Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Blood ; 137(17): 2326-2336, 2021 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-33545713

RESUMO

Immunodysregulation, polyendocrinopathy, enteropathy, X-linked (IPEX) syndrome is caused by mutations in forkhead box P3 (FOXP3), which lead to the loss of function of regulatory T cells (Tregs) and the development of autoimmune manifestations early in life. The selective induction of a Treg program in autologous CD4+ T cells by FOXP3 gene transfer is a promising approach for curing IPEX. We have established a novel in vivo assay of Treg functionality, based on adoptive transfer of these cells into scurfy mice (an animal model of IPEX) and a combination of cyclophosphamide (Cy) conditioning and interleukin-2 (IL-2) treatment. This model highlighted the possibility of rescuing scurfy disease after the latter's onset. By using this in vivo model and an optimized lentiviral vector expressing human Foxp3 and, as a reporter, a truncated form of the low-affinity nerve growth factor receptor (ΔLNGFR), we demonstrated that the adoptive transfer of FOXP3-transduced scurfy CD4+ T cells enabled the long-term rescue of scurfy autoimmune disease. The efficiency was similar to that seen with wild-type Tregs. After in vivo expansion, the converted CD4FOXP3 cells recapitulated the transcriptomic core signature for Tregs. These findings demonstrate that FOXP3 expression converts CD4+ T cells into functional Tregs capable of controlling severe autoimmune disease.


Assuntos
Doenças Autoimunes/prevenção & controle , Linfócitos T CD4-Positivos/imunologia , Ciclofosfamida/farmacologia , Fatores de Transcrição Forkhead/genética , Doenças Genéticas Ligadas ao Cromossomo X/prevenção & controle , Interleucina-2/farmacologia , Linfócitos T Reguladores/imunologia , Animais , Antineoplásicos/farmacologia , Doenças Autoimunes/imunologia , Doenças Autoimunes/patologia , Linfócitos T CD4-Positivos/efeitos dos fármacos , Modelos Animais de Doenças , Quimioterapia Combinada , Feminino , Doenças Genéticas Ligadas ao Cromossomo X/imunologia , Doenças Genéticas Ligadas ao Cromossomo X/patologia , Imunossupressores/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Linfócitos T Reguladores/efeitos dos fármacos
2.
Mol Ther Methods Clin Dev ; 10: 341-347, 2018 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-30191160

RESUMO

Lentiviral vectors have emerged as an efficient, safe therapeutic tool for gene therapy based on hematopoietic stem cells (HSCs) or T cells. However, the monitoring of transduced cells in preclinical models remains challenging because of the inefficient transduction of murine primary T cells with lentiviral vectors, in contrast to gammaretroviral vectors. The use of this later in preclinical proof of concept is not considered as relevant when a lentiviral vector will be used in a clinical trial. Hence, there is an urgent need to develop an efficient transduction protocol for murine cells with lentiviral vectors. Here, we describe an optimized protocol in which a nontoxic transduction enhancer (Lentiboost) enables the efficient transduction of primary murine T cells with lentiviral vectors. The optimized protocol combines low toxicity and high transduction efficiency. We achieved a high-level transduction of murine CD4+ and CD8+ T cells with a VSV-G-pseudotyped lentiviral vector with no changes in the phenotypes of transduced T cells, which were stable and long-lived in culture. This enhancer also increased the transduction of murine HSCs. Hence, use of this new transduction enhancer overcomes the limitations of lentiviral vectors in preclinical experiments and should facilitate the translation of strategies based on lentiviral vectors from the bench to the clinic.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA