Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Neurooncol ; 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38829577

RESUMO

BACKGROUND: Advancements in metastatic breast cancer (BC) treatment have enhanced overall survival (OS), leading to increased rates of brain metastases (BM). This study analyzes the association between microsurgical tumor reduction and OS in patients with BCBM, considering tumor molecular subtypes and perioperative treatment approaches. METHODS: Retrospective analysis of surgically treated patients with BCBM from two tertiary brain tumor Swiss centers. The association of extent of resection (EOR), gross-total resection (GTR) achievement, and postoperative residual tumor volume (RV) with OS and intracranial progression-free survival (IC-PFS) was evaluated using Cox proportional hazard model. RESULTS: 101 patients were included in the final analysis, most patients (38%) exhibited HER2-/HR + BC molecular subtype, followed by HER2 + /HR + (25%), HER2-/HR- (21%), and HER2 + /HR- subtypes (13%). The majority received postoperative systemic treatment (75%) and radiotherapy (84%). Median OS and intracranial PFS were 22 and 8 months, respectively. The mean pre-surgery intracranial tumor volume was 26 cm3, reduced to 3 cm3 post-surgery. EOR, GTR achievement and RV were not significantly associated with OS or IC-PFS, but higher EOR and lower RV correlated with extended OS in patients without extracranial metastases. HER2-positive tumor status was associated with longer OS, extracranial metastases at BM diagnosis and symptomatic lesions with shorter OS and IC-PFS. CONCLUSIONS: Our study found that BC molecular subtypes, extracranial disease status, and BM-related symptoms were associated with OS in surgically treated patients with BCBM. Additionally, while extensive resection to minimize residual tumor volume did not significantly affect OS across the entire cohort, it appeared beneficial for patients without extracranial metastases.

2.
Front Physiol ; 15: 1238533, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38725571

RESUMO

Background: Transient hypoxia-induced deoxyhemoglobin (dOHb) has recently been shown to represent a comparable contrast to gadolinium-based contrast agents for generating resting perfusion measures in healthy subjects. Here, we investigate the feasibility of translating this non-invasive approach to patients with brain tumors. Methods: A computer-controlled gas blender was used to induce transient precise isocapnic lung hypoxia and thereby transient arterial dOHb during echo-planar-imaging acquisition in a cohort of patients with different types of brain tumors (n = 9). We calculated relative cerebral blood volume (rCBV), cerebral blood flow (rCBF), and mean transit time (MTT) using a standard model-based analysis. The transient hypoxia induced-dOHb MRI perfusion maps were compared to available clinical DSC-MRI. Results: Transient hypoxia induced-dOHb based maps of resting perfusion displayed perfusion patterns consistent with underlying tumor histology and showed high spatial coherence to gadolinium-based DSC MR perfusion maps. Conclusion: Non-invasive transient hypoxia induced-dOHb was well-tolerated in patients with different types of brain tumors, and the generated rCBV, rCBF and MTT maps appear in good agreement with perfusion maps generated with gadolinium-based DSC MR perfusion.

3.
Technol Cancer Res Treat ; 23: 15330338241249026, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38693845

RESUMO

Laser Interstitial Thermotherapy is a minimally invasive treatment option in neurosurgery for intracranial tumors, including recurrent gliomas. The technique employs the thermal ablation of target tissue to achieve tumor control with real-time monitoring of the extent by magnetic resonance thermometry, allowing targeted thermal injury to the lesion. Laser Interstitial Thermotherapy has gained interest as a treatment option for recurrent gliomas due to its minimally invasive nature, shorter recovery times, ability to be used even in patients with numerous comorbidities, and potential to provide local tumor control. It can be used as a standalone treatment or combined with other therapies, such as chemotherapy or radiation therapy. We describe the most recent updates regarding several studies and case reports that have evaluated the efficacy and safety of Laser Interstitial Thermotherapy for recurrent gliomas. These studies have reported different outcomes, with some demonstrating promising results in terms of tumor control and patient survival, while others have shown mixed outcomes. The success of Laser Interstitial Thermotherapy depends on various factors, including tumor characteristics, patient selection, and the experience of the surgical team, but the future direction of treatment of recurrent gliomas will include a combined approach, comprising Laser Interstitial Thermotherapy, particularly in deep-seated brain regions. Well-designed prospective studies will be needed to establish with certainty the role of Laser Interstitial Thermotherapy in the treatment of recurrent glioma.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Hipertermia Induzida , Terapia a Laser , Recidiva Local de Neoplasia , Humanos , Glioblastoma/terapia , Hipertermia Induzida/métodos , Recidiva Local de Neoplasia/terapia , Terapia a Laser/métodos , Neoplasias Encefálicas/terapia , Resultado do Tratamento , Terapia Combinada
4.
J Neurooncol ; 165(2): 271-278, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37945819

RESUMO

PURPOSE: Microneurosurgical techniques have greatly improved over the past years due to the introduction of new technology and surgical concepts. To reevaluate the role of micro-neurosurgery in brain metastases (BM) resection in the era of new systemic and local treatment options, its safety profile needs to be reassessed. The aim of this study was to analyze the rate of adverse events (AEs) according to a systematic, comprehensive and reliably reproducible grading system after microneurosurgical BM resection in a large and modern microneurosurgical series with special emphasis on anatomical location. METHODS: Prospectively collected cases of BM resection between 2013 and 2022 were retrospectively analyzed. Number of AEs, defined as any deviations from the expected postoperative course according to Clavien-Dindo-Grade (CDG) were evaluated. Patient, surgical, and lesion characteristics, including exact anatomic tumor locations, were analyzed using uni- and multivariate logistic regression and survival analysis to identify predictive factors for AEs. RESULTS: We identified 664 eligible patients with lung cancer being the most common primary tumor (44%), followed by melanoma (25%) and breast cancer (11%). 29 patients (4%) underwent biopsy only whereas BM were resected in 637 (96%) of cases. The overall rate of AEs was 8% at discharge. However, severe AEs (≥ CDG 3a; requiring surgical intervention under local/general anesthesia or ICU treatment) occurred in only 1.9% (n = 12) of cases with a perioperative mortality of 0.6% (n = 4). Infratentorial tumor location (OR 5.46, 95% 2.31-13.8, p = .001), reoperation (OR 2.31, 95% 1.07-4.81, p = .033) and central region tumor location (OR 3.03, 95% 1.03-8.60) showed to be significant predictors in a multivariate analysis for major AEs (CDG ≥ 2 or new neurological deficits). Neither deep supratentorial nor central region tumors were associated with more major AEs compared to convexity lesions. CONCLUSIONS: Modern microneurosurgical resection can be considered an excellent option in the management of BM in terms of safety, as the overall rate of major AEs are very rare even in eloquent and deep-seated lesions.


Assuntos
Neoplasias Encefálicas , Neoplasias Pulmonares , Humanos , Estudos de Coortes , Estudos Retrospectivos , Procedimentos Neurocirúrgicos/efeitos adversos , Neoplasias Pulmonares/cirurgia
5.
Cancers (Basel) ; 14(6)2022 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-35326580

RESUMO

Diffuse gliomas are the most common primary malignant intracranial neoplasms. Aside from the challenges pertaining to their treatment-glioblastomas, in particular, have a dismal prognosis and are currently incurable-their pre-operative assessment using standard neuroimaging has several drawbacks, including broad differentials diagnosis, imprecise characterization of tumor subtype and definition of its infiltration in the surrounding brain parenchyma for accurate resection planning. As the pathophysiological alterations of tumor tissue are tightly linked to an aberrant vascularization, advanced hemodynamic imaging, in addition to other innovative approaches, has attracted considerable interest as a means to improve diffuse glioma characterization. In the present part A of our two-review series, the fundamental concepts, techniques and parameters of hemodynamic imaging are discussed in conjunction with their potential role in the differential diagnosis and grading of diffuse gliomas. In particular, recent evidence on dynamic susceptibility contrast, dynamic contrast-enhanced and arterial spin labeling magnetic resonance imaging are reviewed together with perfusion-computed tomography. While these techniques have provided encouraging results in terms of their sensitivity and specificity, the limitations deriving from a lack of standardized acquisition and processing have prevented their widespread clinical adoption, with current efforts aimed at overcoming the existing barriers.

6.
Cancers (Basel) ; 14(5)2022 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-35267650

RESUMO

Gliomas, and glioblastoma in particular, exhibit an extensive intra- and inter-tumoral molecular heterogeneity which represents complex biological features correlating to the efficacy of treatment response and survival. From a neuroimaging point of view, these specific molecular and histopathological features may be used to yield imaging biomarkers as surrogates for distinct tumor genotypes and phenotypes. The development of comprehensive glioma imaging markers has potential for improved glioma characterization that would assist in the clinical work-up of preoperative treatment planning and treatment effect monitoring. In particular, the differentiation of tumor recurrence or true progression from pseudoprogression, pseudoresponse, and radiation-induced necrosis can still not reliably be made through standard neuroimaging only. Given the abundant vascular and hemodynamic alterations present in diffuse glioma, advanced hemodynamic imaging approaches constitute an attractive area of clinical imaging development. In this context, the inclusion of objective measurable glioma imaging features may have the potential to enhance the individualized care of diffuse glioma patients, better informing of standard-of-care treatment efficacy and of novel therapies, such as the immunotherapies that are currently increasingly investigated. In Part B of this two-review series, we assess the available evidence pertaining to hemodynamic imaging for molecular feature prediction, in particular focusing on isocitrate dehydrogenase (IDH) mutation status, MGMT promoter methylation, 1p19q codeletion, and EGFR alterations. The results for the differentiation of tumor progression/recurrence from treatment effects have also been the focus of active research and are presented together with the prognostic correlations identified by advanced hemodynamic imaging studies. Finally, the state-of-the-art concepts and advancements of hemodynamic imaging modalities are reviewed together with the advantages derived from the implementation of radiomics and machine learning analyses pipelines.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA