Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
Proc Natl Acad Sci U S A ; 116(1): 148-157, 2019 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-30587589

RESUMO

The epithelial-mesenchymal transition (EMT) and cancer stem cell (CSC) formation are two paramount processes driving tumor progression, therapy resistance, and cancer metastasis. Recent experiments show that cells with varying EMT and CSC phenotypes are spatially segregated in the primary tumor. The underlying mechanisms generating such spatiotemporal dynamics in the tumor microenvironment, however, remain largely unexplored. Here, we show through a mechanism-based dynamical model that the diffusion of EMT-inducing signals such as TGF-ß, together with noncell autonomous control of EMT and CSC decision making via the Notch signaling pathway, can explain experimentally observed disparate localization of subsets of CSCs with varying EMT phenotypes in the tumor. Our simulations show that the more mesenchymal CSCs lie at the invasive edge, while the hybrid epithelial/mesenchymal (E/M) CSCs reside in the tumor interior. Further, motivated by the role of Notch-Jagged signaling in mediating EMT and stemness, we investigated the microenvironmental factors that promote Notch-Jagged signaling. We show that many inflammatory cytokines such as IL-6 that can promote Notch-Jagged signaling can (i) stabilize a hybrid E/M phenotype, (ii) increase the likelihood of spatial proximity of hybrid E/M cells, and (iii) expand the fraction of CSCs. To validate the predicted connection between Notch-Jagged signaling and stemness, we knocked down JAG1 in hybrid E/M SUM149 human breast cancer cells in vitro. JAG1 knockdown significantly restricted tumor organoid formation, confirming the key role that Notch-Jagged signaling can play in tumor progression. Together, our integrated computational-experimental framework reveals the underlying principles of spatiotemporal dynamics of EMT and CSCs.


Assuntos
Células-Tronco Neoplásicas/fisiologia , Microambiente Tumoral/fisiologia , Neoplasias da Mama/patologia , Citocinas/metabolismo , Transição Epitelial-Mesenquimal/fisiologia , Feminino , Técnicas de Silenciamento de Genes , Humanos , Células Neoplásicas Circulantes/patologia , Células-Tronco Neoplásicas/citologia , Fenótipo , Receptores Notch/metabolismo , Transdução de Sinais , Fator de Crescimento Transformador beta/metabolismo
2.
Cancer Res ; 77(7): 1564-1574, 2017 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-28202516

RESUMO

Abnormal metabolism is a hallmark of cancer, yet its regulation remains poorly understood. Cancer cells were considered to utilize primarily glycolysis for ATP production, referred to as the Warburg effect. However, recent evidence suggests that oxidative phosphorylation (OXPHOS) plays a crucial role during cancer progression. Here we utilized a systems biology approach to decipher the regulatory principle of glycolysis and OXPHOS. Integrating information from literature, we constructed a regulatory network of genes and metabolites, from which we extracted a core circuit containing HIF-1, AMPK, and ROS. Our circuit analysis showed that while normal cells have an oxidative state and a glycolytic state, cancer cells can access a hybrid state with both metabolic modes coexisting. This was due to higher ROS production and/or oncogene activation, such as RAS, MYC, and c-SRC. Guided by the model, we developed two signatures consisting of AMPK and HIF-1 downstream genes, respectively, to quantify the activity of glycolysis and OXPHOS. By applying the AMPK and HIF-1 signatures to The Cancer Genome Atlas patient transcriptomics data of multiple cancer types and single-cell RNA-seq data of lung adenocarcinoma, we confirmed an anticorrelation between AMPK and HIF-1 activities and the association of metabolic states with oncogenes. We propose that the hybrid phenotype contributes to metabolic plasticity, allowing cancer cells to adapt to various microenvironments. Using model simulations, our theoretical framework of metabolism can serve as a platform to decode cancer metabolic plasticity and design cancer therapies targeting metabolism. Cancer Res; 77(7); 1564-74. ©2017 AACR.


Assuntos
Glicólise , Neoplasias/metabolismo , Fosforilação Oxidativa , Proteínas Quinases Ativadas por AMP/fisiologia , Humanos , Fator 1 Induzível por Hipóxia/fisiologia , Modelos Biológicos , Neoplasias/genética , Neoplasias/terapia , Proteínas Proto-Oncogênicas c-myc/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Microambiente Tumoral
3.
Cancer Converg ; 1(1): 2, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29623961

RESUMO

BACKGROUND: The Epithelial-Mesenchymal Transition (EMT) endows epithelial-looking cells with enhanced migratory ability during embryonic development and tissue repair. EMT can also be co-opted by cancer cells to acquire metastatic potential and drug-resistance. Recent research has argued that epithelial (E) cells can undergo either a partial EMT to attain a hybrid epithelial/mesenchymal (E/M) phenotype that typically displays collective migration, or a complete EMT to adopt a mesenchymal (M) phenotype that shows individual migration. The core EMT regulatory network - miR-34/SNAIL/miR-200/ZEB1 - has been identified by various studies, but how this network regulates the transitions among the E, E/M, and M phenotypes remains controversial. Two major mathematical models - ternary chimera switch (TCS) and cascading bistable switches (CBS) - that both focus on the miR-34/SNAIL/miR-200/ZEB1 network, have been proposed to elucidate the EMT dynamics, but a detailed analysis of how well either or both of these two models can capture recent experimental observations about EMT dynamics remains to be done. RESULTS: Here, via an integrated experimental and theoretical approach, we first show that both these two models can be used to understand the two-step transition of EMT - E→E/M→M, the different responses of SNAIL and ZEB1 to exogenous TGF-ß and the irreversibility of complete EMT. Next, we present new experimental results that tend to discriminate between these two models. We show that ZEB1 is present at intermediate levels in the hybrid E/M H1975 cells, and that in HMLE cells, overexpression of SNAIL is not sufficient to initiate EMT in the absence of ZEB1 and FOXC2. CONCLUSIONS: These experimental results argue in favor of the TCS model proposing that miR-200/ZEB1 behaves as a three-way decision-making switch enabling transitions among the E, hybrid E/M and M phenotypes.

4.
J R Soc Interface ; 13(118)2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-27170649

RESUMO

Metastasis can involve repeated cycles of epithelial-to-mesenchymal transition (EMT) and its reverse mesenchymal-to-epithelial transition. Cells can also undergo partial transitions to attain a hybrid epithelial/mesenchymal (E/M) phenotype that allows the migration of adhering cells to form a cluster of circulating tumour cells. These clusters can be apoptosis-resistant and possess an increased metastatic propensity as compared to the cells that undergo a complete EMT (mesenchymal cells). Hence, identifying the key players that can regulate the formation and maintenance of such clusters may inform anti-metastasis strategies. Here, we devise a mechanism-based theoretical model that links cell-cell communication via Notch-Delta-Jagged signalling with the regulation of EMT. We demonstrate that while both Notch-Delta and Notch-Jagged signalling can induce EMT in a population of cells, only Jagged-dominated Notch signalling, but not Delta-dominated signalling, can lead to the formation of clusters containing hybrid E/M cells. Our results offer possible mechanistic insights into the role of Jagged in tumour progression, and offer a framework to investigate the effects of other microenvironmental signals during metastasis.


Assuntos
Transição Epitelial-Mesenquimal , Proteína Jagged-1/metabolismo , Modelos Biológicos , Proteínas de Neoplasias/metabolismo , Neoplasias/metabolismo , Receptores Notch/metabolismo , Transdução de Sinais , Linhagem Celular Tumoral , Humanos , Metástase Neoplásica , Neoplasias/patologia
5.
Oncotarget ; 7(19): 27067-84, 2016 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-27008704

RESUMO

Epithelial-to-Mesenchymal Transition (EMT) and its reverse - Mesenchymal to Epithelial Transition (MET) - are hallmarks of cellular plasticity during embryonic development and cancer metastasis. During EMT, epithelial cells lose cell-cell adhesion and gain migratory and invasive traits either partially or completely, leading to a hybrid epithelial/mesenchymal (hybrid E/M) or a mesenchymal phenotype respectively. Mesenchymal cells move individually, but hybrid E/M cells migrate collectively as observed during gastrulation, wound healing, and the formation of tumor clusters detected as Circulating Tumor Cells (CTCs). Typically, the hybrid E/M phenotype has largely been tacitly assumed to be transient and 'metastable'. Here, we identify certain 'phenotypic stability factors' (PSFs) such as GRHL2 that couple to the core EMT decision-making circuit (miR-200/ZEB) and stabilize hybrid E/M phenotype. Further, we show that H1975 lung cancer cells can display a stable hybrid E/M phenotype and migrate collectively, a behavior that is impaired by knockdown of GRHL2 and another previously identified PSF - OVOL. In addition, our computational model predicts that GRHL2 can also associate hybrid E/M phenotype with high tumor-initiating potential, a prediction strengthened by the observation that the higher levels of these PSFs may be predictive of poor patient outcome. Finally, based on these specific examples, we deduce certain network motifs that can stabilize the hybrid E/M phenotype. Our results suggest that partial EMT, i.e. a hybrid E/M phenotype, need not be 'metastable', and strengthen the emerging notion that partial EMT, but not necessarily a complete EMT, is associated with aggressive tumor progression.


Assuntos
Células Epiteliais/metabolismo , Transição Epitelial-Mesenquimal/genética , Regulação Neoplásica da Expressão Gênica , Células-Tronco Mesenquimais/metabolismo , Linhagem Celular Tumoral , Movimento Celular/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Fenótipo , Interferência de RNA , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Homeobox 1 de Ligação a E-box em Dedo de Zinco/genética , Homeobox 1 de Ligação a E-box em Dedo de Zinco/metabolismo
6.
Proc Natl Acad Sci U S A ; 113(11): E1555-64, 2016 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-26929325

RESUMO

The immunoproteasome plays a key role in generation of HLA peptides for T cell-mediated immunity. Integrative genomic and proteomic analysis of non-small cell lung carcinoma (NSCLC) cell lines revealed significantly reduced expression of immunoproteasome components and their regulators associated with epithelial to mesenchymal transition. Low expression of immunoproteasome subunits in early stage NSCLC patients was associated with recurrence and metastasis. Depleted repertoire of HLA class I-bound peptides in mesenchymal cells deficient in immunoproteasome components was restored with either IFNγ or 5-aza-2'-deoxycytidine (5-aza-dC) treatment. Our findings point to a mechanism of immune evasion of cells with a mesenchymal phenotype and suggest a strategy to overcome immune evasion through induction of the immunoproteasome to increase the cellular repertoire of HLA class I-bound peptides.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/imunologia , Carcinoma Pulmonar de Células não Pequenas/mortalidade , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/mortalidade , Complexo de Endopeptidases do Proteassoma/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Antígenos CD/imunologia , Antígenos CD/metabolismo , Caderinas/imunologia , Caderinas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Intervalo Livre de Doença , Transição Epitelial-Mesenquimal/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Antígenos HLA/metabolismo , Humanos , Neoplasias Pulmonares/patologia , Masculino , Pessoa de Meia-Idade , Complexo de Endopeptidases do Proteassoma/imunologia , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/imunologia , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/imunologia
7.
Sci Rep ; 6: 21037, 2016 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-26876008

RESUMO

Regulatory gene circuit motifs play crucial roles in performing and maintaining vital cellular functions. Frequently, theoretical studies of gene circuits focus on steady-state behaviors and do not include time delays. In this study, the inclusion of time delays is shown to entirely change the time-dependent dynamics for even the simplest possible circuits with one and two gene elements with self and cross regulations. These elements can give rise to rich behaviors including periodic, quasi-periodic, weak chaotic, strong chaotic and intermittent dynamics. We introduce a special power-spectrum-based method to characterize and discriminate these dynamical modes quantitatively. Our simulation results suggest that, while a single negative feedback loop of either one- or two-gene element can only have periodic dynamics, the elements with two positive/negative feedback loops are the minimalist elements to have chaotic dynamics. These elements typically have one negative feedback loop that generates oscillations, and another unit that allows frequent switches among multiple steady states or between oscillatory and non-oscillatory dynamics. Possible dynamical features of several simple one- and two-gene elements are presented in details. Discussion is presented for possible roles of the chaotic behavior in the robustness of cellular functions and diseases, for example, in the context of cancer.


Assuntos
Redes Reguladoras de Genes , Modelos Teóricos , Sequências Reguladoras de Ácido Nucleico/genética , Simulação por Computador , Dinâmica não Linear
8.
Sci Rep ; 5: 17379, 2015 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-26627083

RESUMO

Cellular plasticity during cancer metastasis is a major clinical challenge. Two key cellular plasticity mechanisms -Epithelial-to-Mesenchymal Transition (EMT) and Mesenchymal-to-Amoeboid Transition (MAT) - have been carefully investigated individually, yet a comprehensive understanding of their interconnections remains elusive. Previously, we have modeled the dynamics of the core regulatory circuits for both EMT (miR-200/ZEB/miR-34/SNAIL) and MAT (Rac1/RhoA). We now extend our previous work to study the coupling between these two core circuits by considering the two microRNAs (miR-200 and miR-34) as external signals to the core MAT circuit. We show that this coupled circuit enables four different stable steady states (phenotypes) that correspond to hybrid epithelial/mesenchymal (E/M), mesenchymal (M), amoeboid (A) and hybrid amoeboid/mesenchymal (A/M) phenotypes. Our model recapitulates the metastasis-suppressing role of the microRNAs even in the presence of EMT-inducing signals like Hepatocyte Growth Factor (HGF). It also enables mapping the microRNA levels to the transitions among various cell migration phenotypes. Finally, it offers a mechanistic understanding for the observed phenotypic transitions among different cell migration phenotypes, specifically the Collective-to-Amoeboid Transition (CAT).


Assuntos
Movimento Celular , Transição Epitelial-Mesenquimal , Modelos Biológicos , Neoplasias/metabolismo , Animais , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Neoplasias/genética , Neoplasias/patologia , RNA Neoplásico/genética , RNA Neoplásico/metabolismo
9.
Sci Rep ; 5: 13538, 2015 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-26337223

RESUMO

Metastasis is the major cause for cancer patients' death, and despite all the recent advances in cancer research it is still mostly incurable. Understanding the mechanisms that are involved in the migration of the cells in a complex environment is a key step towards successful anti-metastatic treatment. Using experimental data-based modeling, we focus on the fundamentals of metastatic invasion: motility, invasion, proliferation and metabolism, and study how they may be combined to maximize the cancer's ability to metastasize. The modeled cells' performance is measured by the number of cells that succeed in migration in a maze, which mimics the extracellular environment. We show that co-existence of different cell clones in the tumor, as often found in experiments, optimizes the invasive ability in a frequently-changing environment. We study the role of metabolism and stimulation by growth factors, and show that metabolism plays a crucial role in the metastatic process and should therefore be targeted for successful treatment.


Assuntos
Matriz Extracelular/metabolismo , Modelos Biológicos , Invasividade Neoplásica , Neoplasias Experimentais/fisiopatologia , Neoplasias Experimentais/secundário , Microambiente Tumoral , Animais , Movimento Celular , Proliferação de Células , Simulação por Computador , Metabolismo Energético , Humanos , Proteínas de Neoplasias/metabolismo , Neoplasias Experimentais/patologia
10.
Oncotarget ; 6(28): 25161-74, 2015 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-26317796

RESUMO

Metastasis of carcinoma involves migration of tumor cells to distant organs and initiate secondary tumors. Migration requires a complete or partial Epithelial-to-Mesenchymal Transition (EMT), and tumor-initiation requires cells possessing stemness. Epithelial cells (E) undergoing a complete EMT to become mesenchymal (M) have been suggested to be more likely to possess stemness. However, recent studies suggest that stemness can also be associated with cells undergoing a partial EMT (hybrid E/M phenotype). Therefore, the correlation between EMT and stemness remains elusive. Here, using a theoretical framework that couples the core EMT and stemness modules (miR-200/ZEB and LIN28/let-7), we demonstrate that the positioning of 'stemness window' on the 'EMT axis' need not be universal; rather it can be fine-tuned. Particularly, we present OVOL as an example of a modulating factor that, due to its coupling with miR-200/ZEB/LIN28/let-7 circuit, fine-tunes the EMT-stemness interplay. Coupling OVOL can inhibit the stemness likelihood of M and elevate that of the hybrid E/M (partial EMT) phenotype, thereby pulling the 'stemness window' away from the M end of 'EMT axis'. Our results unify various apparently contradictory experimental findings regarding the interconnection between EMT and stemness, corroborate the emerging notion that partial EMT associates with stemness, and offer new testable predictions.


Assuntos
Transição Epitelial-Mesenquimal , Modelos Biológicos , Neoplasias/patologia , Células-Tronco Neoplásicas/patologia , Regulação Neoplásica da Expressão Gênica , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , NF-kappa B/genética , NF-kappa B/metabolismo , Neoplasias/genética , Neoplasias/metabolismo , Células-Tronco Neoplásicas/metabolismo , Fenótipo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Transdução de Sinais , Fatores de Transcrição da Família Snail , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Homeobox 1 de Ligação a E-box em Dedo de Zinco
11.
PLoS Comput Biol ; 11(8): e1004449, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26295587

RESUMO

Acetylcholine (ACh) is a regulator of neural excitability and one of the neurochemical substrates of sleep. Amongst the cellular effects induced by cholinergic modulation are a reduction in spike-frequency adaptation (SFA) and a shift in the phase response curve (PRC). We demonstrate in a biophysical model how changes in neural excitability and network structure interact to create three distinct functional regimes: localized asynchronous, traveling asynchronous, and traveling synchronous. Our results qualitatively match those observed experimentally. Cortical activity during slow wave sleep (SWS) differs from that during REM sleep or waking states. During SWS there are traveling patterns of activity in the cortex; in other states stationary patterns occur. Our model is a network composed of Hodgkin-Huxley type neurons with a M-current regulated by ACh. Regulation of ACh level can account for dynamical changes between functional regimes. Reduction of the magnitude of this current recreates the reduction in SFA the shift from a type 2 to a type 1 PRC observed in the presence of ACh. When SFA is minimal (in waking or REM sleep state, high ACh) patterns of activity are localized and easily pinned by network inhomogeneities. When SFA is present (decreasing ACh), traveling waves of activity naturally arise. A further decrease in ACh leads to a high degree of synchrony within traveling waves. We also show that the level of ACh determines how sensitive network activity is to synaptic heterogeneity. These regimes may have a profound functional significance as stationary patterns may play a role in the proper encoding of external input as memory and traveling waves could lead to synaptic regularization, giving unique insights into the role and significance of ACh in determining patterns of cortical activity and functional differences arising from the patterns.


Assuntos
Acetilcolina/metabolismo , Córtex Cerebral/fisiologia , Colinérgicos/metabolismo , Modelos Neurológicos , Potenciais de Ação/fisiologia , Biologia Computacional , Simulação por Computador , Humanos , Neurônios/metabolismo , Neurônios/fisiologia , Potássio/metabolismo , Sono/fisiologia
12.
Front Oncol ; 5: 155, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26258068

RESUMO

Transitions between epithelial and mesenchymal phenotypes - the epithelial to -mesenchymal transition (EMT) and its reverse the mesenchymal to epithelial transition (MET) - are hallmarks of cancer metastasis. While transitioning between the epithelial and mesenchymal phenotypes, cells can also attain a hybrid epithelial/mesenchymal (E/M) (i.e., partial or intermediate EMT) phenotype. Cells in this phenotype have mixed epithelial (e.g., adhesion) and mesenchymal (e.g., migration) properties, thereby allowing them to move collectively as clusters. If these clusters reach the bloodstream intact, they can give rise to clusters of circulating tumor cells (CTCs), as have often been seen experimentally. Here, we review the operating principles of the core regulatory network for EMT/MET that acts as a "three-way" switch giving rise to three distinct phenotypes - E, M and hybrid E/M - and present a theoretical framework that can elucidate the role of many other players in regulating epithelial plasticity. Furthermore, we highlight recent studies on partial EMT and its association with drug resistance and tumor-initiating potential; and discuss how cell-cell communication between cells in a partial EMT phenotype can enable the formation of clusters of CTCs. These clusters can be more apoptosis-resistant and have more tumor-initiating potential than singly moving CTCs with a wholly mesenchymal (complete EMT) phenotype. Also, more such clusters can be formed under inflammatory conditions that are often generated by various therapies. Finally, we discuss the multiple advantages that the partial EMT or hybrid E/M phenotype have as compared to a complete EMT phenotype and argue that these collectively migrating cells are the primary "bad actors" of metastasis.

14.
Proc Natl Acad Sci U S A ; 112(29): E3836-44, 2015 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-26153421

RESUMO

Angiogenesis is critical during development, wound repair, and cancer progression. During angiogenesis, some endothelial cells adopt a tip phenotype to lead the formation of new branching vessels; the trailing stalk cells proliferate to develop the vessel. Notch and VEGF signaling mediate the selection of these tip endothelial cells. However, how Jagged, a Notch ligand that is overexpressed in cancer, affects angiogenesis remains elusive. Here, by developing a theoretical framework for Notch-Delta-Jagged-VEGF signaling, we found that higher production levels of Jagged destabilizes the tip and stalk cell fates and can give rise to a hybrid tip/stalk phenotype that leads to poorly perfused and chaotic angiogenesis, which is a hallmark of cancer. Consistently, the signaling interactions that restrict Notch-Jagged signaling, such as Fringe, cis-inhibition, and increased production of Delta, stabilize tip and stalk fates and limit the existence of hybrid tip/stalk phenotype. Our results underline how overexpression of Jagged can transform physiological angiogenesis into pathological one.


Assuntos
Proteínas de Ligação ao Cálcio/metabolismo , Linhagem da Célula , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Proteínas de Membrana/metabolismo , Neoplasias/irrigação sanguínea , Neoplasias/patologia , Neovascularização Patológica/metabolismo , Neovascularização Fisiológica , Linhagem da Célula/efeitos dos fármacos , Humanos , Proteína Jagged-1 , Ligantes , Modelos Biológicos , Neoplasias/metabolismo , Neovascularização Fisiológica/efeitos dos fármacos , Receptores Notch/metabolismo , Proteínas Serrate-Jagged , Transdução de Sinais/efeitos dos fármacos , Fator A de Crescimento do Endotélio Vascular/farmacologia
15.
Oncotarget ; 6(17): 15436-48, 2015 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-25944618

RESUMO

Metastasis involves multiple cycles of Epithelial-to-Mesenchymal Transition (EMT) and its reverse-MET. Cells can also undergo partial transitions to attain a hybrid epithelial/mesenchymal (E/M) phenotype that has maximum cellular plasticity and allows migration of Circulating Tumor Cells (CTCs) as a cluster. Hence, deciphering the molecular players helping to maintain the hybrid E/M phenotype may inform anti-metastasis strategies. Here, we devised a mechanism-based mathematical model to couple the transcription factor OVOL with the core EMT regulatory network miR-200/ZEB that acts as a three-way switch between the E, E/M and M phenotypes. We show that OVOL can modulate cellular plasticity in multiple ways - restricting EMT, driving MET, expanding the existence of the hybrid E/M phenotype and turning both EMT and MET into two-step processes. Our theoretical framework explains the differences between the observed effects of OVOL in breast and prostate cancer, and provides a platform for investigating additional signals during metastasis.


Assuntos
Proteínas de Ligação a DNA/genética , Transição Epitelial-Mesenquimal/fisiologia , Proteínas de Homeodomínio/genética , MicroRNAs/genética , Neoplasias da Próstata/patologia , Fatores de Transcrição/genética , Proteínas de Ligação a DNA/metabolismo , Humanos , Masculino , Modelos Teóricos , Metástase Neoplásica/patologia , Biologia de Sistemas/métodos , Fatores de Transcrição/metabolismo , Homeobox 1 de Ligação a E-box em Dedo de Zinco
16.
PLoS One ; 10(5): e0127012, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26010952

RESUMO

BACKGROUND: Fibromyalgia Syndrome (FMS) is a persistent and debilitating disorder estimated to impair the quality of life of 2-4% of the population, with 9:1 female-to-male incidence ratio. FMS is an important representative example of central nervous system sensitization and is associated with abnormal brain activity. Key symptoms include chronic widespread pain, allodynia and diffuse tenderness, along with fatigue and sleep disturbance. The syndrome is still elusive and refractory. The goal of this study was to evaluate the effect of hyperbaric oxygen therapy (HBOT) on symptoms and brain activity in FMS. METHODS AND FINDINGS: A prospective, active control, crossover clinical trial. Patients were randomly assigned to treated and crossover groups: The treated group patients were evaluated at baseline and after HBOT. Patients in the crossover-control group were evaluated three times: baseline, after a control period of no treatment, and after HBOT. Evaluations consisted of physical examination, including tender point count and pain threshold, extensive evaluation of quality of life, and single photon emission computed tomography (SPECT) imaging for evaluation of brain activity. The HBOT protocol comprised 40 sessions, 5 days/week, 90 minutes, 100% oxygen at 2ATA. Sixty female patients were included, aged 21-67 years and diagnosed with FMS at least 2 years earlier. HBOT in both groups led to significant amelioration of all FMS symptoms, with significant improvement in life quality. Analysis of SPECT imaging revealed rectification of the abnormal brain activity: decrease of the hyperactivity mainly in the posterior region and elevation of the reduced activity mainly in frontal areas. No improvement in any of the parameters was observed following the control period. CONCLUSIONS: The study provides evidence that HBOT can improve the symptoms and life quality of FMS patients. Moreover, it shows that HBOT can induce neuroplasticity and significantly rectify abnormal brain activity in pain related areas of FMS patients. TRIAL REGISTRATION: ClinicalTrials.gov NCT01827683.


Assuntos
Fibromialgia/terapia , Oxigênio/uso terapêutico , Encéfalo/efeitos dos fármacos , Estudos Cross-Over , Humanos , Oxigenoterapia Hiperbárica/métodos , Pessoa de Meia-Idade , Estudos Prospectivos , Qualidade de Vida , Tomografia Computadorizada de Emissão de Fóton Único/métodos
17.
Sci Rep ; 5: 10622, 2015 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-26013062

RESUMO

Metastasizing tumor cells migrate through the surrounding tissue and extracellular matrix toward the blood vessels, in order to colonize distant organs. They typically move in a dense environment, filled with other cells. In this work we study cooperative effects between neighboring cells of different types, migrating in a maze-like environment with directional cue. Using a computerized model, we measure the percentage of cells that arrive to the defined target, for different mesenchymal/amoeboid ratios. Wall degradation of mesenchymal cells, as well as motility of both types of cells, are coupled to metabolic energy-like resource level. We find that indirect cooperation emerges in mid-level energy, as mesenchymal cells create paths that are used by amoeboids. Therefore, we expect to see a small population of mesenchymals kept in a mostly-amoeboid population. We also study different forms of direct interaction between the cells, and show that energy-dependent interaction strength is optimal for the migration of both mesenchymals and amoeboids. The obtained characteristics of cellular cluster size are in agreement with experimental results. We therefore predict that hybrid states, e.g. epithelial-mesenchymal, should be utilized as a stress-response mechanism.


Assuntos
Modelos Teóricos , Análise por Conglomerados , Transição Epitelial-Mesenquimal , Matriz Extracelular/metabolismo , Matriz Extracelular/patologia , Humanos , Invasividade Neoplásica , Neoplasias/patologia , Termodinâmica
18.
J Immunol ; 194(11): 5272-81, 2015 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-25917091

RESUMO

In this work, we studied autoantibody repertoires and Ig isotypes in 71 mothers and their 104 healthy newborns (including twins and triplets delivered term or premature). Newborns receive maternal IgG Abs via the placenta before birth, but developing infants must produce their own IgM and IgA Abs. We used an Ag microarray analysis to detect binding to a selection of 295 self-Ags, compared with 27 standard foreign Ags. The magnitude of binding to specific self-Ags was found to be not less than that to the foreign Ags. As expected, each newborn shared with its mother a similar IgG repertoire-manifest as early as the 24th week of gestation. IgM and IgA autoantibody repertoires in cord sera were highly correlated among the newborns and differed from their mothers' repertoires; the latter differed in sera and milk. The autoantibodies bound to self-Ags known to be associated with tumors and to autoimmune diseases. Thus, autoantibody repertoires in healthy humans--the immunological homunculus--arise congenitally, differ in maternal milk and sera, and mark the potential of the immune system to attack tumors, beneficially, or healthy tissues, harmfully; regulation of the tissue site, the dynamics, and the response phenotype of homuncular autoimmunity very likely affects health.


Assuntos
Anticorpos Antineoplásicos/sangue , Autoanticorpos/sangue , Colostro/imunologia , Sangue Fetal/imunologia , Isotipos de Imunoglobulinas/sangue , Anticorpos Antineoplásicos/imunologia , Autoanticorpos/imunologia , Autoantígenos/imunologia , Doenças Autoimunes/imunologia , Humanos , Imunoglobulina A/sangue , Imunoglobulina A/imunologia , Imunoglobulina G/sangue , Imunoglobulina G/imunologia , Isotipos de Imunoglobulinas/imunologia , Imunoglobulina M/sangue , Imunoglobulina M/imunologia , Recém-Nascido , Leite Humano/imunologia , Neoplasias/imunologia
19.
Front Oncol ; 5: 37, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25785244

RESUMO

Neuroendocrine differentiation (NED) marks a structural and functional feature of certain cancers, including prostate cancer (PCa), whereby the malignant tissue contains a significant proportion of cells displaying neuronal, endocrine, or mixed features. NED cells produce, and can secrete, a cocktail of mediators commonly encountered in the nervous system, which may stimulate and coordinate cancer growth. In PCa, NED appears during advanced stages, subsequent to treatment, and accompanies treatment resistance and poor prognosis. However, the term "neuroendocrine" in this context is intrinsically vague. This article seeks to provide a framework on which a unified view of NED might emerge. First, we review the mutually beneficial interplay between PCa and neural structures, mainly supported by cell biology experiments and neurological conditions. Next, we address the correlations between PCa and neural functions, as described in the literature. Based upon the integration of clinical and basic observations, we suggest that it is legitimate to seek for true neural differentiation, or neuromimicry, in cancer progression, most notably in PCa cells exhibiting what is commonly described as NED.

20.
Proc Natl Acad Sci U S A ; 112(5): E402-9, 2015 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-25605936

RESUMO

Notch signaling pathway mediates cell-fate determination during embryonic development, wound healing, and tumorigenesis. This pathway is activated when the ligand Delta or the ligand Jagged of one cell interacts with the Notch receptor of its neighboring cell, releasing the Notch Intracellular Domain (NICD) that activates many downstream target genes. NICD affects ligand production asymmetrically--it represses Delta, but activates Jagged. Although the dynamical role of Notch-Jagged signaling remains elusive, it is widely recognized that Notch-Delta signaling behaves as an intercellular toggle switch, giving rise to two distinct fates that neighboring cells adopt--Sender (high ligand, low receptor) and Receiver (low ligand, high receptor). Here, we devise a specific theoretical framework that incorporates both Delta and Jagged in Notch signaling circuit to explore the functional role of Jagged in cell-fate determination. We find that the asymmetric effect of NICD renders the circuit to behave as a three-way switch, giving rise to an additional state--a hybrid Sender/Receiver (medium ligand, medium receptor). This phenotype allows neighboring cells to both send and receive signals, thereby attaining similar fates. We also show that due to the asymmetric effect of the glycosyltransferase Fringe, different outcomes are generated depending on which ligand is dominant: Delta-mediated signaling drives neighboring cells to have an opposite fate; Jagged-mediated signaling drives the cell to maintain a similar fate to that of its neighbor. We elucidate the role of Jagged in cell-fate determination and discuss its possible implications in understanding tumor-stroma cross-talk, which frequently entails Notch-Jagged communication.


Assuntos
Receptores Notch/metabolismo , Transdução de Sinais , Linhagem da Célula , Fenótipo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA