Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
J Immunol ; 206(10): 2441-2452, 2021 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-33941658

RESUMO

Intestinal barrier is essential for dietary products and microbiota compartmentalization and therefore gut homeostasis. When this barrier is broken, cecal content overflows into the peritoneal cavity, leading to local and systemic robust inflammatory response, characterizing peritonitis and sepsis. It has been shown that IL-1ß contributes with inflammatory storm during peritonitis and sepsis and its inhibition has beneficial effects to the host. Therefore, we investigated the mechanisms underlying IL-1ß secretion using a widely adopted murine model of experimental peritonitis. The combined injection of sterile cecal content (SCC) and the gut commensal bacteria Bacteroides fragilis leads to IL-1ß-dependent peritonitis, which was mitigated in mice deficient in NLRP3 (nucleotide-binding domain, leucine-rich-containing family, pyrin domain-containing-3) inflammasome components. Typically acting as a damage signal, SCC, but not B. fragilis, activates canonical pathway of NLRP3 promoting IL-1ß secretion in vitro and in vivo. Strikingly, absence of fiber in the SCC drastically reduces IL-1ß production, whereas high-fiber SCC conversely increases this response in an NLRP3-dependent manner. In addition, NLRP3 was also required for IL-1ß production induced by purified dietary fiber in primed macrophages. Extending to the in vivo context, IL-1ß-dependent peritonitis was worsened in mice injected with B. fragilis and high-fiber SCC, whereas zero-fiber SCC ameliorates the pathology. Corroborating with the proinflammatory role of dietary fiber, IL-1R-deficient mice were protected from peritonitis induced by B. fragilis and particulate bran. Overall, our study highlights a function, previously unknown, for dietary fibers in fueling peritonitis through NLRP3 activation and IL-1ß secretion outside the gut.


Assuntos
Infecções por Bacteroides/imunologia , Bacteroides fragilis/imunologia , Fibras na Dieta/efeitos adversos , Inflamassomos/metabolismo , Interleucina-1beta/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/deficiência , Peritonite/imunologia , Animais , Infecções por Bacteroides/microbiologia , Dieta , Fibras na Dieta/administração & dosagem , Modelos Animais de Doenças , Macrófagos/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Peritonite/microbiologia , Receptores de Interleucina-1/deficiência , Receptores de Interleucina-1/genética , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/imunologia
2.
Nat Commun ; 10(1): 3890, 2019 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-31488835

RESUMO

Neurological complications affecting the central nervous system have been reported in adult patients infected by Zika virus (ZIKV) but the underlying mechanisms remain unknown. Here, we report that ZIKV replicates in human and mouse adult brain tissue, targeting mature neurons. ZIKV preferentially targets memory-related brain regions, inhibits hippocampal long-term potentiation and induces memory impairment in adult mice. TNF-α upregulation, microgliosis and upregulation of complement system proteins, C1q and C3, are induced by ZIKV infection. Microglia are found to engulf hippocampal presynaptic terminals during acute infection. Neutralization of TNF-α signaling, blockage of microglial activation or of C1q/C3 prevent synapse and memory impairment in ZIKV-infected mice. Results suggest that ZIKV induces synapse and memory dysfunction via aberrant activation of TNF-α, microglia and complement. Our findings establish a mechanism by which ZIKV affects the adult brain, and point to the need of evaluating cognitive deficits as a potential comorbidity in ZIKV-infected adults.


Assuntos
Encéfalo/virologia , Sinapses/virologia , Replicação Viral , Infecção por Zika virus/virologia , Zika virus/fisiologia , Animais , Comportamento Animal , Encéfalo/metabolismo , Encéfalo/patologia , Proteínas do Sistema Complemento/metabolismo , Modelos Animais de Doenças , Hipocampo/metabolismo , Humanos , Inflamação , Aprendizagem , Masculino , Memória , Transtornos da Memória , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microglia/metabolismo , Microglia/patologia , Neurônios/virologia , Terminações Pré-Sinápticas/metabolismo , Receptores Tipo I de Interleucina-1/genética , Sinapses/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
3.
PLoS Pathog ; 15(6): e1007887, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31233552

RESUMO

Leishmaniasis is a neglected tropical disease affecting millions of individuals worldwide. P2X7 receptor has been linked to the elimination of Leishmania amazonensis. Biological responses evoked by P2X7 receptor activation have been well-documented, including apoptosis, phagocytosis, cytokine release, such as IL-1ß. It was demonstrated that NLRP3 inflammasome activation and IL-1ß signaling participated in resistance against L. amazonensis. Furthermore, our group has shown that L. amazonensis elimination through P2X7 receptor activation depended on leukotriene B4 (LTB4) production and release. Therefore, we investigated whether L. amazonensis elimination by P2X7 receptor and LTB4 involved NLRP3 inflammasome activation and IL-1ß signaling. We showed that macrophages from NLRP3-/-, ASC-/-, Casp-1/11-/-, gp91phox-/- , and IL-1R-/- mice treated with ATP or LTB4 did not decrease parasitic load as was observed in WT mice. When ASC-/- macrophages were treated with exogenous IL-1ß, parasite killing was noted, however, we did not see parasitic load reduction in IL-1R-/- macrophages. Similarly, macrophages from P2X7 receptor-deficient mice treated with IL-1ß also showed decreased parasitic load. In addition, when we infected Casp-11-/- macrophages, neither ATP nor LTB4 were able to reduce parasitic load, and Casp-11-/- mice were more susceptible to L. amazonensis infection than were WT mice. Furthermore, P2X7-/- L. amazonensis-infected mice locally treated with exogenous LTB4 showed resistance to infection, characterized by lower parasite load and smaller lesions compared to untreated P2X7-/- mice. A similar observation was noted when infected P2X7-/- mice were treated with IL-1ß, i.e., lower parasite load and smaller lesions compared to P2X7-/- mice. These data suggested that L. amazonensis elimination mediated by P2X7 receptor and LTB4 was dependent on non-canonical NLRP3 inflammasome activation, ROS production, and IL-1ß signaling.


Assuntos
Inflamassomos/imunologia , Interleucina-1beta/imunologia , Leishmania/imunologia , Leishmaniose/imunologia , Leucotrieno B4/imunologia , Macrófagos/imunologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/imunologia , Receptores Purinérgicos P2X7/imunologia , Transdução de Sinais/imunologia , Animais , Inflamassomos/genética , Interleucina-1beta/genética , Leishmaniose/genética , Leishmaniose/patologia , Leucotrieno B4/genética , Macrófagos/parasitologia , Camundongos , Camundongos Knockout , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Receptores Purinérgicos P2X7/genética , Transdução de Sinais/genética
4.
Immunobiology ; 224(1): 50-59, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30429052

RESUMO

The Gram-negative bacterium Porphyromonas gingivalis is strongly associated with periodontitis. We previously demonstrated that P2X7 receptor activation by extracellular ATP (eATP) triggers elimination of intracellular pathogens, such as Leishmania amazonensis, Toxoplasma gondii and Chlamydia trachomatis. We also showed that eATP-induced IL-1ß secretion via the P2X7 receptor is impaired by P. gingivalis fimbriae. Furthermore, enhanced P2X7 receptor expression was detected in the maxilla of P. gingivalis-orally infected mice as well as in human periodontitis patients. Here, we examined the effect of P2X7-, caspase-1/11- and IL-1 receptor-mediated responses during P. gingivalis infection. P2X7 receptor played a large role in controlling P. gingivalis infection and P. gingivalis-induced recruitment of inflammatory cells, especially neutrophils. In addition, IL-1ß secretion was detected at different time points only when P2X7 receptor was expressed and in the presence of eATP treatment ex vivo. Activation of P2X7 receptor and IL-1 receptor by eATP and IL-1ß, respectively, promoted P. gingivalis elimination in macrophages. Interestingly, eATP-induced P. gingivalis killing was inhibited by the IL-1 receptor antagonist (IL-1RA), consistent with autocrine activation of the IL-1 receptor for P. gingivalis elimination. In vivo, caspase-1/11 and IL-1 receptor were also required for bacterial clearance, leukocyte recruitment and IL-1ß production after P. gingivalis infection. Our data demonstrate that the P2X7-IL-1 receptor axis activation is required for effective innate immune responses against P. gingivalis infection.


Assuntos
Infecções por Bacteroidaceae/imunologia , Leucócitos/imunologia , Macrófagos/imunologia , Porphyromonas gingivalis/fisiologia , Receptores Purinérgicos P2X7/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Comunicação Autócrina , Caspase 1/genética , Caspase 1/metabolismo , Caspases/genética , Caspases/metabolismo , Caspases Iniciadoras , Movimento Celular , Células Cultivadas , Modelos Animais de Doenças , Humanos , Interleucina-1beta/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores de Interleucina-1/genética , Receptores de Interleucina-1/metabolismo , Receptores Purinérgicos P2X7/genética , Transdução de Sinais
5.
J Neurosci ; 36(48): 12106-12116, 2016 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-27903721

RESUMO

Considerable clinical and epidemiological evidence links Alzheimer's disease (AD) and depression. However, the molecular mechanisms underlying this connection are largely unknown. We reported recently that soluble Aß oligomers (AßOs), toxins that accumulate in AD brains and are thought to instigate synapse damage and memory loss, induce depressive-like behavior in mice. Here, we report that the mechanism underlying this action involves AßO-induced microglial activation, aberrant TNF-α signaling, and decreased brain serotonin levels. Inactivation or ablation of microglia blocked the increase in brain TNF-α and abolished depressive-like behavior induced by AßOs. Significantly, we identified serotonin as a negative regulator of microglial activation. Finally, AßOs failed to induce depressive-like behavior in Toll-like receptor 4-deficient mice and in mice harboring a nonfunctional TLR4 variant in myeloid cells. Results establish that AßOs trigger depressive-like behavior via a double impact on brain serotonin levels and microglial activation, unveiling a cross talk between brain innate immunity and serotonergic signaling as a key player in mood alterations in AD. SIGNIFICANCE STATEMENT: Alzheimer's disease (AD) is a progressive neurodegenerative disorder and the main cause of dementia in the world. Brain accumulation of amyloid-ß oligomers (AßOs) is a major feature in the pathogenesis of AD. Although clinical and epidemiological data suggest a strong connection between AD and depression, the underlying mechanisms linking these two disorders remain largely unknown. Here, we report that aberrant activation of the brain innate immunity and decreased serotonergic tonus in the brain are key players in AßO-induced depressive-like behavior in mice. Our findings may open up new possibilities for the development of effective therapeutics for AD and depression aimed at modulating microglial function.


Assuntos
Doença de Alzheimer/imunologia , Peptídeos beta-Amiloides/imunologia , Encéfalo/imunologia , Depressão/imunologia , Imunidade Inata/imunologia , Receptor Cross-Talk/imunologia , Serotonina/imunologia , Animais , Comportamento Animal , Depressão/etiologia , Masculino , Camundongos , Camundongos Endogâmicos C3H , Microglia/imunologia , Fator de Necrose Tumoral alfa/imunologia
6.
PLoS One ; 10(4): e0124786, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25905908

RESUMO

BACKGROUND: Leishmaniasis is caused by intracellular Leishmania parasites that induce a T-cell mediated response associated with recognition of CD4+ and CD8+ T cell Line 1Lineepitopes. Identification of CD8+ antigenic determinants is crucial for vaccine and therapy development. Herein, we developed an open-source software dedicated to search and compile data obtained from currently available on line prediction algorithms. METHODOLOGY/PRINCIPAL FINDINGS: We developed a two-phase algorithm and implemented in an open source software called EPIBOT, that consolidates the results obtained with single prediction algorithms, generating a final output in which epitopes are ranked. EPIBOT was initially trained using a set of 831 known epitopes from 397 proteins from IEDB. We then screened 63 Leishmania braziliensis vaccine candidates with the EPIBOT trained tool to search for CD8+ T cell epitopes. A proof-of-concept experiment was conducted with the top eight CD8+ epitopes, elected by EPIBOT. To do this, the elected peptides were synthesized and validated for their in vivo cytotoxicity. Among the tested epitopes, three were able to induce lysis of pulsed-target cells. CONCLUSION: Our results show that EPIBOT can successfully search across existing prediction tools, generating a compiled list of candidate CD8+ epitopes. This software is fast and a simple search engine that can be customized to search over different MHC alleles or HLA haplotypes.


Assuntos
Linfócitos T CD8-Positivos/metabolismo , Epitopos de Linfócito T/imunologia , Leishmania braziliensis/metabolismo , Proteínas de Protozoários/imunologia , Software , Algoritmos , Sequência de Aminoácidos , Animais , Linfócitos T CD8-Positivos/imunologia , Modelos Animais de Doenças , Feminino , Leishmaniose/imunologia , Leishmaniose/metabolismo , Leishmaniose/patologia , Camundongos , Camundongos Endogâmicos BALB C , Peptídeos/química , Peptídeos/imunologia , Proteínas de Protozoários/metabolismo
7.
J Innate Immun ; 6(6): 831-45, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24925032

RESUMO

Porphyromonas gingivalis is a major contributor to the pathogenesis of periodontitis, an infection-driven inflammatory disease that leads to bone destruction. This pathogen stimulates pro-interleukin (IL)-1ß synthesis but not mature IL-1ß secretion, unless the P2X7 receptor is activated by extracellular ATP (eATP). Here, we investigated the role of P. gingivalis fimbriae in eATP-induced IL-1ß release. Bone marrow-derived macrophages (BMDMs) from wild-type (WT) or P2X7-deficient mice were infected with P. gingivalis (381) or isogenic fimbria-deficient (DPG3) strain with or without subsequent eATP stimulation. DPG3 induced higher IL-1ß secretion after eATP stimulation compared to 381 in WT BMDMs, but not in P2X7-deficient cells. This mechanism was dependent on K(+) efflux and Ca(2+)-independent phospholipase A2 activity. Accordingly, non-fimbriated P. gingivalis failed to inhibit apoptosis via the eATP/P2X7 pathway. Furthermore, P. gingivalis-driven stimulation of IL-1ß was Toll-like receptor 2 and MyD88 dependent, and not associated with fimbria expression. Fimbria-dependent down-modulation of IL-1ß was selective, as levels of other cytokines remained unaffected by P2X7 deficiency. Confocal microscopy demonstrated the presence of discrete P2X7 expression in the absence of P. gingivalis stimulation, which was enhanced by 381-stimulated cells. Notably, DPG3-infected macrophages revealed a distinct pattern of P2X7 receptor expression with a marked focus formation. Collectively, these data demonstrate that eATP-induced IL-1ß secretion is impaired by P. gingivalis fimbriae in a P2X7-dependent manner.


Assuntos
Infecções por Bacteroidaceae/imunologia , Fímbrias Bacterianas/imunologia , Interleucina-1beta/imunologia , Macrófagos/imunologia , Porphyromonas gingivalis/imunologia , Receptores Purinérgicos P2X7/imunologia , Trifosfato de Adenosina/genética , Trifosfato de Adenosina/imunologia , Animais , Infecções por Bacteroidaceae/genética , Infecções por Bacteroidaceae/patologia , Regulação para Baixo/genética , Regulação para Baixo/imunologia , Interleucina-1beta/genética , Macrófagos/microbiologia , Macrófagos/patologia , Camundongos , Camundongos Knockout , Fator 88 de Diferenciação Mieloide/genética , Fator 88 de Diferenciação Mieloide/imunologia , Receptores Purinérgicos P2X7/genética , Receptor 2 Toll-Like/genética , Receptor 2 Toll-Like/imunologia
8.
J Immunol ; 192(12): 5761-75, 2014 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-24835393

RESUMO

IL-4 plays an essential role in the activation of mature B cells, but less is known about the role of IL-4 in B cell maturation and tolerance checkpoints. In this study, we analyzed the effect of IL-4 on in vitro B cell maturation, from immature to transitional stages, and its influence on BCR-mediated negative selection. Starting either from purified CD19(+)IgM(-) B cell precursors, or sorted bone marrow immature (B220(low)IgM(low)CD23(-)) and transitional (B220(int)IgM(high)CD23(-)) B cells from C57BL/6 mice, we compared the maturation effects of IL-4 and BAFF. We found that IL-4 stimulated the generation of CD23(+) transitional B cells from CD23(-) B cells, and this effect was comparable to BAFF. IL-4 showed a unique protective effect against anti-IgM apoptotic signals on transitional B cell checkpoint, not observed with BAFF. IL-4 and BAFF strongly synergized to promote B cell maturation, and IL-4 also rendered it refractory to BCR-mediated cell death. IL-4 blocked upregulation of proapoptotic Bim protein levels induced by BCR crosslinking, suggesting that diminished levels of intracellular Bim promote protection to BCR-induced cell death. Evidence was obtained indicating that downmodulation of Bim by IL-4 occurred in a posttranscriptional manner. Consistent with data obtained in vitro, IL-4 in vivo was able to inhibit Bim upregulation and prevent cell death. These results contribute to the understanding of the role of IL-4 in B lymphocyte physiology, unveiling a previously undescribed activity of this cytokine on the maturation of B cells, which could have important implications on the breaking of B cell central tolerance in autoimmunity.


Assuntos
Proteínas Reguladoras de Apoptose/imunologia , Apoptose/imunologia , Fator Ativador de Células B/imunologia , Linfócitos B/imunologia , Regulação da Expressão Gênica/imunologia , Interleucina-4/imunologia , Proteínas de Membrana/imunologia , Proteínas Proto-Oncogênicas/imunologia , Animais , Apoptose/genética , Proteínas Reguladoras de Apoptose/genética , Autoimunidade/fisiologia , Fator Ativador de Células B/genética , Linfócitos B/citologia , Proteína 11 Semelhante a Bcl-2 , Regulação da Expressão Gênica/genética , Imunoglobulina M/genética , Imunoglobulina M/imunologia , Interleucina-4/genética , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos BALB C , Proteínas Proto-Oncogênicas/genética , Receptores de Antígenos de Linfócitos B/genética , Receptores de Antígenos de Linfócitos B/imunologia , Receptores de IgE/genética , Receptores de IgE/imunologia
9.
PLoS One ; 9(1): e87659, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24498160

RESUMO

BACKGROUND: Human cutaneous leishmaniasis is caused by distinct species, including Leishmania amazonensis. Treatment of cutaneous leishmaniasis is far from satisfactory due to increases in drug resistance and relapses, and toxicity of compounds to the host. As a consequence for this situation, the development of new leishmanicidal drugs and the search of new targets in the parasite biology are important goals. METHODOLOGY/PRINCIPAL FINDINGS: In this study, we investigated the mechanism of death pathway induced by the calpain inhibitor MDL28170 on Leishmania amazonensis promastigote forms. The combined use of different techniques was applied to contemplate this goal. MDL28170 treatment with IC50 (15 µM) and two times the IC50 doses induced loss of parasite viability, as verified by resazurin assay, as well as depolarization of the mitochondrial membrane, which was quantified by JC-1 staining. Scanning and transmission electron microscopic images revealed drastic alterations on the parasite morphology, some of them resembling apoptotic-like death, including cell shrinking, surface membrane blebs and altered chromatin condensation pattern. The lipid rearrangement of the plasma membrane was detected by Annexin-V labeling. The inhibitor also induced a significant increase in the proportion of cells in the sub-G0/G1 phase, as quantified by propidium iodide staining, as well as genomic DNA fragmentation, detected by TUNEL assay. In cells treated with MDL28170 at two times the IC50 dose, it was also possible to observe an oligonucleossomal DNA fragmentation by agarose gel electrophoresis. CONCLUSIONS/SIGNIFICANCE: The data presented in the current study suggest that MDL28170 induces apoptotic marker expression in promastigotes of L. amazonensis. Altogether, the results described in the present work not only provide a rationale for further exploration of the mechanism of action of calpain inhibitors against trypanosomatids, but may also widen the investigation of the potential clinical utility of calpain inhibitors in the chemotherapy of leishmaniases.


Assuntos
Apoptose/efeitos dos fármacos , Inibidores de Cisteína Proteinase/farmacologia , Fragmentação do DNA/efeitos dos fármacos , DNA de Protozoário/metabolismo , Dipeptídeos/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Proteínas de Protozoários/biossíntese , DNA de Protozoário/genética , Fase G1/efeitos dos fármacos , Humanos , Leishmania , Leishmaniose Cutânea/tratamento farmacológico , Leishmaniose Cutânea/enzimologia , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Proteínas de Protozoários/genética , Fase de Repouso do Ciclo Celular/efeitos dos fármacos
10.
J Biol Chem ; 287(42): 35506-35515, 2012 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-22910907

RESUMO

The prion protein (PrP(C)) is a cell surface protein expressed mainly in the nervous system. In addition to the role of its abnormal conformer in transmissible spongiform encephalopathies, normal PrP(C) may be implicated in other degenerative conditions often associated with inflammation. PrP(C) is also present in cells of hematopoietic origin, including T cells, dendritic cells, and macrophages, and it has been shown to modulate their functions. Here, we investigated the impact of inflammation and stress on the expression and function of PrP(C) in neutrophils, a cell type critically involved in both acute and chronic inflammation. We found that systemic injection of LPS induced transcription and translation of PrP(C) in mouse neutrophils. Up-regulation of PrP(C) was dependent on the serum content of TGF-ß and glucocorticoids (GC), which, in turn, are contingent on the activation of the hypothalamic-pituitary-adrenal axis in response to systemic inflammation. GC and TGF-ß, either alone or in combination, directly up-regulated PrP(C) in neutrophils, and accordingly, the blockade of GC receptors in vivo curtailed the LPS-induced increase in the content of PrP(C). Moreover, GC also mediated up-regulation of PrP(C) in neutrophils following noninflammatory restraint stress. Finally, neutrophils with up-regulated PrP(C) presented enhanced peroxide-dependent cytotoxicity to endothelial cells. The data demonstrate a novel interplay of the nervous, endocrine, and immune systems upon both the expression and function of PrP(C) in neutrophils, which may have a broad impact upon the physiology and pathology of various organs and systems.


Assuntos
Regulação da Expressão Gênica , Sistema Hipotálamo-Hipofisário/metabolismo , Neutrófilos/metabolismo , Sistema Hipófise-Suprarrenal/metabolismo , Proteínas PrPC/biossíntese , Estresse Fisiológico , Animais , Glucocorticoides/genética , Glucocorticoides/imunologia , Glucocorticoides/metabolismo , Sistema Hipotálamo-Hipofisário/imunologia , Sistema Hipotálamo-Hipofisário/patologia , Inflamação/induzido quimicamente , Inflamação/genética , Inflamação/imunologia , Inflamação/metabolismo , Inflamação/patologia , Lipopolissacarídeos/farmacologia , Camundongos , Camundongos Knockout , Neutrófilos/imunologia , Neutrófilos/patologia , Sistema Hipófise-Suprarrenal/imunologia , Sistema Hipófise-Suprarrenal/patologia , Proteínas PrPC/genética , Proteínas PrPC/imunologia , Doenças Priônicas/genética , Doenças Priônicas/imunologia , Doenças Priônicas/metabolismo , Biossíntese de Proteínas/efeitos dos fármacos , Biossíntese de Proteínas/genética , Biossíntese de Proteínas/imunologia , Transcrição Gênica/efeitos dos fármacos , Transcrição Gênica/genética , Transcrição Gênica/imunologia , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta/imunologia , Fator de Crescimento Transformador beta/metabolismo
11.
FASEB J ; 25(12): 4162-73, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21846836

RESUMO

We investigated the type I interferon (IFN-1)/PKR axis in the outcome of the Leishmania (Leishmania) amazonensis infection, along with the underlying mechanisms that trigger and sustain this signaling pathway. Reporter assays of cell extracts from RAW-264.7 macrophages infected with L. (L.) amazonensis or HEK-293T cells cotransfected with TLR2 and PKR promoter constructions were employed. Primary macrophages of TLR2-knockout (KO) or IFNR-KO mice were infected, and the levels of PKR, IFN-1, and superoxide dismutase 1 (SOD1) transcript levels were investigated and compared. Immunohistochemical analysis of human biopsy lesions was evaluated for IFN-1 and PKR-positive cells. Leishmania infection increased the expression of PKR and IFN-ß on induction of PKR-promoter activity. The observed effects required the engagement of TLR2. TLR2-KO macrophages expressed low IFN-ß and PKR levels postinfection with a reduced parasite load. We also revealed the requirement of PKR signaling for Leishmania-induced IFN-1 expression, responsible for sustaining PKR expression and enhancing infection. Moreover, during infection, SOD1 transcripts increased and were also enhanced when IFN-1 was added to the cultures. Remarkably, SOD1 expression was abrogated in infected, dominant-negative PKR-expressing cells. Finally, lesions of patients with anergic diffuse cutaneous leishmaniasis exhibited higher levels of PKR/IFN-1-expressing cells compared to those with single cutaneous leishmaniasis. In summary, we demonstrated the mechanisms and relevance of the IFN-1/PKR axis in the Leishmania infection.


Assuntos
Interferon Tipo I/metabolismo , Leishmania mexicana , Leishmaniose Cutânea/enzimologia , Leishmaniose Cutânea/imunologia , Receptor 2 Toll-Like/metabolismo , eIF-2 Quinase/metabolismo , Animais , Glicoesfingolipídeos/imunologia , Interações Hospedeiro-Parasita , Humanos , Leishmania mexicana/imunologia , Leishmania mexicana/patogenicidade , Leishmaniose Cutânea/genética , Leishmaniose Tegumentar Difusa/enzimologia , Leishmaniose Tegumentar Difusa/genética , Leishmaniose Tegumentar Difusa/imunologia , Macrófagos Peritoneais/enzimologia , Macrófagos Peritoneais/imunologia , Macrófagos Peritoneais/parasitologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Modelos Biológicos , Regiões Promotoras Genéticas , Transdução de Sinais , Superóxido Dismutase/genética , Superóxido Dismutase-1 , Receptor 2 Toll-Like/deficiência , Receptor 2 Toll-Like/genética , Transfecção , eIF-2 Quinase/genética
12.
Mem. Inst. Oswaldo Cruz ; 106(4): 507-509, June 2011. graf
Artigo em Inglês | LILACS | ID: lil-592197

RESUMO

In the current study, we evaluated the mechanism of action of miltefosine, which is the first effective and safe oral treatment for visceral leishmaniasis, in Leishmania amazonensis promastigotes. Miltefosine induced a process of programmed cell death, which was determined by the externalization of phosphatidylserine, the incorporation of propidium iodide, cell-cycle arrest at the sub-G0/G1 phase and DNA fragmentation into oligonucleosome-sized fragments. Despite the intrinsic variation that is detected in Leishmania spp, our results indicate that miltefosine causes apoptosis-like death in L. amazonensis promastigote cells using a similar process that is observed in Leishmania donovani.


Assuntos
Antiprotozoários , Apoptose , Fragmentação do DNA , DNA de Protozoário , Leishmania mexicana , Fosforilcolina/análogos & derivados , DNA de Protozoário , Citometria de Fluxo , Fosforilcolina
13.
PLoS Pathog ; 6(4): e1000870, 2010 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-20442858

RESUMO

The murine model of T. cruzi infection has provided compelling evidence that development of host resistance against intracellular protozoans critically depends on the activation of members of the Toll-like receptor (TLR) family via the MyD88 adaptor molecule. However, the possibility that TLR/MyD88 signaling pathways also control the induction of immunoprotective CD8+ T cell-mediated effector functions has not been investigated to date. We addressed this question by measuring the frequencies of IFN-gamma secreting CD8+ T cells specific for H-2K(b)-restricted immunodominant peptides as well as the in vivo Ag-specific cytotoxic response in infected animals that are deficient either in TLR2, TLR4, TLR9 or MyD88 signaling pathways. Strikingly, we found that T. cruzi-infected Tlr2(-/-), Tlr4(-/-), Tlr9(-/) (-) or Myd88(-/-) mice generated both specific cytotoxic responses and IFN-gamma secreting CD8+ T cells at levels comparable to WT mice, although the frequency of IFN-gamma+CD4+ cells was diminished in infected Myd88(-/-) mice. We also analyzed the efficiency of TLR4-driven immune responses against T. cruzi using TLR4-deficient mice on the C57BL genetic background (B6 and B10). Our studies demonstrated that TLR4 signaling is required for optimal production of IFN-gamma, TNF-alpha and nitric oxide (NO) in the spleen of infected animals and, as a consequence, Tlr4(-/-) mice display higher parasitemia levels. Collectively, our results indicate that TLR4, as well as previously shown for TLR2, TLR9 and MyD88, contributes to the innate immune response and, consequently, resistance in the acute phase of infection, although each of these pathways is not individually essential for the generation of class I-restricted responses against T. cruzi.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Doença de Chagas/imunologia , Imunidade Inata , Transdução de Sinais/imunologia , Receptor 4 Toll-Like/imunologia , Animais , Doença de Chagas/genética , Macrófagos/imunologia , Macrófagos/metabolismo , Macrófagos/microbiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fator 88 de Diferenciação Mieloide/deficiência , Fator 88 de Diferenciação Mieloide/genética , Fator 88 de Diferenciação Mieloide/imunologia , Óxido Nítrico Sintase Tipo II/imunologia , Óxido Nítrico Sintase Tipo II/metabolismo , Receptor 2 Toll-Like/deficiência , Receptor 2 Toll-Like/genética , Receptor 2 Toll-Like/imunologia , Receptor 4 Toll-Like/deficiência , Receptor 4 Toll-Like/genética , Receptor Toll-Like 9/deficiência , Receptor Toll-Like 9/genética , Receptor Toll-Like 9/imunologia , Trypanosoma cruzi/imunologia
14.
J Immunol ; 184(9): 4662-72, 2010 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-20357250

RESUMO

We have previously shown that TLR4 triggering promotes the generation of CD23(+)CD93(+) transitional T2-like cells in vitro from mouse B cell precursors, suggesting a possible role for this receptor in B cell maturation. In this study, we perform an extensive study of cell surface markers and functional properties of B cells matured in vitro with LPS, comparatively with the well-known B cell maturation factor B lymphocyte-activating factor (BAFF). LPS increased generation of CD23(+) transitional B cells in a TLR4-dependent way, upregulating IgD and CD21 and downregulating CD93, without inducing cell proliferation, in a manner essentially equivalent to BAFF. For both BAFF and LPS, functional maturation of the IgM(+)CD23(+)CD93(+) cells was confirmed by their higher proliferative response to anti-CD40 plus IL-4 compared with IgM(+)CD23(neg)CD93(+) cells. BAFF-R-Fc-mediated neutralization experiments showed that TLR4-induced B cell maturation was independent of BAFF. Distinct from BAFF, maturation by LPS relied on the activation of canonical NF-kappaB pathway, and the two factors together had complementary effects, leading to higher numbers of IgM(+)CD23(+)CD93(+) cells with their simultaneous addition. Importantly, BCR cross-linking abrogated the generation of CD23(+) B cells by LPS or BAFF, indicating that signals mimicking central tolerance act on both systems. Addition of cyclosporin A reverted BCR-mediated inhibition, both for BAFF and LPS, suggesting similar regulation of signaling pathways by calcineurin. Finally, LPS-injected mice showed a rapid increase of mature B cells in the bone marrow, suggesting that TLR4 signaling may effectively stimulate B cell maturation in vivo, acting as an accessory stimulus in B cell development, complementary to the BAFF physiological pathway.


Assuntos
Fator Ativador de Células B/fisiologia , Subpopulações de Linfócitos B/imunologia , Subpopulações de Linfócitos B/metabolismo , Diferenciação Celular/imunologia , Cooperação Linfocítica/imunologia , Receptor 4 Toll-Like/fisiologia , Animais , Subpopulações de Linfócitos B/citologia , Proliferação de Células , Células Cultivadas , Técnicas de Cocultura , Lipopolissacarídeos/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Receptores de IgE/biossíntese , Transdução de Sinais/imunologia
15.
Immunol Lett ; 127(1): 19-26, 2009 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-19712696

RESUMO

Host invasion by pathogens is frequently associated with the activation of nuclear factor kappaB (NF-kappaB), which modulates the expression of genes involved in the immunological response of the host. However, pathogens may also subvert these mechanisms to secure their survival. We describe the effect of Leishmania amazonensis infection on NF-kappaB transcriptional factor activation in macrophages and the subsequent reduction in inducible nitric oxide synthase (iNOS) expression. L. amazonensis promastigote infection activates the p50/p50 NF-kappaB complex, a classic transcriptional repressor. Interestingly, L. amazonensis promotes the change of the classical p65/p50 NF-kappaB dimer induced by LPS, leading to the p50/p50 NF-kappaB complex activation in macrophages stimulated with LPS. Moreover, this parasite promotes the reduction of p65 total levels in infected macrophages. All these effects contribute to the observation that this parasite is able to restrain the NF-kappaB-dependent transcriptional activity induced by LPS. Strikingly, L. amazonensis reduces the mRNA levels of the iNOS in addition to protein expression and the production of nitric oxide in LPS-stimulated macrophages. Accordingly, as revealed by reporter-gene assays, L. amazonensis-induced iNOS repression requires NF-kappaB sites in the iNOS promoter region. In summary, our results suggest that L. amazonensis has developed an adaptive strategy to escape from host defense by activating the NF-kappaB repressor complex p50/p50. The activation of this specific host transcriptional response negatively regulates the expression of iNOS, favoring the establishment and success of L. amazonensis infection.


Assuntos
Leishmania/imunologia , Leishmaniose/imunologia , Macrófagos/metabolismo , Subunidade p50 de NF-kappa B/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Animais , Linhagem Celular , Repressão Enzimática , Interações Hospedeiro-Patógeno , Humanos , Leishmania/patogenicidade , Leishmaniose/enzimologia , Leishmaniose/genética , Macrófagos/imunologia , Macrófagos/microbiologia , Macrófagos/patologia , Camundongos , Subunidade p50 de NF-kappa B/genética , Óxido Nítrico Sintase Tipo II/genética , Óxido Nítrico Sintase Tipo II/imunologia , Ativação Transcricional
16.
J Leukoc Biol ; 83(4): 1038-48, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18198209

RESUMO

Lymphopoiesis and myelopoiesis continuously generate mature cells from hematopoietic cell progenitors during the lifetime of the organism. The identification of new endogenous or exogenous substances that can act specifically on the differentiation of distinct cell lineages is of relevance and has potential therapeutical use. Kalanchoe brasiliensis (Kb) is a medicinal plant from the Crassulaceae family, used in folk medicine to treat inflammatory and infectious diseases. Here, we show that short-term treatment of naïve mice with Kb led to a strong and selective inhibition of lymphopoiesis, affecting B and T cell lineages without reduction of the myeloid lineage development. Similar effects were observed after treatment with the highly purified compound kalanchosine dimalate (KMC), obtained from Kb. Numbers of mature lymphocytes in secondary lymphoid organs were preserved in Kb(KMC)-treated mice. The effect of Kb(KMC) was not a result of secondary augmentation of plasma levels of endogenous corticoids; neither involves TNF-alpha, type-I IFN, or TLR2/TLR4 ligands, which have all been described as selective inhibitors of lymphopoiesis. Flow cytometry analysis of the phenotypes of T and B cell precursors indicate a blockade of maturation on IL-7-dependent, proliferative stages. In vitro, Kb(KMC) inhibited the IL-7-dependent proliferation of pre-B cells and does not induce massive apoptosis of B and T cell precursors. These results suggest that Kb(KMC) is selectively blocking lymphopoiesis through a mechanism that does not involve the previously characterized substances, possibly acting on the IL-7 signaling pathway, opening new perspectives for a potential therapeutic use of Kb-derived drugs.


Assuntos
Interleucina-7/antagonistas & inibidores , Linfopoese/fisiologia , Malatos/farmacologia , Animais , Anti-Inflamatórios/farmacologia , Divisão Celular/efeitos dos fármacos , Interleucina-7/farmacologia , Kalanchoe , Linfopoese/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Modelos Animais , Extratos Vegetais , Receptores Tipo I de Fatores de Necrose Tumoral/deficiência , Receptores Tipo I de Fatores de Necrose Tumoral/genética , Receptor 2 Toll-Like/deficiência , Receptor 2 Toll-Like/genética
17.
J Leukoc Biol ; 82(3): 488-96, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17540734

RESUMO

We have demonstrated recently that the glycoinositolphospholipid (GIPL) molecule from the protozoan Trypanosoma cruzi is a TLR4 agonist with proinflammatory effects. Here, we show that GIPL-induced neutrophil recruitment into the peritoneal cavity is mediated by at least two pathways: one, where IL-1beta acts downstream of TNF-alpha, and a second, which is IL-1beta- and TNFRI-independent. Moreover, NKT cells participate in this proinflammatory cascade, as in GIPL-treated CD1d(-/-) mice, TNF-alpha and MIP-2 levels are reduced significantly. As a consequence of this inflammatory response, spleen and lymph nodes of GIPL-treated mice have an increase in the percentage of T and B cells expressing the CD69 activation marker. Cell-transfer experiments demonstrate that T and B cell activation by GIPL is an indirect effect, which relies on the expression of TLR4 by other cell types. Moreover, although signaling through TNFRI contributes to the activation of B and gammadelta+ T cells, it is not required for increasing CD69 expression on alphabeta+ T lymphocytes. It is interesting that T cells are also functionally affected by GIPL treatment, as spleen cells from GIPL-injected mice show enhanced production of IL-4 following in vitro stimulation by anti-CD3. Together, these results contribute to the understanding of the inflammatory properties of the GIPL molecule, pointing to its potential role as a parasite-derived modulator of the immune response during T. cruzi infection.


Assuntos
Glicolipídeos/fisiologia , Mediadores da Inflamação/fisiologia , Fosfolipídeos/fisiologia , Receptor 4 Toll-Like/metabolismo , Trypanosoma cruzi/imunologia , Animais , Antígenos CD1/genética , Antígenos CD1/fisiologia , Antígenos CD1d , Quimiocina CXCL2 , Quimiocinas/metabolismo , Ensaio de Imunoadsorção Enzimática , Citometria de Fluxo , Glicolipídeos/administração & dosagem , Glicolipídeos/farmacologia , Imunidade Inata/genética , Interleucina-1beta/metabolismo , Ativação Linfocitária , Camundongos , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Camundongos Knockout , Infiltração de Neutrófilos/genética , Infiltração de Neutrófilos/imunologia , Fosfolipídeos/administração & dosagem , Fosfolipídeos/farmacologia , RNA Mensageiro/metabolismo , Receptores Tipo I de Fatores de Necrose Tumoral/genética , Receptores Tipo I de Fatores de Necrose Tumoral/fisiologia , Linfócitos T/metabolismo , Receptor 4 Toll-Like/genética , Fator de Necrose Tumoral alfa/metabolismo
18.
Biochemistry ; 46(4): 987-96, 2007 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-17240982

RESUMO

Plant defensins, components of the plant innate immune system, are cationic cysteine-rich antifungal peptides. Evidence from the literature [Thevissen, K., et al. (2003) Peptides 24, 1705-1712] has demonstrated that patches of fungi membrane containing mannosyldiinositolphosphorylceramide and glucosylceramides are selective binding sites for the plant defensins isolated from Dahlia merckii and Raphanus sativus, respectively. Whether plant defensins interact directly or indirectly with fungus intracellular targets is unknown. To identify physical protein-protein interactions, a GAL4-based yeast two-hybrid system was performed using the antifungal plant peptide Pisum sativum defensin 1 (Psd1) as the bait. Target proteins were screened within a Neurospora crassa cDNA library. Nine out of 11 two-hybrid candidates were nuclear proteins. One clone, detected with high frequency per screening, presented sequence similarity to a cyclin-like protein, with F-box and WD-repeat domains, related to the cell cycle control. GST pull-down assay corroborated in vitro this two-hybrid interaction. Fluorescence microscopy analysis of FITC-conjugated Psd1 and DAPI-stained fungal nuclei showed in vivo the colocalization of the plant peptide Psd1 and the nucleus. Analysis of the DNA content of N. crassa conidia using flow cytometry suggested that Psd1 directed cell cycle impairment and caused conidia to undergo endoreduplication. The developing retina of neonatal rats was used as a model to observe the interkinetic nuclear migration during proliferation of an organized tissue from the S toward the M phase of the cell cycle in the presence of Psd1. The results demonstrated that the plant defensin Psd1 regulates interkinetic nuclear migration in retinal neuroblasts.


Assuntos
Ciclinas/metabolismo , Defensinas/metabolismo , Proteínas Fúngicas/metabolismo , Neurospora crassa/metabolismo , Proteínas de Plantas/metabolismo , Animais , Animais Recém-Nascidos , Antifúngicos/metabolismo , Sequência de Bases , Sítios de Ligação , Ciclo Celular , Ciclinas/genética , DNA Fúngico/genética , DNA de Plantas/genética , Defensinas/genética , Defensinas/farmacologia , Proteínas Fúngicas/genética , Neurospora crassa/citologia , Neurospora crassa/genética , Pisum sativum/genética , Pisum sativum/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/farmacologia , Ligação Proteica , Ratos , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/farmacologia , Retina/citologia , Retina/efeitos dos fármacos , Técnicas do Sistema de Duplo-Híbrido
19.
J Immunol ; 173(9): 5688-96, 2004 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-15494520

RESUMO

TLRs function as pattern recognition receptors in mammals and play an essential role in the recognition of microbial components. We found that the injection of glycoinositolphospholipids (GIPLs) from Trypanosoma cruzi into the peritoneal cavity of mice induced neutrophil recruitment in a TLR4-dependent manner: the injection of GIPL in the TLR4-deficient strain of mice (C57BL/10ScCr) caused no inflammatory response. In contrast, in TLR2 knockout mice, neutrophil chemoattraction did not differ significantly from that seen in wild-type controls. GIPL-induced neutrophil attraction and MIP-2 production were also severely affected in TLR4-mutant C3H/HeJ mice. The role of TLR4 was confirmed in vitro by testing genetically engineered mutants derived from TLR2-deficient Chinese hamster ovary (CHO)-K1 fibroblasts that were transfected with CD14 (CHO/CD14). Wild-type CHO/CD14 cells express the hamster TLR4 molecule and the mutant line, in addition, expresses a nonfunctional form of MD-2. In comparison to wild-type cells, mutant CHO/CD14 cells failed to respond to GIPLs, indicating a necessity for a functional TLR4/MD-2 complex in GIPL-induced NF-kappaB activation. Finally, we found that TLR4-mutant mice were hypersusceptible to T. cruzi infection, as evidenced by a higher parasitemia and earlier mortality. These results demonstrate that natural resistance to T. cruzi is TLR4 dependent, most likely due to TLR4 recognition of their GIPLs.


Assuntos
Doença de Chagas/imunologia , Doença de Chagas/patologia , Citocinas/biossíntese , Glicolipídeos/fisiologia , Mediadores da Inflamação/fisiologia , Glicoproteínas de Membrana/fisiologia , Fosfolipídeos/fisiologia , Receptores de Superfície Celular/fisiologia , Trypanosoma cruzi/imunologia , Animais , Células CHO , Doença de Chagas/genética , Quimiocina CXCL2 , Quimiocinas/biossíntese , Cricetinae , Citocinas/fisiologia , Glicolipídeos/administração & dosagem , Glicolipídeos/farmacologia , Imunidade Inata/genética , Mediadores da Inflamação/metabolismo , Injeções Intraperitoneais , Interleucina-10/biossíntese , Cinética , Masculino , Glicoproteínas de Membrana/biossíntese , Glicoproteínas de Membrana/deficiência , Glicoproteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Camundongos Knockout , NF-kappa B/metabolismo , Infiltração de Neutrófilos/genética , Infiltração de Neutrófilos/imunologia , Fosfolipídeos/administração & dosagem , Fosfolipídeos/farmacologia , Receptores de Superfície Celular/biossíntese , Receptores de Superfície Celular/deficiência , Receptores de Superfície Celular/genética , Receptor 2 Toll-Like , Receptor 4 Toll-Like , Receptores Toll-Like , Fator de Necrose Tumoral alfa/biossíntese
20.
Poiésis (En línea) ; 8(Dic.): 1-3, 2004.
Artigo em Espanhol | LILACS, COLNAL | ID: biblio-1016158

RESUMO

El trabajo clínico comunitario posibilita descubrir, elaborar el imaginario social hecho texto grupal. Cuando digo imaginario social, me refiero a la definición que da Cornelius Castoriadis: conjunto de significaciones por las cuales un colectivo, una sociedad, un grupo, se instituye como tal inventando sus formas de relación, sus modos de contrato y sus figuraciones subjetivas.


Community clinical work makes it possible to discover, elaborate the social imaginary made group text. When I say social imaginary, I refer to the definition that Cornelius Castoriadis gives: a set of meanings by which a collective, a society, a group, is instituted as such by inventing its forms of relationship, its modes of contract and its subjective figurations.


Assuntos
Psicoterapia de Grupo , Psicodrama , Psicologia Social , Relações Interpessoais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA