Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-37790549

RESUMO

The hypothalamic ventral premammillary nucleus (PMv) is a glutamatergic nucleus essential for the metabolic control of reproduction. However, conditional deletion of leptin receptor (LepRb) in vesicular glutamate transporter 2 (Vglut2) expressing neurons results in virtually no reproductive deficits. In this study, we determine the role of glutamatergic signaling from leptin responsive PMv neurons on puberty and fertility. We first assessed if stimulation of PMv neurons induces LH release in fed adult females. We used the stimulatory form of designer receptor exclusively activated by designer drugs (DREADDs) in LepRb-Cre mice. We collected blood sequentially before and for 1h after iv. clozapine-N-oxide injection. LH level increased in animals correctly targeted to the PMv, and LH level was correlated to the number of cFos immunoreactive neurons in the PMv. Next, females with deletion of Vglut2 in LepRb neurons (LepR∆VGlut2) showed delayed age of puberty, disrupted estrous cycles, increased GnRH concentration in the axon terminals and disrupted LH responses, suggesting impaired GnRH release. To assess if glutamate is required for PMv actions in pubertal development, we generated a Cre-induced reexpression of endogenous LepRb (LepRloxTB) with concomitant deletion of Vglut2 (Vglut2-floxed) mice. Rescue of Lepr and deletion of Vglut2 in the PMv was obtained by stereotaxic injection of an adeno-associated virus vector expressing Cre recombinase. Control LepRloxTB mice with PMv LepRb rescue showed vaginal opening, follicle maturation and became pregnant, while LepRloxTB;Vglut2flox mice showed no pubertal development. Our results indicate that glutamatergic signaling from leptin sensitive neurons regulates the reproductive axis, and that leptin action on pubertal development via PMv neurons requires Vglut2.

2.
Endocrinology ; 159(4): 1718-1733, 2018 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-29438518

RESUMO

Obese women are at high risk of pregnancy complications, including preeclampsia, miscarriage, preterm birth, stillbirth, and neonatal death. In the current study, we aimed to determine the effects of obesity on pregnancy outcome and placental gene expression in preclinical mouse models of genetic and nutritional obesity. The leptin receptor (LepR) null-reactivatable (LepRloxTB), LepR-deficient (Leprdb/+), and high-fat diet (HFD)-fed mice were assessed for fertility, pregnancy outcome, placental morphology, and placental transcriptome using standard quantitative polymerase chain reaction (qPCR) and qPCR arrays. The restoration of fertility of LepRloxTB was performed by stereotaxic delivery of adeno-associated virus-Cre into the hypothalamic ventral premammillary nucleus. Fertile LepRloxTB females were morbidly obese, whereas the wild-type mice-fed HFD showed only a mild increase in body weight. Approximately 80% of the LepRloxTB females had embryo resorptions (∼40% of the embryos). In HFD mice, the number of resorptions was not different from controls fed a regular diet. Placentas of resorbed embryos from obese mice displayed necrosis and inflammatory infiltrate in the labyrinth and changes in the expression of genes associated with angiogenesis and inflammation (e.g., Vegfa, Hif1a, Nfkbia, Tlr3, Tlr4). In contrast, placentas from embryos of females on HFD showed changes in a different set of genes, mostly associated with cellular growth and response to stress (e.g., Plg, Ang, Igf1, Igfbp1, Fgf2, Tgfb2, Serpinf1). Sexual dimorphism in gene expression was only apparent in placentas from obese LepRloxTB mice. Our findings indicate that an obese environment and HFD have distinct effects on pregnancy outcome and the placental transcriptome.


Assuntos
Dieta Hiperlipídica , Regulação da Expressão Gênica , Obesidade/genética , Placenta/metabolismo , Receptores para Leptina/genética , Animais , Feminino , Hipotálamo/metabolismo , Inflamação/genética , Inflamação/metabolismo , Leptina/metabolismo , Camundongos , Camundongos Transgênicos , Neovascularização Patológica/genética , Neovascularização Patológica/metabolismo , Obesidade/metabolismo , Gravidez , Resultado da Gravidez , Receptores para Leptina/metabolismo
3.
Brain Struct Funct ; 222(9): 4111-4129, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28616754

RESUMO

Prokineticin receptor 2 (PROKR2) is predominantly expressed in the mammalian central nervous system. Loss-of-function mutations of PROKR2 in humans are associated with Kallmann syndrome due to the disruption of gonadotropin releasing hormone neuronal migration and deficient olfactory bulb morphogenesis. PROKR2 has been also implicated in the neuroendocrine control of GnRH neurons post-migration and other physiological systems. However, the brain circuitry and mechanisms associated with these actions have been difficult to investigate mainly due to the widespread distribution of Prokr2-expressing cells, and the lack of animal models and molecular tools. Here, we describe the generation, validation and characterization of a new mouse model that expresses Cre recombinase driven by the Prokr2 promoter, using CRISPR-Cas9 technology. Cre expression was visualized using reporter genes, tdTomato and GFP, in males and females. Expression of Cre-induced reporter genes was found in brain sites previously described to express Prokr2, e.g., the paraventricular and the suprachiasmatic nuclei, and the area postrema. The Prokr2-Cre mouse model was further validated by colocalization of Cre-induced GFP and Prokr2 mRNA. No disruption of Prokr2 expression, GnRH neuronal migration or fertility was observed. Comparative analysis of Prokr2-Cre expression in male and female brains revealed a sexually dimorphic distribution confirmed by in situ hybridization. In females, higher Cre activity was found in the medial preoptic area, ventromedial nucleus of the hypothalamus, arcuate nucleus, medial amygdala and lateral parabrachial nucleus. In males, Cre was higher in the amygdalo-hippocampal area. The sexually dimorphic pattern of Prokr2 expression indicates differential roles in reproductive function and, potentially, in other physiological systems.


Assuntos
Encéfalo/patologia , Síndrome de Kallmann/patologia , Neurônios/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Peptídeos/genética , Receptores de Peptídeos/metabolismo , Caracteres Sexuais , Animais , Modelos Animais de Doenças , Receptor alfa de Estrogênio/metabolismo , Feminino , Regulação da Expressão Gênica/genética , Hormônio Liberador de Gonadotropina/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Integrases , Síndrome de Kallmann/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , RNA Mensageiro/metabolismo
4.
J Clin Invest ; 124(6): 2550-9, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24812663

RESUMO

The transition to puberty and adult fertility both require a minimum level of energy availability. The adipocyte-derived hormone leptin signals the long-term status of peripheral energy stores and serves as a key metabolic messenger to the neuroendocrine reproductive axis. Humans and mice lacking leptin or its receptor fail to complete puberty and are infertile. Restoration of leptin levels in these individuals promotes sexual maturation, which requires the pulsatile, coordinated delivery of gonadotropin-releasing hormone to the pituitary and the resulting surge of luteinizing hormone (LH); however, the neural circuits that control the leptin-mediated induction of the reproductive axis are not fully understood. Here, we found that leptin coordinated fertility by acting on neurons in the preoptic region of the hypothalamus and inducing the synthesis of the freely diffusible volume-based transmitter NO, through the activation of neuronal NO synthase (nNOS) in these neurons. The deletion of the gene encoding nNOS or its pharmacological inhibition in the preoptic region blunted the stimulatory action of exogenous leptin on LH secretion and prevented the restoration of fertility in leptin-deficient female mice by leptin treatment. Together, these data indicate that leptin plays a central role in regulating the hypothalamo-pituitary-gonadal axis in vivo through the activation of nNOS in neurons of the preoptic region.


Assuntos
Leptina/metabolismo , Óxido Nítrico/metabolismo , Área Pré-Óptica/fisiologia , Reprodução/fisiologia , Animais , Feminino , Humanos , Kisspeptinas/metabolismo , Leptina/deficiência , Leptina/genética , Hormônio Luteinizante/metabolismo , Masculino , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neurônios/metabolismo , Óxido Nítrico Sintase Tipo I/deficiência , Óxido Nítrico Sintase Tipo I/genética , Óxido Nítrico Sintase Tipo I/metabolismo , Área Pré-Óptica/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Kisspeptina-1 , Receptores para Leptina/deficiência , Receptores para Leptina/genética , Receptores para Leptina/metabolismo , Transdução de Sinais
5.
J Neurosci ; 32(3): 932-45, 2012 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-22262891

RESUMO

Reproduction is controlled in the brain by a neural network that drives the secretion of gonadotropin-releasing hormone (GnRH). Various permissive homeostatic signals must be integrated to achieve ovulation in mammals. However, the neural events controlling the timely activation of GnRH neurons are not completely understood. Here we show that kisspeptin, a potent activator of GnRH neuronal activity, directly communicates with neurons that synthesize the gaseous transmitter nitric oxide (NO) in the preoptic region to coordinate the progression of the ovarian cycle. Using a transgenic Gpr54-null IRES-LacZ knock-in mouse model, we demonstrate that neurons containing neuronal NO synthase (nNOS), which are morphologically associated with kisspeptin fibers, express the kisspeptin receptor GPR54 in the preoptic region, but not in the tuberal region of the hypothalamus. The activation of kisspeptin signaling in preoptic neurons promotes the activation of nNOS through its phosphorylation on serine 1412 via the AKT pathway and mimics the positive feedback effects of estrogens. Finally, we show that while NO release restrains the reproductive axis at stages of the ovarian cycle during which estrogens exert their inhibitory feedback, it is required for the kisspeptin-dependent preovulatory activation of GnRH neurons. Thus, interactions between kisspeptin and nNOS neurons may play a central role in regulating the hypothalamic-pituitary-gonadal axis in vivo.


Assuntos
Hipotálamo/citologia , Kisspeptinas/metabolismo , Neurônios/metabolismo , Óxido Nítrico Sintase Tipo I/metabolismo , Ovulação/genética , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais/fisiologia , Análise de Variância , Animais , Inibidores Enzimáticos/farmacologia , Ensaio de Imunoadsorção Enzimática , Ciclo Estral/efeitos dos fármacos , Ciclo Estral/genética , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/genética , Hipotálamo/efeitos dos fármacos , Kisspeptinas/deficiência , Kisspeptinas/farmacologia , Hormônio Luteinizante/sangue , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neurônios/efeitos dos fármacos , Óxido Nítrico Sintase Tipo I/deficiência , Ovulação/efeitos dos fármacos , Fosforilação/efeitos dos fármacos , Fosforilação/genética , Receptores Acoplados a Proteínas G/deficiência , Receptores de Kisspeptina-1 , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Esteroides/farmacologia
6.
Neuroendocrinology ; 93(2): 74-89, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21335953

RESUMO

Nitric oxide (NO) is a peculiar chemical transmitter that freely diffuses through aqueous and lipid environments and plays a role in major aspects of brain function. Within the hypothalamus, NO exerts critical effects upon the gonadotropin-releasing hormone (GnRH) network to maintain fertility. Here, we review recent evidence that NO regulates major aspects of the GnRH neuron physiology. Far more active than once thought, NO powerfully controls GnRH neuronal activity, GnRH release and structural plasticity at the neurohemal junction. In the preoptic region, neuronal nitric oxide synthase (nNOS) activity is tightly regulated by estrogens and is found to be maximal at the proestrus stage. Natural fluctuations of estrogens control both the differential coupling of this Ca²+-activated enzyme to glutamate N-methyl-D-aspartic acid receptor channels and phosphorylation-mediated nNOS activation. Furthermore, NO endogenously produced by neurons expressing nNOS acutely and directly suppresses spontaneous firing in GnRH neurons, which suggests that neuronal NO may serve as a synchronizing switch within the preoptic region. At the median eminence, NO is spontaneously released from an endothelial source and follows a pulsatile and cyclic pattern of secretion. Importantly, GnRH release appears to be causally related to endothelial NO release. NO is also highly involved in mediating the dialogue set in motion between vascular endothelial cells and tanycytes that control the direct access of GnRH neurons to the pituitary portal blood during the estrous cycle. Altogether, these data raise the intriguing possibility that the neuroendocrine brain uses NO to coordinate both GnRH neuronal activity and GnRH release at key stages of reproductive physiology.


Assuntos
Encéfalo/fisiologia , Células Endoteliais/fisiologia , Neuroglia/fisiologia , Neurônios/fisiologia , Sistemas Neurossecretores/fisiologia , Óxido Nítrico/fisiologia , Reprodução/fisiologia , Transdução de Sinais/fisiologia , Animais , Hormônio Liberador de Gonadotropina/fisiologia , Modelos Biológicos , Óxido Nítrico/biossíntese
7.
Front Neuroendocrinol ; 31(3): 241-58, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20546773

RESUMO

As the final common pathway for the central control of gonadotropin secretion, GnRH neurons are subjected to numerous regulatory homeostatic and external factors to achieve levels of fertility appropriate to the organism. The GnRH system thus provides an excellent model in which to investigate the complex relationships between neurosecretion, morphological plasticity and the expression of a physiological function. Throughout the reproductive cycle beginning from postnatal sexual development and the onset of puberty to reproductive senescence, and even within the ovarian cycle itself, all levels of the GnRH system undergo morphological plasticity. This structural plasticity within the GnRH system appears crucial to the timely control of reproductive competence within the individual, and as such must have coordinated actions of multiple signals secreted from glial cells, endothelial cells, and GnRH neurons. Thus, the GnRH system must be viewed as a complete neuro-glial-vascular unit that works in concert to maintain the reproductive axis.


Assuntos
Comunicação Celular/fisiologia , Células Endoteliais/fisiologia , Hormônio Liberador de Gonadotropina/metabolismo , Neuroglia/fisiologia , Plasticidade Neuronal/fisiologia , Neurônios/fisiologia , Animais , Células Endoteliais/metabolismo , Feminino , Hormônio Liberador de Gonadotropina/fisiologia , Humanos , Modelos Biológicos , Neuroglia/metabolismo , Neurônios/metabolismo , Ovário/metabolismo , Ovário/fisiologia , Puberdade/metabolismo , Puberdade/fisiologia , Receptores LHRH/metabolismo , Receptores LHRH/fisiologia
8.
Endocrinology ; 151(6): 2723-35, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20371700

RESUMO

Within the preoptic region, nitric oxide (NO) production varies during the ovarian cycle and has the ability to impact hypothalamic reproductive function. One mechanism for the regulation of NO release mediated by estrogens during the estrous cycle includes physical association of the calcium-activated neuronal NO synthase (nNOS) enzyme with the glutamate N-methyl-d-aspartate (NMDA) receptor channels via the postsynaptic density 95 scaffolding protein. Here we demonstrate that endogenous variations in estrogens levels during the estrous cycle also coincide with corresponding changes in the state of nNOS Ser1412 phosphorylation, the level of association of this isoform with the NMDA receptor/postsynaptic density 95 complex at the plasma membrane, and the activity of NO synthase (NOS). Neuronal NOS Ser1412 phosphorylation is maximal on the afternoon of proestrus when both the levels of estrogens and the physical association of nNOS with NMDA receptors are highest. Estradiol mimicked these effects in ovariectomized (OVX) rats. In addition, the catalytic activity of NOS in membrane protein extracts from the preoptic region, i.e. independent of any functional protein-protein interactions or cell-cell signaling, was significantly increased in estradiol-treated OVX rats compared with OVX rats. Finally, lambda phosphatase-mediated nNOS dephosphorylation dramatically impaired NOS activity in preoptic region protein extracts, thus demonstrating the important role of phosphorylation in the regulation of NO production in the preoptic region. Taken together, these results yield new insights into the regulation of neuron-derived NO production by gonadal steroids within the preoptic region and raise the possibility that changes in nNOS phosphorylation during fluctuating physiological conditions may be involved in the hypothalamic control of key neuroendocrine functions, such as reproduction.


Assuntos
Estrogênios/metabolismo , Hipotálamo/metabolismo , Ciclo Menstrual/metabolismo , Óxido Nítrico Sintase Tipo I/metabolismo , Óxido Nítrico/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Animais , Western Blotting , Membrana Celular/metabolismo , Estradiol/farmacologia , Feminino , Hipotálamo/efeitos dos fármacos , Imunoprecipitação , Ciclo Menstrual/fisiologia , Ovariectomia , Fosforilação/efeitos dos fármacos , Ligação Proteica/fisiologia , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA