Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Br J Cancer ; 2024 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-38704478

RESUMO

BACKGROUND: Tregs trafficking is controlled by CXCR4. In Renal Cell Carcinoma (RCC), the effect of the new CXCR4 antagonist, R54, was explored in peripheral blood (PB)-Tregs isolated from primary RCC patients. METHODS: PB-Tregs were isolated from 77 RCC patients and 38 healthy donors (HDs). CFSE-T effector-Tregs suppression assay, IL-35, IFN-γ, IL-10, TGF-ß1 secretion, and Nrp-1+Tregs frequency were evaluated. Tregs were characterised for CTLA-4, PD-1, CD40L, PTEN, CD25, TGF-ß1, FOXP3, DNMT1 transcriptional profile. PTEN-pAKT signalling was evaluated in the presence of R54 and/or triciribine (TCB), an AKT inhibitor. Methylation of TSDR (Treg-Specific-Demethylated-Region) was conducted. RESULTS: R54 impaired PB-RCC-Tregs function, reduced Nrp-1+Tregs frequency, the release of IL-35, IL-10, and TGF-ß1, while increased IFN-γ Teff-secretion. The CXCR4 ligand, CXCL12, recruited CD25+PTEN+Tregs in RCC while R54 significantly reduced it. IL-2/PMA activates Tregs reducing pAKT+Tregs while R54 increases it. The AKT inhibitor, TCB, prevented the increase in pAKT+Tregs R54-mediated. Moreover, R54 significantly reduced FOXP3-TSDR demethylation with DNMT1 and FOXP3 downregulation. CONCLUSION: R54 impairs Tregs function in primary RCC patients targeting PTEN/PI3K/AKT pathway, reducing TSDR demethylation and FOXP3 and DNMT1 expression. Thus, CXCR4 targeting is a strategy to inhibit Tregs activity in the RCC tumour microenvironment.

2.
Adv Exp Med Biol ; 1302: 51-70, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34286441

RESUMO

Tumor microenvironment (TME) is the local environment of tumor, composed of tumor cells and blood vessels, extracellular matrix (ECM), immune cells, and metabolic and signaling molecules. Chemokines and their receptors play a fundamental role in the crosstalk between tumor cells and TME, regulating tumor-related angiogenesis, specific leukocyte infiltration, and activation of the immune response and directly influencing tumor cell growth, invasion, and cancer progression. The chemokine CXCL12 is a homeostatic chemokine that regulates physiological and pathological process such as inflammation, cell proliferation, and specific migration. CXCL12 activates CXCR4 and CXCR7 chemokine receptors, and the entire axis has been shown to be dysregulated in more than 20 different tumors. CXCL12 binding to CXCR4 triggers multiple signal transduction pathways that regulate intracellular calcium flux, chemotaxis, transcription, and cell survival. CXCR7 binds with high-affinity CXCL12 and with lower-affinity CXCL11, which binds also CXCR3. Although CXCR7 acts as a CXCL12 scavenger through ligand internalization and degradation, it transduces the signal mainly through ß-arrestin with a pivotal role in endothelial and neural cells. Recent studies demonstrate that TME rich in CXCL12 leads to resistance to immune checkpoint inhibitors (ICI) therapy and that CXCL12 axis inhibitors sensitize resistant tumors to ICI effect. Thus targeting the CXCL12-mediated axis may control tumor and tumor microenvironment exerting an antitumor dual action. Herein CXCL12 physiology, role in cancer biology and in composite TME, prognostic role, and the relative inhibitors are addressed.


Assuntos
Neoplasias , Microambiente Tumoral , Linhagem Celular Tumoral , Proliferação de Células , Quimiocina CXCL12 , Humanos , Neovascularização Patológica , Transdução de Sinais
3.
Cells ; 9(4)2020 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-32272732

RESUMO

Ovarian cancer is the most lethal gynecological cancer, and despite years of research, with the exception of a BRCA mutation driving the use of PARP inhibitors, no new prognostic/predictive biomarkers are clinically available. Improvement in biomarker selection and validation may derive from the systematic inclusion of translational analyses into the design of clinical trials. In the era of personalized medicine, the prospective centralized collection of high-quality biological material, expert pathological revision, and association to well-controlled clinical data are important or even essential added values to clinical trials. Here, we present the academic experience of the MITO (Multicenter Italian Trial in Ovarian Cancer) group, including gynecologists, pathologists, oncologists, biostatisticians, and translational researchers, whose effort is dedicated to the care and basic/translational research of gynecologic cancer. In our ten years of experience, we have been able to collect and process, for translational analyses, formalin-fixed, paraffin-embedded blocks from more than one thousand ovarian cancer patients. Standard operating procedures for collection, shipping, and processing were developed and made available to MITO researchers through the coordinating center's web-based platform. Clinical data were collected through dedicated electronic case report forms hosted in a web-based electronic platform and stored in a central database at the trial's coordinating center, which performed all the analyses related to the proposed translational researches. During this time, we improved our strategies of block management from retrospective to prospective collection, up to the design of a prospective collection with a quality check for sample eligibility before patients' accrual. The final aim of our work is to share our experience by suggesting a guideline for the process of centralized collection, revision processing, and storing of formalin-fixed, paraffin-embedded blocks for translational purposes.


Assuntos
Neoplasias Ovarianas/epidemiologia , Medicina de Precisão/métodos , Feminino , Humanos , Itália , Fatores de Tempo , Pesquisa Translacional Biomédica
4.
Genes (Basel) ; 10(2)2019 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-30744101

RESUMO

PATZ1 is a transcriptional factor downregulated in thyroid cancer whose re-expression in thyroid cancer cells leads to a partial reversion of the malignant phenotype, including the capacity to proliferate, migrate, and undergo epithelial-to-mesenchymal transition. We have recently shown that PATZ1 is specifically downregulated downstream of the Ras oncogenic signaling through miR-29b, and that restoration of PATZ1 in Ha-Ras transformed FRTL5 rat thyroid cells is able to inhibit their capacities to proliferate and migrate in vitro. Here, we analyzed the impact of PATZ1 expression on the in vivo tumorigenesis of these cells. Surprisingly, FRTL5-Ras-PATZ1 cells showed enhanced tumor initiation when engrafted in nude mice, even if their tumor growth rate was reduced compared to that of FRTL5-Ras control cells. To further investigate the cause of the enhanced tumor engraftment of FRTL5-Ras-PATZ1 cells, we analyzed the stem-like potential of these cells through their capacity to grow as thyrospheres. The results showed that restoration of PATZ1 expression in these cells increases stem cell markers' expression and self-renewal ability of the thyrospheres while limiting their growth capacity. Therefore, we suggest that PATZ1 may play a role in enhancing the stem cell potential of thyroid cancer cells, but, at the same time, it impairs the proliferation of non-stem cells.


Assuntos
Carcinogênese/genética , Neoplasias da Glândula Tireoide/genética , Fatores de Transcrição/metabolismo , Proteínas ras/metabolismo , Animais , Carcinogênese/metabolismo , Linhagem Celular Tumoral , Células Cultivadas , Feminino , Camundongos , Camundongos Nus , Camundongos SCID , MicroRNAs/genética , MicroRNAs/metabolismo , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Ratos , Neoplasias da Glândula Tireoide/metabolismo , Fatores de Transcrição/genética , Proteínas ras/genética
5.
Oncotarget ; 9(8): 8016-8026, 2018 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-29487711

RESUMO

BAG3 protein is an apoptosis inhibitor and is highly expressed in Anaplastic Thyroid Cancer. We investigated the entire set of proteins modulated by BAG3 silencing in the human anaplastic thyroid 8505C cancer cells by using the Stable-Isotope Labeling by Amino acids in Cell culture strategy combined with mass spectrometry analysis. By this approach we identified 37 up-regulated and 54 down-regulated proteins in BAG3-silenced cells. Many of these proteins are reportedly involved in tumor progression, invasiveness and resistance to therapies. We focused our attention on an oncogenic protein, CAV1, and a tumor suppressor protein, SERPINB2, that had not previously been reported to be modulated by BAG3. Their expression levels in BAG3-silenced cells were confirmed by qRT-PCR and western blot analyses, disclosing two novel targets of BAG3 pro-tumor activity. We also examined the dataset of proteins obtained by the quantitative proteomics analysis using two tools, Downstream Effect Analysis and Upstream Regulator Analysis of the Ingenuity Pathways Analysis software. Our analyses confirm the association of the proteome profile observed in BAG3-silenced cells with an increase in cell survival and a decrease in cell proliferation and invasion, and highlight the possible involvement of four tumor suppressor miRNAs and TP53/63 proteins in BAG3 activity.

6.
Oncotarget ; 6(22): 19328-35, 2015 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-25749380

RESUMO

Ovarian cancer is the most lethal gynecological malignancy and the high mortality rate is associated with advanced-stage disease at the time of the diagnosis. In order to find new tools to make diagnosis of Epithelial Ovarian Cancer (EOC) at early stages we have analyzed the presence of specific HMGA2 mRNA in the plasma of patients affected by this neoplasm. HMGA2 overexpression represents a feature of several malignances including ovarian carcinomas. Notably, we detected HMGA2 specific mRNA in the plasma of 40 out 47 patients with EOC, but not in the plasma of healthy donors. All cases found positive for HMGA2 mRNA in the plasma showed HMGA2 protein expression in EOC tissues. Therefore, on the basis of these results, the analysis of circulating HMGA2 specific mRNA might be considered a very promising tool for the early diagnosis of EOC.


Assuntos
Proteína HMGA2/genética , Neoplasias Epiteliais e Glandulares/genética , Neoplasias Ovarianas/genética , RNA Mensageiro/sangue , RNA Mensageiro/genética , Adulto , Idoso , Biomarcadores Tumorais/sangue , Biomarcadores Tumorais/genética , Carcinoma Epitelial do Ovário , Linhagem Celular Tumoral , Feminino , Proteína HMGA2/metabolismo , Humanos , Pessoa de Meia-Idade , Neoplasias Epiteliais e Glandulares/sangue , Neoplasias Ovarianas/sangue
7.
Oncotarget ; 5(14): 5736-49, 2014 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-25026278

RESUMO

H-Prune hydrolyzes short-chain polyphosphates (PPase activity) together with an hitherto cAMP-phosphodiesterase (PDE), the latest influencing different human cancers by its overexpression. H-Prune promotes cell migration in cooperation with glycogen synthase kinase-3 (Gsk-3ß). Gsk-3ß is a negative regulator of canonical WNT/ß-catenin signaling. Here, we investigate the role of Gsk-3ß/h-Prune complex in the regulation of WNT/ß-catenin signaling, demonstrating the h-Prune capability to activate WNT signaling also in a paracrine manner, through Wnt3a secretion. In vivo study demonstrates that h-Prune silencing inhibits lung metastasis formation, increasing mouse survival. We assessed h-Prune levels in peripheral blood of lung cancer patients using ELISA assay, showing that h-Prune is an early diagnostic marker for lung cancer. Our study dissects out the mechanism of action of h-Prune in tumorigenic cells and also sheds light on the identification of a new therapeutic target in non-small-cell lung cancer.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/metabolismo , Proteínas de Transporte/sangue , Quinase 3 da Glicogênio Sintase/metabolismo , Neoplasias Pulmonares/metabolismo , Via de Sinalização Wnt , beta Catenina/metabolismo , Animais , Carcinoma Pulmonar de Células não Pequenas/enzimologia , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Proteínas de Transporte/genética , Progressão da Doença , Feminino , Glicogênio Sintase Quinase 3 beta , Xenoenxertos , Humanos , Neoplasias Pulmonares/enzimologia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Camundongos , Camundongos Nus , Monoéster Fosfórico Hidrolases , beta Catenina/genética
8.
Clin Exp Metastasis ; 30(1): 47-68, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22760522

RESUMO

Dipyridamole is a widely prescribed drug in ischemic disorders, and it is here investigated for potential clinical use as a new treatment for breast cancer. Xenograft mice bearing triple-negative breast cancer 4T1-Luc or MDA-MB-231T cells were generated. In these in vivo models, dipyridamole effects were investigated for primary tumor growth, metastasis formation, cell cycle, apoptosis, signaling pathways, immune cell infiltration, and serum inflammatory cytokines levels. Dipyridamole significantly reduced primary tumor growth and metastasis formation by intraperitoneal administration. Treatment with 15 mg/kg/day dipyridamole reduced mean primary tumor size by 67.5 % (p = 0.0433), while treatment with 30 mg/kg/day dipyridamole resulted in an almost a total reduction in primary tumors (p = 0.0182). Experimental metastasis assays show dipyridamole reduces metastasis formation by 47.5 % in the MDA-MB-231T xenograft model (p = 0.0122), and by 50.26 % in the 4T1-Luc xenograft model (p = 0.0292). In vivo dipyridamole decreased activated ß-catenin by 38.64 % (p < 0.0001), phospho-ERK1/2 by 25.05 % (p = 0.0129), phospho-p65 by 67.82 % (p < 0.0001) and doubled the expression of IkBα (p = 0.0019), thus revealing significant effects on Wnt, ERK1/2-MAPK and NF-kB pathways in both animal models. Moreover dipyridamole significantly decreased the infiltration of tumor-associated macrophages and myeloid-derived suppressor cells in primary tumors (p < 0.005), and the inflammatory cytokines levels in the sera of the treated mice. We suggest that when used at appropriate doses and with the correct mode of administration, dipyridamole is a promising agent for breast-cancer treatment, thus also implying its potential use in other cancers that show those highly activated pathways.


Assuntos
Neoplasias da Mama/prevenção & controle , Dipiridamol/uso terapêutico , Neoplasias Pulmonares/prevenção & controle , Inibidores de Fosfodiesterase/uso terapêutico , Receptor ErbB-2/metabolismo , Receptores de Estrogênio/metabolismo , Receptores de Progesterona/metabolismo , Animais , Apoptose/efeitos dos fármacos , Western Blotting , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Adesão Celular/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Progressão da Doença , Ensaio de Imunoadsorção Enzimática , Feminino , Citometria de Fluxo , Humanos , Técnicas Imunoenzimáticas , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/secundário , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Proteína Quinase 1 Ativada por Mitógeno/genética , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/genética , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , NF-kappa B/genética , NF-kappa B/metabolismo , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais , Ensaios Antitumorais Modelo de Xenoenxerto , beta Catenina/genética , beta Catenina/metabolismo
9.
Gene ; 509(1): 93-103, 2012 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-22967741

RESUMO

The development of stratified retinal cell architecture is highly conserved in all vertebrates, implying that a common fundamental molecular mechanism is involved in the generation of the organized retina. However, the detailed molecular mechanisms of retinal development are not fully understood. Here we have identified the Xenopus ortholog of prune and show that it is expressed in both differentiating and differentiated retinal domains during development. Interestingly, these spatial and temporal expression patterns coincide with the expression of prune binding partners, the NM23 family members. Overexpression of prune in retinal precursor cells significantly increases the ratio of Müller glial cells as observed by modulation of NM23 activity (Mochizuki et al., 2009). However, a mutated form of prune that has replacement of four aspartate (D) residues (D'Angelo et al., 2004), essential for phosphodiesterase activity, does not exhibit gliogenic activity. Our observations suggest that Xenopus prune may regulate Müller gliogenesis through phosphodiesterase-mediated regulation of NM23 family members.


Assuntos
Retina/embriologia , Proteínas de Xenopus/genética , Xenopus laevis/embriologia , Xenopus laevis/genética , Sequência de Aminoácidos , Animais , Animais Geneticamente Modificados , Sequência de Bases , DNA Complementar/genética , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Proteínas do Olho/química , Proteínas do Olho/genética , Proteínas do Olho/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Hibridização In Situ , Dados de Sequência Molecular , Proteínas Mutantes/química , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Nucleosídeo NM23 Difosfato Quinases/metabolismo , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , Neuroglia/citologia , Neuroglia/metabolismo , Diester Fosfórico Hidrolases/química , Diester Fosfórico Hidrolases/genética , Diester Fosfórico Hidrolases/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Retina/citologia , Retina/metabolismo , Homologia de Sequência de Aminoácidos , Especificidade da Espécie , Proteínas de Xenopus/química , Proteínas de Xenopus/metabolismo , Xenopus laevis/metabolismo
10.
J Bioenerg Biomembr ; 38(3-4): 233-46, 2006 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17033939

RESUMO

A genetic interaction between PRUNE and NM23/NDPK has been postulated in Drosophila melanogaster. Many have focused on Drosophila for the genetic combination between PRUNE "knock down" and AWD/NM23 fly mutants bearing the P97S mutation (K-pn, Killer of PRUNE mutation). We postulated a role for PRUNE-NM23 interactions in vertebrate development, demonstrating a physical interaction between the human PRUNE and NM23-H1 proteins, and partially characterizing their functional significance in cancer progression. Here, we present an initial analysis towards the functional characterization of the PRUNE-NM23 interaction during mammalian embryogenesis. Our working hypothesis is that PRUNE, NM23-H1 and their protein-protein interaction partners have important roles in mammalian brain development and adult brain function. Detailed expression analyses from early mouse brain development to adulthood show significant co-expression of these two genes during embryonic stages of brain development, especially focusing on the cortex, hippocampus, midbrain and cerebellum. We hypothesize that their abnormal expression results in an altered pathway of activation, influencing protein complex formation and its protein partner interactions in early embryogenesis. In the adult brain, their function appears concentrated towards their enzyme activities, wherein biochemical variations can result in brain dysfunction.


Assuntos
Encéfalo/embriologia , Encéfalo/metabolismo , Proteínas de Transporte/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Núcleosídeo-Difosfato Quinase/metabolismo , Animais , Imuno-Histoquímica , Hibridização In Situ , Camundongos , Nucleosídeo NM23 Difosfato Quinases
11.
J Neurosci ; 25(33): 7586-600, 2005 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-16107646

RESUMO

The vertebrate telencephalon is composed of many architectonically and functionally distinct areas and structures, with billions of neurons that are precisely connected. This complexity is fine-tuned during development by numerous genes. To identify genes involved in the regulation of telencephalic development, a specific subset of differentially expressed genes was characterized. Here, we describe a set of cDNAs encoded by genes preferentially expressed during development of the mouse telencephalon that was identified through a functional genomics approach. Of 832 distinct transcripts found, 223 (27%) are known genes. Of the remaining, 228 (27%) correspond to expressed sequence tags of unknown function, 58 (7%) are homologs or orthologs of known genes, and 323 (39%) correspond to novel rare transcripts, including 48 (14%) new putative noncoding RNAs. As an example of this latter group of novel precursor transcripts of micro-RNAs, telencephalic embryonic subtractive sequence (TESS) 24.E3 was functionally characterized, and one of its targets was identified: the zinc finger transcription factor ZFP9. The TESS transcriptome has been annotated, mapped for chromosome loci, and arrayed for its gene expression profiles during neural development and differentiation (in Neuro2a and neural stem cells). Within this collection, 188 genes were also characterized on embryonic and postnatal tissue by in situ hybridization, demonstrating that most are specifically expressed in the embryonic CNS. The full information has been organized into a searchable database linked to other genomic resources, allowing easy access to those who are interested in the dissection of the molecular basis of telencephalic development.


Assuntos
DNA Complementar/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Telencéfalo/embriologia , Telencéfalo/fisiologia , Animais , Sequência de Bases , Linhagem Celular Tumoral , Células Cultivadas , DNA Complementar/biossíntese , Perfilação da Expressão Gênica/métodos , Camundongos , MicroRNAs/biossíntese , MicroRNAs/genética , Dados de Sequência Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA