Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Gut ; 73(6): 941-954, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38262672

RESUMO

OBJECTIVE: The optimal therapeutic response in cancer patients is highly dependent upon the differentiation state of their tumours. Pancreatic ductal adenocarcinoma (PDA) is a lethal cancer that harbours distinct phenotypic subtypes with preferential sensitivities to standard therapies. This study aimed to investigate intratumour heterogeneity and plasticity of cancer cell states in PDA in order to reveal cell state-specific regulators. DESIGN: We analysed single-cell expression profiling of mouse PDAs, revealing intratumour heterogeneity and cell plasticity and identified pathways activated in the different cell states. We performed comparative analysis of murine and human expression states and confirmed their phenotypic diversity in specimens by immunolabeling. We assessed the function of phenotypic regulators using mouse models of PDA, organoids, cell lines and orthotopically grafted tumour models. RESULTS: Our expression analysis and immunolabeling analysis show that a mucus production programme regulated by the transcription factor SPDEF is highly active in precancerous lesions and the classical subtype of PDA - the most common differentiation state. SPDEF maintains the classical differentiation and supports PDA transformation in vivo. The SPDEF tumour-promoting function is mediated by its target genes AGR2 and ERN2/IRE1ß that regulate mucus production, and inactivation of the SPDEF programme impairs tumour growth and facilitates subtype interconversion from classical towards basal-like differentiation. CONCLUSIONS: Our findings expand our understanding of the transcriptional programmes active in precancerous lesions and PDAs of classical differentiation, determine the regulators of mucus production as specific vulnerabilities in these cell states and reveal phenotype switching as a response mechanism to inactivation of differentiation states determinants.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Carcinoma Ductal Pancreático/patologia , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Animais , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Camundongos , Humanos , Muco/metabolismo , Mucoproteínas/metabolismo , Mucoproteínas/genética , Linhagem Celular Tumoral , Diferenciação Celular , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas/metabolismo , Proteínas/genética , Organoides/patologia , Organoides/metabolismo , Plasticidade Celular , Regulação Neoplásica da Expressão Gênica , Modelos Animais de Doenças , Proteínas Oncogênicas
3.
Cancer Res ; 83(1): 49-58, 2023 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-36351074

RESUMO

Genetic ancestry-oriented cancer research requires the ability to perform accurate and robust genetic ancestry inference from existing cancer-derived data, including whole-exome sequencing, transcriptome sequencing, and targeted gene panels, very often in the absence of matching cancer-free genomic data. Here we examined the feasibility and accuracy of computational inference of genetic ancestry relying exclusively on cancer-derived data. A data synthesis framework was developed to optimize and assess the performance of the ancestry inference for any given input cancer-derived molecular profile. In its core procedure, the ancestral background of the profiled patient is replaced with one of any number of individuals with known ancestry. The data synthesis framework is applicable to multiple profiling platforms, making it possible to assess the performance of inference specifically for a given molecular profile and separately for each continental-level ancestry; this ability extends to all ancestries, including those without statistically sufficient representation in the existing cancer data. The inference procedure was demonstrated to be accurate and robust in a wide range of sequencing depths. Testing of the approach in four representative cancer types and across three molecular profiling modalities showed that continental-level ancestry of patients can be inferred with high accuracy, as quantified by its agreement with the gold standard of deriving ancestry from matching cancer-free molecular data. This study demonstrates that vast amounts of existing cancer-derived molecular data are potentially amenable to ancestry-oriented studies of the disease without requiring matching cancer-free genomes or patient self-reported ancestry. SIGNIFICANCE: The development of a computational approach that enables accurate and robust ancestry inference from cancer-derived molecular profiles without matching cancer-free data provides a valuable methodology for genetic ancestry-oriented cancer research.


Assuntos
Neoplasias , Transcriptoma , Humanos , Genoma Humano , Genômica , Perfilação da Expressão Gênica , Polimorfismo de Nucleotídeo Único , Neoplasias/genética
4.
Cancer Discov ; 10(10): 1566-1589, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32703770

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is the most lethal common malignancy, with little improvement in patient outcomes over the past decades. Recently, subtypes of pancreatic cancer with different prognoses have been elaborated; however, the inability to model these subtypes has precluded mechanistic investigation of their origins. Here, we present a xenotransplantation model of PDAC in which neoplasms originate from patient-derived organoids injected directly into murine pancreatic ducts. Our model enables distinction of the two main PDAC subtypes: intraepithelial neoplasms from this model progress in an indolent or invasive manner representing the classical or basal-like subtypes of PDAC, respectively. Parameters that influence PDAC subtype specification in this intraductal model include cell plasticity and hyperactivation of the RAS pathway. Finally, through intratumoral dissection and the direct manipulation of RAS gene dosage, we identify a suite of RAS-regulated secreted and membrane-bound proteins that may represent potential candidates for therapeutic intervention in patients with PDAC. SIGNIFICANCE: Accurate modeling of the molecular subtypes of pancreatic cancer is crucial to facilitate the generation of effective therapies. We report the development of an intraductal organoid transplantation model of pancreatic cancer that models the progressive switching of subtypes, and identify stochastic and RAS-driven mechanisms that determine subtype specification.See related commentary by Pickering and Morton, p. 1448.This article is highlighted in the In This Issue feature, p. 1426.


Assuntos
Adenocarcinoma/genética , Regulação Neoplásica da Expressão Gênica/genética , Ductos Pancreáticos/transplante , Animais , Carcinoma Ductal Pancreático , Modelos Animais de Doenças , Humanos , Camundongos , Prognóstico
5.
J Exp Med ; 217(9)2020 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-32633781

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) has a dismal prognosis, and new therapies are needed. Altered metabolism is a cancer vulnerability, and several metabolic pathways have been shown to promote PDAC. However, the changes in cholesterol metabolism and their role during PDAC progression remain largely unknown. Here we used organoid and mouse models to determine the drivers of altered cholesterol metabolism in PDAC and the consequences of its disruption on tumor progression. We identified sterol O-acyltransferase 1 (SOAT1) as a key player in sustaining the mevalonate pathway by converting cholesterol to inert cholesterol esters, thereby preventing the negative feedback elicited by unesterified cholesterol. Genetic targeting of Soat1 impairs cell proliferation in vitro and tumor progression in vivo and reveals a mevalonate pathway dependency in p53 mutant PDAC cells that have undergone p53 loss of heterozygosity (LOH). In contrast, pancreatic organoids lacking p53 mutation and p53 LOH are insensitive to SOAT1 loss, indicating a potential therapeutic window for inhibiting SOAT1 in PDAC.


Assuntos
Ácido Mevalônico/metabolismo , Neoplasias Pancreáticas/enzimologia , Esterol O-Aciltransferase/metabolismo , Animais , Linhagem Celular Tumoral , Colesterol/metabolismo , Progressão da Doença , Humanos , Perda de Heterozigosidade/genética , Camundongos Endogâmicos C57BL , Modelos Biológicos , Neoplasias Pancreáticas/patologia , Esterol O-Aciltransferase/deficiência , Proteína Supressora de Tumor p53/metabolismo
6.
Clin Cancer Res ; 25(23): 7162-7174, 2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31527169

RESUMO

PURPOSE: Napabucasin (2-acetylfuro-1,4-naphthoquinone or BBI-608) is a small molecule currently being clinically evaluated in various cancer types. It has mostly been recognized for its ability to inhibit STAT3 signaling. However, based on its chemical structure, we hypothesized that napabucasin is a substrate for intracellular oxidoreductases and therefore may exert its anticancer effect through redox cycling, resulting in reactive oxygen species (ROS) production and cell death. EXPERIMENTAL DESIGN: Binding of napabucasin to NAD(P)H:quinone oxidoreductase-1 (NQO1), and other oxidoreductases, was measured. Pancreatic cancer cell lines were treated with napabucasin, and cell survival, ROS generation, DNA damage, transcriptomic changes, and alterations in STAT3 activation were assayed in vitro and in vivo. Genetic knockout or pharmacologic inhibition with dicoumarol was used to evaluate the dependency on NQO1. RESULTS: Napabucasin was found to bind with high affinity to NQO1 and to a lesser degree to cytochrome P450 oxidoreductase (POR). Treatment resulted in marked induction of ROS and DNA damage with an NQO1- and ROS-dependent decrease in STAT3 phosphorylation. Differential cytotoxic effects were observed, where NQO1-expressing cells generating cytotoxic levels of ROS at low napabucasin concentrations were more sensitive. Cells with low or no baseline NQO1 expression also produced ROS in response to napabucasin, albeit to a lesser extent, through the one-electron reductase POR. CONCLUSIONS: Napabucasin is bioactivated by NQO1, and to a lesser degree by POR, resulting in futile redox cycling and ROS generation. The increased ROS levels result in DNA damage and multiple intracellular changes, one of which is a reduction in STAT3 phosphorylation.


Assuntos
Apoptose , Benzofuranos/farmacologia , NAD(P)H Desidrogenase (Quinona)/metabolismo , Naftoquinonas/farmacologia , Neoplasias Pancreáticas/patologia , Espécies Reativas de Oxigênio/metabolismo , Fator de Transcrição STAT3/antagonistas & inibidores , Proliferação de Células , Dano ao DNA , Humanos , Oxirredução , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/metabolismo , Fator de Transcrição STAT3/metabolismo , Células Tumorais Cultivadas
7.
Cancer Discov ; 9(8): 1102-1123, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31197017

RESUMO

Cancer-associated fibroblasts (CAF) are major players in the progression and drug resistance of pancreatic ductal adenocarcinoma (PDAC). CAFs constitute a diverse cell population consisting of several recently described subtypes, although the extent of CAF heterogeneity has remained undefined. Here we use single-cell RNA sequencing to thoroughly characterize the neoplastic and tumor microenvironment content of human and mouse PDAC tumors. We corroborate the presence of myofibroblastic CAFs and inflammatory CAFs and define their unique gene signatures in vivo. Moreover, we describe a new population of CAFs that express MHC class II and CD74, but do not express classic costimulatory molecules. We term this cell population "antigen-presenting CAFs" and find that they activate CD4+ T cells in an antigen-specific fashion in a model system, confirming their putative immune-modulatory capacity. Our cross-species analysis paves the way for investigating distinct functions of CAF subtypes in PDAC immunity and progression. SIGNIFICANCE: Appreciating the full spectrum of fibroblast heterogeneity in pancreatic ductal adenocarcinoma is crucial to developing therapies that specifically target tumor-promoting CAFs. This work identifies MHC class II-expressing CAFs with a capacity to present antigens to CD4+ T cells, and potentially to modulate the immune response in pancreatic tumors.See related commentary by Belle and DeNardo, p. 1001.This article is highlighted in the In This Issue feature, p. 983.


Assuntos
Apresentação de Antígeno/imunologia , Fibroblastos Associados a Câncer/imunologia , Fibroblastos Associados a Câncer/metabolismo , Carcinoma Ductal Pancreático/etiologia , Carcinoma Ductal Pancreático/metabolismo , Neoplasias Pancreáticas/etiologia , Neoplasias Pancreáticas/metabolismo , Animais , Fibroblastos Associados a Câncer/patologia , Carcinoma Ductal Pancreático/patologia , Imunofluorescência , Antígenos de Histocompatibilidade Classe II/genética , Antígenos de Histocompatibilidade Classe II/imunologia , Humanos , Camundongos , Modelos Biológicos , Neoplasias Pancreáticas/patologia , Análise de Célula Única , Microambiente Tumoral/imunologia
8.
Cancer Discov ; 8(9): 1112-1129, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29853643

RESUMO

Pancreatic cancer is the most lethal common solid malignancy. Systemic therapies are often ineffective, and predictive biomarkers to guide treatment are urgently needed. We generated a pancreatic cancer patient-derived organoid (PDO) library that recapitulates the mutational spectrum and transcriptional subtypes of primary pancreatic cancer. New driver oncogenes were nominated and transcriptomic analyses revealed unique clusters. PDOs exhibited heterogeneous responses to standard-of-care chemotherapeutics and investigational agents. In a case study manner, we found that PDO therapeutic profiles paralleled patient outcomes and that PDOs enabled longitudinal assessment of chemosensitivity and evaluation of synchronous metastases. We derived organoid-based gene expression signatures of chemosensitivity that predicted improved responses for many patients to chemotherapy in both the adjuvant and advanced disease settings. Finally, we nominated alternative treatment strategies for chemorefractory PDOs using targeted agent therapeutic profiling. We propose that combined molecular and therapeutic profiling of PDOs may predict clinical response and enable prospective therapeutic selection.Significance: New approaches to prioritize treatment strategies are urgently needed to improve survival and quality of life for patients with pancreatic cancer. Combined genomic, transcriptomic, and therapeutic profiling of PDOs can identify molecular and functional subtypes of pancreatic cancer, predict therapeutic responses, and facilitate precision medicine for patients with pancreatic cancer. Cancer Discov; 8(9); 1112-29. ©2018 AACR.See related commentary by Collisson, p. 1062This article is highlighted in the In This Issue feature, p. 1047.


Assuntos
Antineoplásicos/farmacologia , Perfilação da Expressão Gênica/métodos , Redes Reguladoras de Genes/efeitos dos fármacos , Organoides/efeitos dos fármacos , Neoplasias Pancreáticas/patologia , Antineoplásicos/uso terapêutico , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Terapia de Alvo Molecular , Organoides/química , Organoides/citologia , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Medicina de Precisão , Estudos Prospectivos , Análise de Sequência de RNA , Padrão de Cuidado , Células Tumorais Cultivadas
9.
Expert Opin Ther Targets ; 18(8): 841-50, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24834797

RESUMO

OBJECTIVE: The vast majority of pancreatic cancers occurs sporadically. The discovery of frequent variations in germline gene copy number can significantly influence the expression levels of genes that predispose to pancreatic adenocarcinoma. We prospectively investigated whether patients with sporadic pancreatic adenocarcinoma share specific gene copy number variations (CNVs) in their germline DNA. PATIENTS AND METHODS: DNA samples were analyzed from peripheral leukocytes from 72 patients with a diagnosis of sporadic pancreatic adenocarcinoma and from 60 controls using Affymetrix 500K array set. Multiplex ligation-dependent probe amplification (MLPA) assay was performed using a set of self-designed MLPA probes specific for seven target sequences. RESULTS: We identified a CNV-containing DNA region associated with pancreatic cancer risk. This region shows a deletion of 1 allele in 36 of the 72 analyzed patients but in none of the controls. This region is of particular interest since it contains the YTHDC2 gene encoding for a putative DNA/RNA helicase, such protein being frequently involved in cancer susceptibility. Interestingly, 82.6% of Sicilian patients showed germline loss of one allele. CONCLUSIONS: Our results suggest that the YTHDC2 gene could be a potential candidate for pancreatic cancer susceptibility and a useful marker for early detection as well as for the development of possible new therapeutic strategies.


Assuntos
Adenocarcinoma/genética , Adenosina Trifosfatases/genética , Variações do Número de Cópias de DNA/genética , Neoplasias Pancreáticas/genética , Adenocarcinoma/patologia , Idoso , Idoso de 80 Anos ou mais , Estudos de Casos e Controles , DNA Helicases/genética , Feminino , Predisposição Genética para Doença , Mutação em Linhagem Germinativa/genética , Humanos , Masculino , Pessoa de Meia-Idade , Reação em Cadeia da Polimerase Multiplex/métodos , Neoplasias Pancreáticas/patologia , Estudos Prospectivos , RNA Helicases/genética
10.
Oncology ; 85(5): 306-11, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24217364

RESUMO

OBJECTIVES: The rapid fatality of pancreatic cancer is, in large part, the result of diagnosis at an advanced stage in the majority of patients. Identification of individuals at risk of developing pancreatic adenocarcinoma would be useful to improve the prognosis of this disease. There is presently no biological or genetic indicator allowing the detection of patients at risk. Our main goal was to identify copy number variants (CNVs) common to all patients with sporadic pancreatic cancer. METHODS: We analyzed gene CNVs in leukocyte DNA from 31 patients with sporadic pancreatic adenocarcinoma and from 93 matched controls. Genotyping was performed with the use of the GeneChip Human Mapping 500K Array Set (Affymetrix). RESULTS: We identified 431 single nucleotide polymorphism (SNP) probes with abnormal hybridization signal present in the DNA of all 31 patients. Of these SNP probes, 284 corresponded to 3 or more copies and 147 corresponded to 1 or 0 copies. Several cancer-associated genes were amplified in all patients. Conversely, several genes supposed to oppose cancer development were present as single copy. CONCLUSIONS: These data suggest that a set of 431 CNVs could be associated with the disease. This set could be useful for early diagnosis.


Assuntos
Adenocarcinoma/genética , Dosagem de Genes , Mutação em Linhagem Germinativa , Neoplasias Pancreáticas/genética , Polimorfismo de Nucleotídeo Único , Idoso , Estudos de Casos e Controles , DNA de Neoplasias/análise , Feminino , Predisposição Genética para Doença , Humanos , Masculino , Pessoa de Meia-Idade , Sensibilidade e Especificidade , Análise Serial de Tecidos
11.
Mol Oncol ; 7(1): 85-100, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23021409

RESUMO

The majority of genes associated with breast cancer susceptibility, including BRCA1 and BRCA2 genes, are involved in DNA repair mechanisms. Moreover, among the genes recently associated with an increased susceptibility to breast cancer, four are Fanconi Anemia (FA) genes: FANCD1/BRCA2, FANCJ/BACH1/BRIP1, FANCN/PALB2 and FANCO/RAD51C. FANCA is implicated in DNA repair and has been shown to interact directly with BRCA1. It has been proposed that the formation of FANCA/G (dependent upon the phosphorylation of FANCA) and FANCB/L sub-complexes altogether with FANCM, represent the initial step for DNA repair activation and subsequent formation of other sub-complexes leading to ubiquitination of FANCD2 and FANCI. As only approximately 25% of inherited breast cancers are attributable to BRCA1/2 mutations, FANCA therefore becomes an attractive candidate for breast cancer susceptibility. We thus analyzed FANCA gene in 97 high-risk French Canadian non-BRCA1/2 breast cancer individuals by direct sequencing as well as in 95 healthy control individuals from the same population. Among a total of 85 sequence variants found in either or both series, 28 are coding variants and 19 of them are missense variations leading to amino acid change. Three of the amino acid changes, namely Thr561Met, Cys625Ser and particularly Ser1088Phe, which has been previously reported to be associated with FA, are predicted to be damaging by the SIFT and PolyPhen softwares. cDNA amplification revealed significant expression of 4 alternative splicing events (insertion of an intronic portion of intron 10, and the skipping of exons 11, 30 and 31). In silico analyzes of relevant genomic variants have been performed in order to identify potential variations involved in the expression of these spliced transcripts. Sequence variants in FANCA could therefore be potential spoilers of the Fanconi-BRCA pathway and as a result, they could in turn have an impact in non-BRCA1/2 breast cancer families.


Assuntos
Proteína BRCA1/genética , Proteína BRCA2/genética , Neoplasias da Mama/genética , Proteína do Grupo de Complementação A da Anemia de Fanconi/genética , Predisposição Genética para Doença/genética , Canadá , Feminino , Humanos , Masculino , Mutação de Sentido Incorreto
12.
J Hum Genet ; 58(2): 59-66, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23151675

RESUMO

ZNF350/ZBRK1 is a transcription factor, which associates with BRCA1 to co-repress GADD45A to regulate DNA damage repair, and the expression of ZNF350 is altered in different human carcinomas. In a previous study, we identified ZNF350 genomic variants potentially involved in breast cancer susceptibility in high-risk non-BRCA1/2 breast cancer individuals, which pointed toward a potential association for variants in the 5'-UTR and promoter regions. Therefore, direct sequencing was undertaken and identified 12 promoter variants, whereas haplotype analyses put in evidence four common haplotypes with a frequency>2%. However, based on their frequency observed in breast cancer and unrelated healthy individuals, these are not statistically associated with breast cancer risk. Luciferase promoter assays in two breast cancer cell lines identified two haplotypes (H11 and H12) stimulating significantly the expression of ZNF350 transcript compared with the common haplotype H8. The high expression of the H11 allele was associated with the variant c.-874A. Using MatInspector and Transcription Element Search softwares, in silico analyses predicted that the variant c.-874A created a binding site for the factors c-Myc and myogenin. This study represents the first characterization step of the ZNF350 promoter. Additional studies in larger cohorts and other populations will be needed to further evaluate whether common and/or rare ZNF350 promoter variants and haplotypes could be associated with a modest risk of breast cancer.


Assuntos
Neoplasias da Mama/genética , Genes BRCA1 , Genes BRCA2 , Predisposição Genética para Doença , Regiões Promotoras Genéticas , Proteínas Repressoras/genética , Sequência de Bases , Canadá , Primers do DNA , Feminino , Haplótipos , Humanos , Desequilíbrio de Ligação , Reação em Cadeia da Polimerase
13.
Breast Cancer Res Treat ; 134(2): 625-47, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22678160

RESUMO

Novel agents for the endocrine therapy of breast cancer are needed, especially in order to take advantage of the multiple consecutive responses observed in metastatic progressing breast cancer following previous hormone therapy, thus delaying the use of cytotoxic chemotherapy with its frequent poor tolerance and serious side effects. Acolbifene (ACOL) is a novel and unique antiestrogen which represents a unique opportunity to achieve the most potent and specific blockade of estrogen action in the mammary gland and uterus while exerting estrogen-like beneficial effects in other tissues, especially the bones. To better understand the specificity of action of ACOL, we have used Affymetrix GeneChips containing 45,000 probe sets to analyze 34,000 genes to determine the specificity of this compound compared to the pure antiestrogen fulvestrant, as well as to the mixed antagonists/agonists tamoxifen and raloxifene to block the effect of estradiol (E(2)) and to induce effects of their own on the genomic profile in the mouse mammary gland. The genes modulated by E(2) were those identified in two separate experiments and validated by quantitative real-time PCR (qPCR). Three hours after the single subcutaneous injection of E(2) (0.05 µg), the simultaneous administration of ACOL, fulvestrant, tamoxifen, and raloxifene blocked by 98, 61, 43, and 92 % the number of E(2)-upregulated genes, respectively. On the other hand, 70, 10, 25, and 55 % of the genes down-regulated by E(2) were blocked by the same compounds. Of the 128 genes modulated by E(2), 49 are associated with tumorigenesis while 22 are known to be associated with breast cancer. When used alone, ACOL modulated the smallest number of genes also influenced by E(2), namely 4 %, thus possibly explaining potential utilities of this compound in breast cancer prevention and therapy.


Assuntos
Estradiol/fisiologia , Estrogênios/fisiologia , Receptores de Estrogênio/antagonistas & inibidores , Transcrição Gênica/efeitos dos fármacos , Animais , Análise por Conglomerados , Estradiol/análogos & derivados , Estradiol/farmacologia , Antagonistas de Estrogênios/farmacologia , Estrogênios/farmacologia , Feminino , Fulvestranto , Regulação da Expressão Gênica , Genes , Genes Neoplásicos , Glândulas Mamárias Animais/efeitos dos fármacos , Glândulas Mamárias Animais/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Análise de Sequência com Séries de Oligonucleotídeos , Ovariectomia , Piperidinas/farmacologia , Cloridrato de Raloxifeno/farmacologia , Receptores de Estrogênio/metabolismo , Tamoxifeno/farmacologia , Transcriptoma
14.
Mol Reprod Dev ; 76(3): 278-88, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18671277

RESUMO

In rodents, the uterus of a mature female undergoes changes during the uterine cycle, under the control of steroid hormones. 5alpha-Dihydrotestosterone (DHT) is recognized to play an important role in the regulation of androgen action in normal endometrium. Using microarray technology, a screening analysis of genes responding to DHT in the uterus of ovariectomized mice, has allowed us to highlight multiple genes of the ATM/Gadd45g pathway that are modulated following exposure to DHT. Two phases of regulation were identified. In the early phase, the expression of genes involved in the G2/M arrest is rapidly increased, followed by the repression of genes of the G1/S checkpoint, and by the induction of transcriptional regulators. Later, i.e. from 12 to 24 hr, genes involved in G2/M transition, cytoarchitectural and lipid-related genes are stimulated by DHT while immunity-related genes appear to be differentially regulated by the hormone. These results show that a physiological dose of DHT induces the transcription of genes promoting the cell cycle progression in mice. Profile determination of temporal uterine gene expression at the transcriptional level enables us to suggest that the DHT modulation of genes involved in ATM/Gadd45g signaling in an ATM- or p53-independent manner, could play an important role in the cyclical changes of uterine cells in the mouse uterus.


Assuntos
Proteínas de Transporte/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ligação a DNA/metabolismo , Di-Hidrotestosterona/farmacologia , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais/efeitos dos fármacos , Proteínas Supressoras de Tumor/metabolismo , Útero/metabolismo , Androgênios/farmacologia , Animais , Proteínas Mutadas de Ataxia Telangiectasia , Proteínas de Transporte/genética , Proteínas de Ciclo Celular/genética , Análise por Conglomerados , Proteínas de Ligação a DNA/genética , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/fisiologia , Peptídeos e Proteínas de Sinalização Intracelular , Camundongos , Camundongos Endogâmicos C57BL , Análise de Sequência com Séries de Oligonucleotídeos , Ovariectomia , Proteínas Serina-Treonina Quinases/genética , Distribuição Aleatória , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais/fisiologia , Fatores de Tempo , Proteínas Supressoras de Tumor/genética
15.
Prostate ; 68(3): 241-54, 2008 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-18095270

RESUMO

BACKGROUND: Prostate is a well-known androgen-dependent tissue. METHODS: By sequencing 4,294,186 serial analysis of gene expression (SAGE) tags, we have investigated the transcriptomes of normal mouse prostate, liver, testis, lung, brain, femur, skin, adipose tissue, skeletal muscle, vagina, ovary, mammary gland, and uterus in order to identify the most abundant and tissue-specific transcripts in the prostate, as well as to target the androgen responsive transcripts specifically regulated in the prostate. Small interference RNA (siRNA) in LNCaP cells was applied to validate the roles of prostate-specific/enriched ARGs in the growth of human prostate cancer cells. RESULTS: The most abundant transcripts were involved in prostatic secretion, energy metabolism and immunity. Previously well-known prostate-specific transcripts, including many transcripts involved in prostatic secretion, polyamine biosynthesis and transport, and immunity were specific/enriched in the prostate. Only 22 transcripts among 114 androgen-regulated genes (ARGs) in the mouse prostate were modulated by dihydrotestosterone (DHT) in two or more tissues. The siRNA results showed that inhibition of HSPA5 and MAT2A gene expression repressed growth of human cancer LNCaP cells. CONCLUSIONS: The current study globally assessed the transcriptome of the prostate and revealed the most abundant and tissue-specific transcripts which are responsible for the unique functions of this organ. These prostate-specific ARGs might be used as targets to develop safe and effective gene-based therapy for the prevention and treatment of prostate cancer.


Assuntos
Di-Hidrotestosterona/farmacologia , Regulação da Expressão Gênica/fisiologia , Próstata/fisiologia , Animais , Linhagem Celular Tumoral , Biologia Computacional , Chaperona BiP do Retículo Endoplasmático , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Próstata/efeitos dos fármacos , Próstata/metabolismo , RNA Interferente Pequeno/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Análise de Sequência de DNA , Transcrição Gênica
16.
Int J Cancer ; 122(1): 108-16, 2008 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-17764113

RESUMO

Our current understanding of breast cancer susceptibility involves mutations in the 2 major genes BRCA1 and BRCA2, found in about 25% of high-risk families, as well as few other low penetrance genes such as ATM and CHEK2. Approximately two-thirds of the multiple cases families remain to be explained by mutations in still unknown genes. In a candidate gene approach to identify new genes potentially involved in breast cancer susceptibility, we analyzed genomic variants in the ZBRK1 gene, a co-repressor implicated in BRCA1-mediated repression of GADD45. Direct sequencing of ZBRK1 entire coding region in affected breast cancer individuals from 97 high-risk French Canadian breast/ovarian cancer families and 94 healthy controls led to the identification of 18 genomic variants. Haplotype analyses, using PHASE, COCAPHASE and HaploStats programs, put in evidence 3 specific haplotypes which could potentially modulate breast cancer risk, and among which 2 that are associated with a potential protective effect (p = 0.01135 and p = 0.00268), while another haplotype is over-represented in the case group (p = 0.00143). Further analyses of these haplotypes indicated that a strong component of the observed difference between both groups emerge from the first 5 variants (out of 12 used for haplotype determination). The present study also permitted to determine a set of tagging SNPs that could be useful for subsequent analyses in large scale association studies. Additional studies in large cohorts and other populations will however be needed to further evaluate if common and/or rare ZBRK1 sequence variants and haplotypes could be associated with a modest/intermediate breast cancer risk.


Assuntos
Proteína BRCA1/genética , Proteína BRCA2/genética , Neoplasias da Mama/genética , Proteínas de Ligação a DNA/genética , Haplótipos/genética , Mutação/genética , Neoplasias Ovarianas/genética , Proteínas Repressoras/genética , Adulto , Idoso , Canadá/epidemiologia , Estudos de Casos e Controles , Família , Feminino , Predisposição Genética para Doença , Variação Genética , Humanos , Desequilíbrio de Ligação , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único , População Branca
17.
Physiol Genomics ; 29(1): 13-23, 2007 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-17361005

RESUMO

17beta-Estradiol (E2) is well known to be associated with uterine cancer, endometriosis, and leiomyomas. Although insulin-like growth factor I (IGF-I) has been identified as a mediator of the uterotrophic effect of E2 in several studies, this mechanism is still not well understood. In the present study, identification of the genes modulated by a physiological dose of E2, in the uterus, has been done in ovariectomized mice using Affymetrix microarrays. The E2-induced genomic profile shows that multiple genes belonging to the IGF-I pathway are affected after exposure to E2. Two phases of regulation could be identified. First, from 0 to 6 h, the expression of genes involved in the cell cycle, growth factors, protein tyrosine phosphatases, and MAPK phosphatases is quickly upregulated by E2, while IGF-I receptor and several genes of the MAPK and phosphatidylinositol 3-kinase pathways are downregulated. Later, i.e., from 6 to 24 h, transporters and peptidases/proteases are stimulated, whereas defense-related genes are differentially regulated by E2. Finally, cytoarchitectural genes are modulated later. The present data show that a physiological dose of E2 induces, within 24 h, a series of transcriptional events that promote the uterotrophic effect. Among these, the E2-mediated activation of the IGF-I pathway seems to play a pivotal role in the uterotrophic effect. Furthermore, the protein tyrosine phosphatases and MAPK phosphatases are likely to modulate the estrogenic uterotrophic action by targeting, at different steps, the IGF-I pathway.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Estradiol/metabolismo , Regulação da Expressão Gênica/fisiologia , Proteínas Imediatamente Precoces/metabolismo , Fator de Crescimento Insulin-Like I/metabolismo , Fosfoproteínas Fosfatases/metabolismo , Proteínas Tirosina Fosfatases/metabolismo , Transdução de Sinais/fisiologia , Útero/metabolismo , Animais , Primers do DNA , Fosfatase 1 de Especificidade Dupla , Estradiol/farmacologia , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Análise de Sequência com Séries de Oligonucleotídeos , Ovariectomia , Proteína Fosfatase 1 , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fatores de Tempo , Útero/fisiologia
18.
Gene ; 350(2): 137-48, 2005 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-15804419

RESUMO

The motin family of proteins is comprised of three polypeptides, angiomotin, angiomotin-like 1, and angiomotin-like 2. Angiomotin is an angiostatin-binding protein that promotes endothelial cell motility and is involved in angiogenesis. The function of human angiomotin-like-1 and angiomotin-like-2, however, remains unknown. In this report, we investigated the potential for molecular diversity within the motin family of proteins through the identification and characterization of alternatively spliced transcripts in endothelial cells, human tissues and a variety of cell lines. We report that the motins display variability at the mRNA level suggesting an intricate regulatory system at the transcriptional and potentially protein level. Some alternative transcripts are expressed in a tissue-specific manner and others give rise to novel protein isoforms. The alternative splicing that occurs within this protein family may have important implications in the regulation of the expression and function of the motins.


Assuntos
Processamento Alternativo , Proteínas de Transporte/genética , Peptídeos e Proteínas de Sinalização Intercelular/genética , Precursores de RNA/genética , Angiomotinas , Northern Blotting , Proteínas de Transporte/metabolismo , Linhagem Celular , Linhagem Celular Tumoral , Éxons , Feminino , Perfilação da Expressão Gênica , Genes/genética , Células HT29 , Células HeLa , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Íntrons , Células K562 , Proteínas de Membrana , Proteínas dos Microfilamentos , Microscopia de Fluorescência , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Deleção de Sequência , Transfecção , Células U937
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA