protect. We used an anti-platelet antibody to make thrombocytopenic rats to test if that factor resides within the platelet. Infarct size was measured in open-chest rats subjected to 30-min ischemia/2-h reperfusion. Infarct size was not different in thrombocytopenic rats showing that preventing aggregation alone is not protective. While ischemic preconditioning could reduce infarct size in thrombocytopenic rats, the P2Y12 inhibitor cangrelor could not, indicating that it protects by interacting with some factor in the platelet. Ischemic preconditioning is known to require phosphorylation of sphingosine. In rats treated with dimethylsphingosine to block sphingosine kinase, cangrelor was no longer protective. Thus cangrelor's protective mechanism appears to also involve sphingosine kinase revealing yet another similarity to conditioning's mechanism.


Assuntos
Monofosfato de Adenosina/análogos & derivados , Plaquetas/efeitos dos fármacos , Plaquetas/metabolismo , Cardiotônicos/farmacologia , Fosforilação/efeitos dos fármacos , Substâncias Protetoras/farmacologia , Esfingosina/metabolismo , Monofosfato de Adenosina/farmacologia , Animais , Coração/efeitos dos fármacos , Pós-Condicionamento Isquêmico/métodos , Precondicionamento Isquêmico Miocárdico/métodos , Masculino , Infarto do Miocárdio/tratamento farmacológico , Infarto do Miocárdio/metabolismo , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Traumatismo por Reperfusão Miocárdica/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Antagonistas do Receptor Purinérgico P2Y/farmacologia , Ratos , Ratos Sprague-Dawley
3.
Clin Res Cardiol ; 103(3): 203-9, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24292557

RESUMO

BACKGROUND: Contrast-induced nephropathy (CIN), an acute kidney injury resulting from the administration of intravascular iodinated contrast media, is an important cause of morbidity/mortality following coronary angiographic procedures in high-risk patients. Despite preventative measures intended to mitigate the risk of CIN, there remains a need for an effective intervention. Remote ischaemic conditioning (RIC), where non-injurious ischaemia is applied to an arm prior to the administration of contrast, has shown promise in attenuating CIN but its effectiveness in preserving long-term renal function is unknown, which will be studied as part of the effect of remote ischaemic conditioning against contrast-induced nephropathy (ERICCIN) trial. ( http://Controlled-trials.com Identifier: ISRCTN49645414.) METHODS: The ERICCIN trial is a single-centre, randomised double-blinded placebo-controlled trial which plans to recruit 362 patients who are at risk of CIN, defined by pre-existent renal impairment (estimated glomerular filtration rate <60 ml/min/1.73 m2), over a period of 2 years. Patients will be randomised to either control or RIC consisting of 4, 5 min 200 mmHg balloon-cuff inflation/deflations, to the upper arm. The primary endpoint will be the development of CIN (>25% of eGFR, or rise of creatinine of >44 µmol/l) at 48 h. A key secondary endpoint will be whether RIC impacts upon persistent renal impairment over the 3-month follow-up period. Additional secondary endpoints include the measurement of serum neutrophil gelatinase-associated lipocalin and urinary albumin at 6, 48 h and 3 months following administration of contrast. IMPLICATIONS: Findings from ERICCIN trial will potentially demonstrate that RIC attenuates contrast-induced acute and chronic kidney injury and influence future clinical practice guidelines in at-risk patients undergoing coronary angiographic procedures.


Assuntos
Injúria Renal Aguda/prevenção & controle , Meios de Contraste/efeitos adversos , Angiografia Coronária/efeitos adversos , Precondicionamento Isquêmico/métodos , Rim/efeitos dos fármacos , Projetos de Pesquisa , Extremidade Superior/irrigação sanguínea , Injúria Renal Aguda/sangue , Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/diagnóstico , Injúria Renal Aguda/fisiopatologia , Proteínas de Fase Aguda , Albuminúria/induzido quimicamente , Albuminúria/prevenção & controle , Biomarcadores/sangue , Protocolos Clínicos , Creatinina/sangue , Método Duplo-Cego , Taxa de Filtração Glomerular/efeitos dos fármacos , Humanos , Rim/fisiopatologia , Lipocalina-2 , Lipocalinas/sangue , Londres , Proteínas Proto-Oncogênicas/sangue , Medição de Risco , Fatores de Risco , Fatores de Tempo
4.
Basic Res Cardiol ; 108(2): 331, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23361433

RESUMO

The mitochondrial permeability transition pore (mPTP) is widely accepted as an end-effector mechanism of conditioning protection against injurious ischaemia/reperfusion. However, death can be initiated in cells without pre-requisite mPTP opening, implicating alternate targets for ischaemia/reperfusion injury amelioration. Matrix metalloproteinases (MMP) are known to activate extrinsic apoptotic cascades and therefore we hypothesised that MMP activity represents an mPTP-independent target for augmented attenuation of ischaemia/reperfusion injury. In ex vivo and in vivo mouse hearts, we investigated whether the MMP inhibitor, ilomastat (0.25 µmol/l), administered upon reperfusion could engender protection in the absence of cyclophilin-D (CyPD), a modulator of mPTP opening, against injurious ischaemia/reperfusion. Ilomastat attenuated infarct size in wild-type (WT) animals [37 ± 2.8 to 22 ± 4.3 %, equivalent to ischaemic postconditioning (iPostC), used as positive control, 27 ± 2.1 %, p < 0.05]. Control CyPD knockout (KO) hearts had smaller infarcts than control WT (28 ± 4.2 %) and iPostC failed to confer additional protection, yet ilomastat significantly attenuated infarct size in KO hearts (11 ± 3.0 %, p < 0.001), and similar protection was also seen in isolated cardiomyocytes. Moreover, ilomastat, unlike the cyclophilin inhibitor cyclosporine-A, had no impact upon reactive oxygen species-mediated mPTP opening. While MMP inhibition was associated with increased Akt and ERK phosphorylation, neither Wortmannin nor PD98059 abrogated ilomastat-mediated protection. We demonstrate that MMP inhibition is cardioprotective, independent of Akt/ERK/CyPD/mPTP activity and is additive to the protection observed following inhibition of mPTP opening, indicative of a parallel pathway to protection in ischaemic/reperfused heart that may have clinical applicability in attenuating injury in acute coronary syndromes and deserve further investigation.


Assuntos
Ciclofilinas/fisiologia , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Indóis/uso terapêutico , Inibidores de Metaloproteinases de Matriz/uso terapêutico , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Infarto do Miocárdio/prevenção & controle , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Proteínas Proto-Oncogênicas c-akt/metabolismo , Animais , Western Blotting , Peptidil-Prolil Isomerase F , Ácidos Hidroxâmicos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Poro de Transição de Permeabilidade Mitocondrial , Infarto do Miocárdio/metabolismo , Traumatismo por Reperfusão Miocárdica/metabolismo , Miócitos Cardíacos/metabolismo , Fosforilação , Transdução de Sinais/efeitos dos fármacos
5.
Cardiovasc Res ; 73(1): 153-63, 2007 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-17126307

RESUMO

OBJECTIVE: Pharmacological preconditioning (PPC) triggers early (ePPC) and delayed protection (dPPC), occurring within 1 h or after 24 h following the preconditioning stimulus, respectively, through recruitment of protein kinase signalling. Angiotensin II (ATII) is a recognised trigger of PPC, recruiting kinases and transcription factors known to be involved in both phases of protection. Our objectives were to determine whether ATII is capable of triggering dPPC and whether recruitment of pro-survival kinases, Akt and extracellular signal-regulated kinase (ERK), following the injurious ischaemic insult is essential for the mediation of PPC. METHODS: In a mouse Langendorff model of ischaemia/reperfusion injury, we undertook to determine whether ATII triggers both ePPC and dPPC. Western blot analysis was used to determine kinase phosphorylation at reperfusion, and kinase inhibitors wortmannin and PD98059 were used to ascertain the significance of kinase regulation. RESULTS: We demonstrated that ATII triggered PPC with attenuation of infarction at 1 and 24 h (19+/-4% and 25+/-4% versus control, 35+/-4% of risk zone, p < 0.05), consistent with the ePPC and dPPC time-course. This bi-phasic protection was associated with significant post-ischaemic phosphorylation of both Akt and ERK within the first 5 min of reperfusion. Akt and ERK phosphorylation was increased following ePPC by 4.5+/-0.5 and 1.9+/-0.6 fold, respectively (p < 0.001), and dPPC by 24+/-2.0 and 2.1+/-0.1 fold, respectively (p < 0.001). Both wortmannin and PD98059 administered during reperfusion ameliorated the phosphorylation of Akt and ERK and abrogated the resistance to infarction resulting from both ePPC and dPPC (33+/-3% and 35+/-4%, respectively, versus controls 33+/-4% and 33+/-5%, p = NS). There was no evidence of augmented phosphorylation of either p38 kinase or JNK at either time point. CONCLUSION: We demonstrate that PPC results in a clearly delineated time-course of bi-phasic protection against injurious ischemic injury that is correlated with reperfusion kinase phosphorylation of both Akt and ERK. These data indicate a novel mechanism of early and particularly delayed preconditioning.


Assuntos
Angiotensina II/uso terapêutico , Precondicionamento Isquêmico Miocárdico/métodos , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Androstadienos/farmacologia , Angiotensina II/metabolismo , Animais , Western Blotting/métodos , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Flavonoides/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Modelos Animais , Infarto do Miocárdio/tratamento farmacológico , Infarto do Miocárdio/enzimologia , Infarto do Miocárdio/patologia , Traumatismo por Reperfusão Miocárdica/enzimologia , Miocárdio/enzimologia , Miocárdio/patologia , Proteína Oncogênica v-akt/metabolismo , Perfusão , Inibidores de Fosfoinositídeo-3 Quinase , Fosforilação , Inibidores de Proteínas Quinases/farmacologia , Fatores de Tempo , Wortmanina
6.
FASEB J ; 19(14): 2037-9, 2005 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-16236999

RESUMO

Reactive oxygen species (ROS)-mediated signaling is implicated in early ischemic preconditioning (PC). A NOX-2-containing NADPH oxidase is a recognized major source of ROS in cardiac myocytes, whose activity is augmented by preconditioning mimetics, such as angiotensin II. We hypothesized that this oxidase is an essential source of ROS in PC. Hearts from wild-type (WT) and NOX-2 knockout (KO) mice were Langendorff perfused and subjected to 35 min ischemia/reperfusion with or without preceding PC or drug treatment. Infarct size was measured by triphenyl tetrazolium chloride staining, and NADPH oxidase activity by lucigenin chemiluminescence. PC significantly attenuated infarct size in WT (26+/-2% vs. control, 38+/-2%, P<0.05) yet was ineffective in KO hearts (33+/-3% vs. control, 34+/-3%). Concomitantly, PC significantly increased NADPH oxidase activity in WT (+41+/-13%; P<0.05), but not in KO (-5+/-18%, P=NS). The ROS scavenger MPG (N-2-mercaptopropionyl glycine, 300 micromol/L) abrogated PC in WT (39+/-2% vs. control, 33+/-1%). CCPA (2-chloro N6 cyclopentyl adenosine, 200 nmol/L), a putative ROS-independent PC trigger, significantly attenuated infarct size in WT, MPG-treated WT and KO hearts (24+/-2, 23+/-1, and 20+/-3%, respectively, P<0.05). Furthermore, CCPA did not augment NADPH oxidase activity over control (+22+/-11%, P=NS). Inhibition of protein kinase C (PKC) with chelerythrine (CHE, 2 micromol/L) completely abrogated both PC (38+/-2% vs. CHE alone, 35+/-2%) and associated increases in oxidase activity (+3+/-10%, P=NS). PKC-dependent activation of a NOX-2-containing NADPH oxidase is pivotally involved in early ischemic PC. However, adenosine receptor activation can trigger a ROS and NOX-2 independent PC pathway.


Assuntos
Precondicionamento Isquêmico Miocárdico , Glicoproteínas de Membrana/fisiologia , NADPH Oxidases/química , Acridinas/química , Alcaloides , Animais , Benzofenantridinas , Corantes/farmacologia , Coração/fisiologia , Isquemia/patologia , Luminescência , Glicoproteínas de Membrana/metabolismo , Camundongos , Camundongos Knockout , Modelos Biológicos , Infarto do Miocárdio/metabolismo , Miocárdio/enzimologia , Miócitos Cardíacos/metabolismo , NADPH Oxidase 2 , NADPH Oxidases/metabolismo , NADPH Oxidases/fisiologia , Fenantridinas/farmacologia , Proteína Quinase C/antagonistas & inibidores , Proteína Quinase C/metabolismo , Espécies Reativas de Oxigênio , Receptor A1 de Adenosina/metabolismo , Receptores Purinérgicos P1/metabolismo , Traumatismo por Reperfusão , Sais de Tetrazólio/farmacologia , Tiopronina/farmacologia
7.
Antioxid Redox Signal ; 7(7-8): 882-8, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-15998243

RESUMO

Oxidant stress plays a crucial role in the triggering of cardioprotection involving ischemic preconditioning (IPC). We have used biotin-tagged cysteine to probe for redox-modified proteins in IPC protocols. Cysteine was biotinylated and introduced into isolated rat hearts. S-Thiolated proteins were detected and quantified using nonreducing western blots probed with streptavidin-horseradish peroxidase. Controls (15 min of aerobic perfusion plus 5 min of 0.5 mM biotin-cysteine plus 5 min of aerobic perfusion) showed low-level protein S-thiolation. Hearts preconditioned with 5 min of ischemia and reperfused for 5 min with biotin-cysteine plus 5 min of aerobic perfusion showed increased thiolation (160%) that was fully blocked by the antioxidant mercaptopropionylglycine, which is also known to block IPC. "Preconditioning" agonists (phorbol 12-myristate 13-acetate or phenylephrine) or oxidants (hydrogen peroxide or diamide) administered during aerobic preparations to biotin-cysteine-loaded hearts induced efficient protein S-thiolation. Preconditioning agonist-induced S-thiolation was significantly attenuated by diphenyleneiodonium (a flavoprotein inhibitor) or by the protein kinase C inhibitor bisindolylmaleimide I. Additional studies testing the role of a Nox2-containing NAD(P)H oxidase as the source of the oxidant stress essential to the triggering IPC showed that protein S-thiolation was the same in wild-type and Nox2 knockout mice.


Assuntos
Precondicionamento Isquêmico Miocárdico , Oxidantes/farmacologia , Proteína S/metabolismo , Compostos de Sulfidrila/metabolismo , Animais , Masculino , Glicoproteínas de Membrana/deficiência , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Camundongos , Camundongos Knockout , NADPH Oxidase 2 , NADPH Oxidases/deficiência , NADPH Oxidases/genética , NADPH Oxidases/metabolismo , Estresse Oxidativo , Fenilefrina/farmacologia , Dibutirato de 12,13-Forbol/farmacologia , Proteína Quinase C/metabolismo , Ratos
8.
J Biol Chem ; 278(46): 45690-6, 2003 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-12925535

RESUMO

Previously, we and others identified a 35-amino acid segment within human Raf-1 kinase that preferentially binds phosphatidic acid. The presence of phosphatidic acid was found to be necessary for the translocation of Raf-1 to the plasma membrane. We have now employed a combination of alanine-scanning and deletion mutagenesis to identify the critical amino acid residues in Raf-1 necessary for interaction with phosphatidic acid. Progressive mutations within a tetrapeptide motif (residues 398-401 of human Raf-1) reduced and finally eliminated binding of Raf-1 to phosphatidic acid. We then injected zebrafish embryos with RNA encoding wild-type Raf-1 kinase or a mutant version with triple alanine mutations in the tetrapeptide motif and followed the morphological fate of embryonic development. Embryos with mutant but not wild-type Raf-1 exhibited defects in posterior axis formation exemplified by bent trunk and tail structures. Molecular evidence for lack of signaling through mutated Raf-1 was obtained by aberrant in situ hybridization of the ntl (no tail) gene, which functions downstream of Raf-1. Our results demonstrate that a functional phosphatidate binding site is necessary for Raf-1 function in embryonic development.


Assuntos
Ácidos Fosfatídicos/química , Proteínas Proto-Oncogênicas c-raf/química , Proteínas Proto-Oncogênicas c-raf/genética , Peixe-Zebra/embriologia , Alanina/química , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Sítios de Ligação , Relação Dose-Resposta a Droga , Deleção de Genes , Glutationa Transferase/metabolismo , Humanos , Hibridização In Situ , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Mutação , Ácidos Fosfatídicos/metabolismo , Ligação Proteica , Estrutura Terciária de Proteína , Transporte Proteico , Proteínas Proto-Oncogênicas c-raf/fisiologia , RNA/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Homologia de Sequência de Aminoácidos , Cauda/embriologia , Transcrição Gênica
9.
Cardiovasc Res ; 57(2): 405-15, 2003 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-12566113

RESUMO

OBJECTIVE: Nitric oxide (NO) is reported to be both protective and detrimental in models of myocardial ischaemia/reperfusion injury, which may be concentration dependent. Our objective was to characterise this dichotomy using the nitric oxide donor, S-nitroso N-acetyl penicillamine (SNAP) in isolated perfused mouse heart and isolated mouse cardiac mitochondria. METHODS: To determine the effect of nitric oxide concentration on myocardial viability, isolated mouse hearts were subjected to 35 min global ischaemia and 30 min reperfusion in the presence of SNAP (0.02-20 microM). To determine whether NO mediated protection was via opening of the putative mitochondrial K(ATP) channel and/or free radical synthesis, SNAP perfused hearts were also treated with the mitochondrial K(ATP) channel blocker, 5-hydroxy decanoate (5-HD) and the free-radical scavenger, N-(2-mercaptopropionyl)-glycine (MPG). This data was correlated with mitochondrial membrane potential (Delta Psi(m)), measured with the potentiometric dye, tetra-methyl rhodium methyl ester (TMRM), in isolated mitochondria,by flow cytometry. RESULTS: SNAP dose-dependently attenuated infarct size, with maximal protection observed at 2 microM (17+/-4% versus controls 32+/-3%, P<0.01). At greater concentrations however, protection was lost with infarct sizes tending towards control at 20 microM (29+/-3%). These results were paralleled by changes in Delta Psi(m) in the isolated mitochondria: Delta Psi(m) depolarisation peaking with 1 microM SNAP (26+/-4% shift in TMRM fluorescence, P<0.01); at greater concentrations, this relationship was lost. The mitochondrial K(ATP) channel blocker, 5-HD, resulted in both abrogation of SNAP infarct size reduction and concomitant loss of Delta Psi(m) depolarisation in the mitochondria. MPG however did not influence the cardioprotective properties of SNAP. CONCLUSION: We demonstrate that nitric oxide can mediate cardioprotection in a dose-dependent fashion by an effect that may be related to Delta Psi(m). Both cardioprotection and Delta Psi(m) changes are sensitive to 5-HD and the cardioprotection appears independent of free-radical synthesis.


Assuntos
Cardiotônicos/farmacologia , Traumatismo por Reperfusão Miocárdica/patologia , Doadores de Óxido Nítrico/farmacologia , Penicilamina/análogos & derivados , Penicilamina/farmacologia , Trifosfato de Adenosina/fisiologia , Animais , Feminino , Radicais Livres/metabolismo , Masculino , Potenciais da Membrana/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias Cardíacas/fisiologia , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/fisiopatologia , Óxido Nítrico/farmacologia , Técnicas de Cultura de Órgãos , Canais de Potássio/efeitos dos fármacos , Canais de Potássio/fisiologia
10.
J Mol Cell Cardiol ; 35(2): 185-93, 2003 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-12606259

RESUMO

Attenuation of reperfusion injury by growth factors has recently been linked to recruitment of phosphatidylinositol-3 kinase (PI3K) and protein kinase B (Akt), a pathway also linked to the phosphorylation of eNOS by bradykinin. We, therefore, hypothesised that bradykinin would limit infarct size when given as an adjunct to reperfusion. Using an isolated perfused mouse heart model of ischaemia/reperfusion injury, we show that 100 nmol/l bradykinin, administered upon reperfusion, attenuates infarct size (32 +/- 2% to 22 +/- 2%, P < 0.01). This protection was abrogated by concomitant administration of the PI3K inhibitor, wortmannin (100 nmol/l), whereas wortmannin alone had no impact upon infarct size (31 +/- 3% and 30 +/- 1%, respectively). In eNOS knockout hearts, bradykinin was not seen to be protective (31 +/- 2% versus 32 +/- 2%), yet knockout hearts could be rescued with the nitric oxide donor, S-nitroso-N-acetyl penicillamine (SNAP) (1 micromol/l) (17 +/- 4%, P < 0.01). Using western blot analysis, we show that bradykinin administration results in rapid, robust phosphorylation of both Akt and eNOS, greater than that seen in control hearts upon reperfusion (Akt/eNOS phosphorylation: 68 +/- 7/122 +/- 29 AU versus 32 +/- 5/47 +/- 10 AU respectively, P < 0.01). This pattern of Akt phosphorylation was mimicked in the absence of eNOS, whereas Akt phosphorylation was inhibited by wortmannin. Exogenous nitric oxide administration had no impact upon Akt phosphorylation. Therefore, we demonstrate that exogenous bradykinin, administered at reperfusion, limits infarct size with concomitant rapid phosphorylation of Akt and eNOS, and that this protection is dependent upon the presence of eNOS. These results may open new avenues for research into clinical limitation of reperfusion injury following acute myocardial infarction.


Assuntos
Bradicinina/uso terapêutico , Infarto do Miocárdio/tratamento farmacológico , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Miocárdio/enzimologia , Proteínas Proto-Oncogênicas , Androstadienos/farmacologia , Animais , Western Blotting , Classe II de Fosfatidilinositol 3-Quinases , Inibidores Enzimáticos/farmacologia , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Infarto do Miocárdio/enzimologia , Traumatismo por Reperfusão Miocárdica/enzimologia , Óxido Nítrico/farmacologia , Óxido Nítrico Sintase/genética , Óxido Nítrico Sintase/fisiologia , Óxido Nítrico Sintase Tipo II , Óxido Nítrico Sintase Tipo III , Fosfatidilinositol 3-Quinases/fisiologia , Inibidores de Fosfoinositídeo-3 Quinase , Fosforilação , Proteínas Serina-Treonina Quinases/fisiologia , Proteínas Proto-Oncogênicas c-akt , Wortmanina
11.
Cardiovasc Res ; 53(2): 405-13, 2002 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-11827691

RESUMO

BACKGROUND: Nitric oxide (NO), synthesised from the inducible isoform of nitric oxide synthase (iNOS), is implicated in mediating second window of protection (SWOP)/delayed ischemic preconditioning. However the role of NO and iNOS in delayed pharmacological protection remains unclear and is the subject of this investigation. METHODS: To test the hypothesis that iNOS is necessary for delayed pharmacological preconditioning, the adenosine A(1) receptor agonist, 2-chloro N(6) cyclopentyl adenosine (CCPA) (25 microg/kg i.v.) or saline was administered to wild type (WT) or iNOS gene knockout mice (KO). Twenty-four hours later, the hearts were isolated, Langendorff perfused and subjected to 35 min ischemia/30 min reperfusion prior to infarct size determination. RESULTS: WT and KO control hearts had identical infarct sizes of 37 +/- 3% and 37 +/- 2%, respectively. CCPA significantly reduced infarct size in WT hearts to 22 +/- 2% and also, unexpectedly, in KO hearts (27 +/- 2%). This protection was abrogated with the non-specific NOS inhibitor, N(omega) nitro L-arginine methyl ester (L-NAME, 100 microM), and could be mimicked in naïve hearts with the NO donor, donor S-nitroso N-acetyl DL penicillamine (SNAP, 1 microM). Delayed protection appeared to be mediated by NO synthesis in both WT and KO hearts. Additional studies using Western blot analysis demonstrated endothelial NOS (eNOS) upregulation and increased NO(x) release in both WT and KO hearts. CONCLUSIONS: This is the first study to demonstrate a role for eNOS in delayed A(1) receptor triggered (pharmacological) preconditioning, potentially representing a new pharmacological target for protecting the ischemic heart.


Assuntos
Proteínas de Bactérias , Proteínas de Ligação a DNA/farmacologia , Precondicionamento Isquêmico Miocárdico , Miocárdio/metabolismo , Óxido Nítrico Sintase/metabolismo , Óxido Nítrico/metabolismo , Receptores Purinérgicos P1/efeitos dos fármacos , Proteínas Repressoras/farmacologia , Análise de Variância , Animais , Western Blotting , Inibidores Enzimáticos/farmacologia , Feminino , Camundongos , Camundongos Knockout , NG-Nitroarginina Metil Éster/farmacologia , Óxido Nítrico Sintase/antagonistas & inibidores , Óxido Nítrico Sintase/genética , Óxido Nítrico Sintase Tipo II , Óxido Nítrico Sintase Tipo III , Perfusão
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA