Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 10: 819, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31293612

RESUMO

Genetic engineered male sterility has different applications, ranging from hybrid seed production to bioconfinement of transgenes in genetic modified crops. The impact of this technology is currently patent in a wide range of crops, including legumes, which has helped to deal with the challenges of global food security. Production of engineered male sterile plants by expression of a ribonuclease gene under the control of an anther- or pollen-specific promoter has proven to be an efficient way to generate pollen-free elite cultivars. In the last years, we have been studying the genetic control of flower development in legumes and several genes that are specifically expressed in a determinate floral organ were identified. Pisum sativum ENDOTHECIUM 1 (PsEND1) is a pea anther-specific gene displaying very early expression in the anther primordium cells. This expression pattern has been assessed in both model plants and crops (tomato, tobacco, oilseed rape, rice, wheat) using genetic constructs carrying the PsEND1 promoter fused to the uidA reporter gene. This promoter fused to the barnase gene produces full anther ablation at early developmental stages, preventing the production of mature pollen grains in all plant species tested. Additional effects produced by the early anther ablation in the PsEND1::barnase-barstar plants, with interesting biotechnological applications, have also been described, such as redirection of resources to increase vegetative growth, reduction of the need for deadheading to extend the flowering period, or elimination of pollen allergens in ornamental plants (Kalanchoe, Pelargonium). Moreover, early anther ablation in transgenic PsEND1::barnase-barstar tomato plants promotes the developing of the ovaries into parthenocarpic fruits due to the absence of signals generated during the fertilization process and can be considered an efficient tool to promote fruit set and to produce seedless fruits. In legumes, the production of new hybrid cultivars will contribute to enhance yield and productivity by exploiting the hybrid vigor generated. The PsEND1::barnase-barstar construct could be also useful to generate parental lines in hybrid breeding approaches to produce new cultivars in different legume species.

2.
Methods Mol Biol ; 1822: 11-37, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30043294

RESUMO

Many researchers have sought along the last two decades a legume species that could serve as a model system for genetic studies to resolve specific developmental or metabolic processes that cannot be studied in other model plants. Nitrogen fixation, nodulation, compound leaf, inflorescence and plant architecture, floral development, pod formation, secondary metabolite biosynthesis, and other developmental and metabolic aspects are legume-specific or show important differences with those described in Arabidopsis thaliana, the most studied model plant. Mainly Medicago truncatula and Lotus japonicus were proposed in the 1990s as model systems due to their key attributes, diploid genome, autogamous nature, short generation times, small genome sizes, and both species can be readily transformed. After more than decade-long, the genome sequences of both species are essentially complete, and a series of functional genomics tools have been successfully developed and applied. Mutagens that cause insertions or deletions are being used in these model systems because these kinds of DNA rearrangements are expected to assist in the isolation of the corresponding genes by Target-Induced Local Lesions IN Genomes (TILLING) approaches. Different M. truncatula mutants have been obtained following γ-irradiation or fast neutron bombardment (FNB), ethyl-nitrosourea (ENU) or ethyl-methanesulfonate (EMS) treatments, T-DNA and activation tagging, use of the tobacco retrotransposon Tnt1 to produce insertional mutants, gene silencing by RNAi, and transient post-transcriptional gene silencing by virus-induced gene silencing (VIGS). Emerging technologies of targeted mutagenesis and gene editing, such as the CRISPR-Cas9 system, could open a new era in this field. Functional genomics tools and phenotypic analyses of several mutants generated in M. truncatula have been essential to better understand differential aspects of legumes development and metabolism.


Assuntos
Fabaceae/genética , Genoma de Planta , Genômica , Medicago truncatula/genética , Metabolismo Energético , Fabaceae/metabolismo , Flores , Regulação da Expressão Gênica de Plantas , Estudos de Associação Genética , Genômica/métodos , Medicago truncatula/metabolismo , Engenharia Metabólica , Metabolômica/métodos , Mutagênese , Mutação , Fenótipo , Desenvolvimento Vegetal/genética , Doenças das Plantas/etiologia
3.
Plant Cell Rep ; 26(3): 313-25, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17016735

RESUMO

PsEND1 is a pea anther-specific gene that displays very early expression in the anther primordium cells. Later on, PsEND1 expression becomes restricted to the epidermis, connective, endothecium and middle layer, but it is never observed in tapetal cells or microsporocytes. We fused the PsEND1 promoter region to the cytotoxic barnase gene to induce specific ablation of the cell layers where the PsEND1 is expressed and consequently to produce male-sterile plants. Expression of the chimaeric PsEND1::barnase gene in two Solanaceae (Nicotiana tabacum and Solanum lycopersicon) and two Brassicaceae (Arabidopsis thaliana and Brassica napus) species, impairs anther development from very early stages and produces complete male-sterile plants. The PsEND1::barnase gene is quite different to other chimaeric genes previously used in similar approaches to obtain male-sterile plants. The novelty resides in the use of the PsEND1 promoter, instead of a tapetum-specific promoter, to produce the ablation of specific cell lines during the first steps of the anther development. This chimaeric construct arrests the microsporogenesis before differentiation of the microspore mother cells and no viable pollen grains are produced. This strategy represents an excellent alternative to generate genetically engineered male-sterile plants, which have proved useful in breeding programmes for the production of hybrid seeds. The PsEND1 promoter also has high potential to prevent undesirable horizontal gene flow in many plant species.


Assuntos
Flores/genética , Flores/fisiologia , Genes de Plantas/genética , Engenharia Genética/métodos , Pisum sativum/genética , Pisum sativum/fisiologia , Regiões Promotoras Genéticas/genética , Arabidopsis/genética , Brassica napus/genética , Fertilidade/genética , Fertilidade/fisiologia , Flores/ultraestrutura , Deleção de Genes , Expressão Gênica , Solanum lycopersicum/genética , Plantas Geneticamente Modificadas , Nicotiana/genética
4.
Plant Physiol ; 139(1): 174-85, 2005 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16113230

RESUMO

Current understanding of floral development is mainly based on what we know from Arabidopsis (Arabidopsis thaliana) and Antirrhinum majus. However, we can learn more by comparing developmental mechanisms that may explain morphological differences between species. A good example comes from the analysis of genes controlling flower development in pea (Pisum sativum), a plant with more complex leaves and inflorescences than Arabidopsis and Antirrhinum, and a different floral ontogeny. The analysis of UNIFOLIATA (UNI) and STAMINA PISTILLOIDA (STP), the pea orthologs of LEAFY and UNUSUAL FLORAL ORGANS, has revealed a common link in the regulation of flower and leaf development not apparent in Arabidopsis. While the Arabidopsis genes mainly behave as key regulators of flower development, where they control the expression of B-function genes, UNI and STP also contribute to the development of the pea compound leaf. Here, we describe the characterization of P. sativum PISTILLATA (PsPI), a pea MADS-box gene homologous to B-function genes like PI and GLOBOSA (GLO), from Arabidopsis and Antirrhinum, respectively. PsPI encodes for an atypical PI-type polypeptide that lacks the highly conserved C-terminal PI motif. Nevertheless, constitutive expression of PsPI in tobacco (Nicotiana tabacum) and Arabidopsis shows that it can specifically replace the function of PI, being able to complement the strong pi-1 mutant. Accordingly, PsPI expression in pea flowers, which is dependent on STP, is identical to PI and GLO. Interestingly, PsPI is also transiently expressed in young leaves, suggesting a role of PsPI in pea leaf development, a possibility that fits with the established role of UNI and STP in the control of this process.


Assuntos
Proteínas de Arabidopsis/química , Sequência Conservada , Proteínas de Domínio MADS/química , Pisum sativum/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/fisiologia , Motivos de Aminoácidos , Sequência de Aminoácidos , Flores/genética , Flores/crescimento & desenvolvimento , Flores/ultraestrutura , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Dados de Sequência Molecular , Mutação/genética , Pisum sativum/genética , Pisum sativum/crescimento & desenvolvimento , Filogenia , Folhas de Planta/genética , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , Homologia de Sequência de Aminoácidos , Nicotiana/genética
5.
Planta ; 219(6): 967-81, 2004 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-15221384

RESUMO

END1 was isolated by an immunosubtractive approach intended to identify specific proteins present in the different pea (Pisum sativum L.) floral organs and the genes encoding them. Following this strategy we obtained a monoclonal antibody (mAbA1) that specifically recognized a 26-kDa protein (END1) only detected in anther tissues. Northern blot assays showed that END1 is expressed specifically in the anther. In situ hybridization and immunolocalization assays corroborated the specific expression of END1 in the epidermis, connective, endothecium and middle layer cells during the different stages of anther development. END1 is the first anther-specific gene isolated from pea. The absence of a practicable pea transformation method together with the fact that no END1 homologue gene exists in Arabidopsis prevented us from carrying out END1 functional studies. However, we designed functional studies with the END1 promoter in different dicot species, as the specific spatial and temporal expression pattern of END1 suggested, among other things, the possibility of using its promoter region for biotechnological applications. Using different constructs to drive the uidA (beta-glucuronidase) gene controlled by the 2.7-kb isolated promoter sequence we have proven that the END1 promoter is fully functional in the anthers of transgenic Arabidopsis thaliana (L.) Heynh., Nicotiana tabacum L. (tobacco) and Lycopersicon esculentum Mill. (tomato) plants. The presence in the -330-bp region of the promoter sequence of three putative CArG boxes also suggests that END1 could be a target gene of MADS-box proteins and that, subsequently, it would be activated by genes controlling floral organ identity.


Assuntos
Genes de Plantas , Pisum sativum/genética , Proteínas de Plantas/genética , Regiões Promotoras Genéticas/fisiologia , Sequência de Aminoácidos , Arabidopsis/genética , Arabidopsis/metabolismo , DNA Complementar/análise , Flores/genética , Flores/crescimento & desenvolvimento , Flores/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Dados de Sequência Molecular , Pisum sativum/crescimento & desenvolvimento , Pisum sativum/metabolismo , Proteínas de Plantas/biossíntese , Plantas Geneticamente Modificadas , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Nicotiana/genética , Nicotiana/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA