Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Microb Genom ; 10(2)2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38407259

RESUMO

Enterobacteriaceae produce an arsenal of antimicrobial compounds including microcins, ribosomally produced antimicrobial peptides showing diverse structures and mechanisms of action. Microcins target close relatives of the producing strain to promote its survival. Their narrow spectrum of antibacterial activity makes them a promising alternative to conventional antibiotics, as it should decrease the probability of resistance dissemination and collateral damage to the host's microbiota. To assess the therapeutic potential of microcins, there is a need to understand the mechanisms of resistance to these molecules. In this study, we performed genomic analyses of the resistance to four microcins [microcin C, a nucleotide peptide; microcin J25, a lasso peptide; microcin B17, a linear azol(in)e-containing peptide; and microcin E492, a siderophore peptide] on a collection of 54 Enterobacteriaceae from three species: Escherichia coli, Salmonella enterica and Klebsiella pneumoniae. A gene-targeted analysis revealed that about half of the microcin-resistant strains presented mutations of genes involved in the microcin mechanism of action, especially those involved in their uptake (fhuA, fepA, cirA and ompF). A genome-wide association study did not reveal any significant correlations, yet relevant genetic elements were associated with microcin resistance. These were involved in stress responses, biofilm formation, transport systems and acquisition of immunity genes. Additionally, microcin-resistant strains exhibited several mutations within genes involved in specific metabolic pathways, especially for S. enterica and K. pneumoniae.


Assuntos
Bacteriocinas , Estudo de Associação Genômica Ampla , Bacteriocinas/genética , Antibacterianos/farmacologia , Imunidade Inata , Enterobacteriaceae/genética , Escherichia coli/genética , Klebsiella pneumoniae/genética , Peptídeos
2.
Microbiol Spectr ; 10(3): e0275221, 2022 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-35543514

RESUMO

The advent of multidrug-resistant bacteria has hampered the development of new antibiotics, exacerbating their morbidity and mortality. In this context, the gastrointestinal tract reveals a valuable source of novel antimicrobials. Microcins are bacteriocins produced by members of the family Enterobacteriaceae, which are endowed with a wide diversity of structures and mechanisms of action, and exert potent antibacterial activity against closely related bacteria. In this study, we investigated the antibacterial activities of four microcins against 54 Enterobacteriaceae isolates from three species (Escherichia coli, Klebsiella pneumoniae, and Salmonella enterica). The selected microcins, microcin C (McC, nucleotide peptide), microcin J25 (MccJ25, lasso peptide), microcin B17 (MccB17, linear azol(in)e-containing peptide), and microcin E492 (MccE492, siderophore peptide) carry different post-translational modifications and have distinct mechanisms of action. MICs and minimal bactericidal concentrations (MBC) of the microcins were measured and the efficacy of combinations of the microcins together or with antibiotics was assessed to identify potential synergies. Every isolate showed sensitivity to at least one microcin with MIC values ranging between 0.02 µM and 42.5 µM. Among the microcins tested, McC exhibited the broadest spectrum of inhibition with 46 strains inhibited, closely followed by MccE492 with 38 strains inhibited, while MccJ25 showed the highest activity. In general, microcin activity was observed to be independent of antibiotic resistance profile and strain genus. Of the 42 tested combinations, 20 provided enhanced activity (18 out of 20 being microcin-antibiotic combinations), with two being synergetic. IMPORTANCE With their wide range of structures and mechanisms of action, microcins are shown to exert antibacterial activities against Enterobacteriaceae resistant to antibiotics together with synergies with antibiotics and in particular colistin.


Assuntos
Bacteriocinas , Enterobacteriaceae , Sequência de Aminoácidos , Antibacterianos/farmacologia , Bacteriocinas/farmacologia , Farmacorresistência Bacteriana Múltipla , Enterobacteriaceae/efeitos dos fármacos , Escherichia coli , Peptídeos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA