Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(9)2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38732259

RESUMO

Neuroinflammation, a hallmark of various central nervous system disorders, is often associated with oxidative stress and neuronal or oligodendrocyte cell death. It is therefore very interesting to target neuroinflammation pharmacologically. One therapeutic option is the use of nutraceuticals, particularly apigenin. Apigenin is present in plants: vegetables (parsley, celery, onions), fruits (oranges), herbs (chamomile, thyme, oregano, basil), and some beverages (tea, beer, and wine). This review explores the potential of apigenin as an anti-inflammatory agent across diverse neurological conditions (multiple sclerosis, Parkinson's disease, Alzheimer's disease), cancer, cardiovascular diseases, cognitive and memory disorders, and toxicity related to trace metals and other chemicals. Drawing upon major studies, we summarize apigenin's multifaceted effects and underlying mechanisms in neuroinflammation. Our review underscores apigenin's therapeutic promise and calls for further investigation into its clinical applications.


Assuntos
Anti-Inflamatórios , Apigenina , Doenças Neuroinflamatórias , Apigenina/farmacologia , Apigenina/uso terapêutico , Humanos , Animais , Doenças Neuroinflamatórias/tratamento farmacológico , Doenças Neuroinflamatórias/metabolismo , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Estresse Oxidativo/efeitos dos fármacos , Inflamação/tratamento farmacológico , Inflamação/metabolismo
2.
Neuropeptides ; 98: 102326, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36791581

RESUMO

The regulatory peptide 26RFa (QRFP) is involved in the control of glucose homeostasis at the periphery by acting as an incretin, and in the brain by mediating the central antihyperglycemic effect of insulin, indicating the occurrence of a close relationship between 26RFa and insulin in the regulation of glucose metabolism. Here, we investigated the physiological interactions between 26RFa and insulin in two complementary models i.e. a model of obese/hyperglycemic mice deficient for 26RFa and a model of diabetic mice deficient for insulin. For this, transgenic 26RFa-deficient mice were made obese and chronically hyperglycemic by a 3-month high fat diet (HFD) and second group of mice was made diabetic by destruction of the ß cells of the pancreatic islets using a single injection of streptozotocin. Our data reveal that 26RFa deficiency does not impact significantly the "glycemic" phenotype of the HFD mice. The pancreatic islets, liver, white adipose tissue masses are not altered by the lack of 26RFa production but the brown adipose tissue (BAT) weight is significantly increased in these animals. In diabetic insulin-deficient mice, the injection of 26RFa does not exhibit any beneficial effect on the impaired glucose homeostasis characterizing this model. Finally, we show that streptozotocin diabetic mice display lowered plasma 26RFa levels as compared to untreated mice, whereas the expression of the peptide in the duodenum is not affected. Taken together, the present results indicate that dysregulation of glucose homeostasis in obese/hyperglycemic mice is not aggravated by the absence of 26RFa that may be compensated by the increase of BAT mass. In diabetic insulin-deficient mice, the antihypergycemic effect of 26RFa is totally blunted probably as a result of the impaired insulin production characterizing this model, avoiding therefore the action of the peptide.


Assuntos
Diabetes Mellitus Experimental , Resistência à Insulina , Camundongos , Animais , Insulina/metabolismo , Estreptozocina , Camundongos Obesos , Peptídeos/farmacologia , Obesidade/metabolismo , Glucose/metabolismo , Homeostase/fisiologia , Dieta Hiperlipídica , Camundongos Endogâmicos C57BL
3.
Antioxidants (Basel) ; 12(1)2023 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-36671029

RESUMO

Oxidative stress and inflammation are the key players in neuroinflammation, in which microglia dysfunction plays a central role. Previous studies suggest that argan oil attenuates oxidative stress, inflammation, and peroxisome dysfunction in mouse brains. In this study, we explored the effects of two major argan oil (AO) phytosterols, Schottenol (Schot) and Spinasterol (Spina), on oxidative stress, inflammation, and peroxisomal dysfunction in two murine microglial BV-2 cell lines, wild-ype (Wt) and Acyl-CoA oxidase 1 (Acox1)-deficient cells challenged with LPS treatment. Herein, we used an MTT test to reveal no cytotoxicity for both phytosterols with concentrations up to 5 µM. In the LPS-activated microglial cells, cotreatment with each of these phytosterols caused a significant decrease in intracellular ROS production and the NO level released in the culture medium. Additionally, Schot and Spina were able to attenuate the LPS-dependent strong induction of Il-1ß and Tnf-α mRNA levels, as well as the iNos gene and protein expression in both Wt and Acox1-/- microglial cells. On the other hand, LPS treatment impacted both the peroxisomal antioxidant capacity and the fatty acid oxidation pathway. However, both Schot and Spina treatments enhanced ACOX1 activity in the Wt BV-2 cells and normalized the catalase activity in both Wt and Acox1-/- microglial cells. These data suggest that Schot and Spina can protect cells from oxidative stress and inflammation and their harmful consequences for peroxisomal functions and the homeostasis of microglial cells. Collectively, our work provides a compelling argument for the protective mechanisms of two major argan oil phytosterols against LPS-induced brain neuroinflammation.

4.
Antioxidants (Basel) ; 11(8)2022 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-35892629

RESUMO

The nuclear factor erythroid 2-related factor 2 (NRF2) was originally described as a master regulator of antioxidant cellular response, but in the time since, numerous important biological functions linked to cell survival, cellular detoxification, metabolism, autophagy, proteostasis, inflammation, immunity, and differentiation have been attributed to this pleiotropic transcription factor that regulates hundreds of genes. After 40 years of in-depth research and key discoveries, NRF2 is now at the center of a vast regulatory network, revealing NRF2 signalling as increasingly complex. It is widely recognized that reactive oxygen species (ROS) play a key role in human physiological and pathological processes such as ageing, obesity, diabetes, cancer, and neurodegenerative diseases. The high oxygen consumption associated with high levels of free iron and oxidizable unsaturated lipids make the brain particularly vulnerable to oxidative stress. A good stability of NRF2 activity is thus crucial to maintain the redox balance and therefore brain homeostasis. In this review, we have gathered recent data about the contribution of the NRF2 pathway in the healthy brain as well as during metabolic diseases, cancer, ageing, and ageing-related neurodegenerative diseases. We also discuss promising therapeutic strategies and the need for better understanding of cell-type-specific functions of NRF2 in these different fields.

5.
Neuroendocrinology ; 112(11): 1104-1115, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35093951

RESUMO

INTRODUCTION: The aim of the study is to investigate whether acute or chronic central administration of the hypothalamic neuropeptide 26RFa may ameliorate the glycemic control of obese/diabetic mice. METHODS: Mice were treated for 4 months with a high-fat (HF) diet and received a single i.c.v. injection of 26RFa (3 µg) or a chronic i.c.v. administration of the peptide during 28 days via osmotic minipumps (25 µg/day). i.p. and oral glucose (GLU) tolerance tests, insulin (INS) tolerance test, glucose-stimulated insulin secretion (GSIS), food/water intake, horizontal/vertical activity, energy expenditure, meal pattern, and whole-body composition were monitored. In addition, 26RFa and GPR103 mRNA expressions as well as plasma 26RFa levels were evaluated by RT-QPCR and radioimmunoassay. RESULTS: Acute administration of 26RFa in HF mice induced a robust antihyperglycemic effect by enhancing INS secretion, whereas chronic administration of the neuropeptide is unable to improve glucose homeostasis in these obese/diabetogenic conditions. By contrast, chronic 26RFa treatment induced an increase of the body weight accompanied with an enhanced food intake and a decreased energy expenditure. Finally, we show that the HF diet does not alter the hypothalamic expression of the 26RFa/GPR103 neuropeptidergic system nor the levels of circulating 26RFa. CONCLUSION: Our data indicate that the central beneficial effect of 26RFa on glucose homeostasis, by potentiating GSIS, is preserved in HF mice. However, chronic administration of the neuropeptide is unable to balance glycemia in these pathophysiological conditions, suggesting that the hypothalamic 26RFa/GPR103 neuropeptidergic system mainly affects short-term regulation of glucose metabolism.


Assuntos
Diabetes Mellitus Experimental , Insulinas , Neuropeptídeos , Animais , Camundongos , Camundongos Obesos , Neuropeptídeos/metabolismo , Homeostase , Peptídeos/farmacologia , Glucose/metabolismo , Obesidade/metabolismo , RNA Mensageiro , Hipoglicemiantes/farmacologia , Insulinas/farmacologia
6.
Front Nutr ; 5: 125, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30619871

RESUMO

High variability exists in individual susceptibility to develop overweight in an obesogenic environment and the biological underpinnings of this heterogeneity are poorly understood. In this brief report, we show in mice that the vulnerability to diet-induced obesity is associated with low level of polysialic acid-neural cell adhesion molecule (PSA-NCAM), a factor of neural plasticity, in the hypothalamus. As we previously shown that reduction of hypothalamic PSA-NCAM is sufficient to alter energy homeostasis and promote fat storage under hypercaloric pressure, inter-individual variability in hypothalamic PSA-NCAM might account for the vulnerability to diet-induced obesity. These data support the concept that reduced plasticity in brain circuits that control appetite, metabolism and body weight confers risk for eating disorders and obesity.

7.
Front Neurosci ; 11: 245, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28515677

RESUMO

The polysialic acid (PSA) is a large glycan that is added to cell-surface proteins during their post-translational maturation. In the brain, PSA modulates distances between cells and controls the plasticity of the nervous system. In the hypothalamus, PSA is involved in many aspects of energy balance including food intake, osmoregulation, circadian rhythm, and sleep. In this work, we investigated the role of hypothalamic PSA in the regulation of plasma cholesterol levels and distribution. We report that HFD consumption in mice rapidly increased plasma cholesterol, including VLDL, LDL, and HDL-cholesterol. Although plasma VLDL-cholesterol was normalized within the first week, LDL and HDL were still elevated after 2 weeks upon HFD. Importantly, we found that hypothalamic PSA removal aggravated LDL elevation and reduced HDL levels upon HFD. These results indicate that hypothalamic PSA controls plasma lipoprotein profile by circumventing the rise of LDL-to-HDL cholesterol ratio in plasma during overfeeding. Although mechanisms by which hypothalamic PSA controls plasma cholesterol homeostasis remains to be elucidated, these findings also suggest that low level of hypothalamic PSA might be a risk factor for dyslipidemia and cardiovascular diseases.

8.
J Neurosci ; 32(35): 11970-9, 2012 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-22933782

RESUMO

Hormones such as leptin and ghrelin can rapidly rewire hypothalamic feeding circuits when injected into rodent brains. These experimental manipulations suggest that the hypothalamus might reorganize continually in adulthood to integrate the metabolic status of the whole body. In this study, we examined whether hypothalamic plasticity occurs in naive animals according to their nutritional conditions. For this purpose, we fed mice with a short-term high-fat diet (HFD) and assessed brain remodeling through its molecular and functional signature. We found that HFD for 3 d rewired the hypothalamic arcuate nucleus, increasing the anorexigenic tone due to activated pro-opiomelanocortin (POMC) neurons. We identified the polysialic acid molecule (PSA) as a mediator of the diet-induced rewiring of arcuate POMC. Moreover, local pharmacological inhibition and genetic disruption of the PSA signaling limits the behavioral and metabolic adaptation to HFD, as treated mice failed to normalize energy intake and showed increased body weight gain after the HFD challenge. Altogether, these findings reveal the existence of physiological hypothalamic rewiring involved in the homeostatic response to dietary fat. Furthermore, defects in the hypothalamic plasticity-driven adaptive response to HFD are obesogenic and could be involved in the development of metabolic diseases.


Assuntos
Adaptação Fisiológica/fisiologia , Núcleo Arqueado do Hipotálamo/fisiologia , Gorduras na Dieta/administração & dosagem , Pró-Opiomelanocortina/fisiologia , Ácidos Siálicos/fisiologia , Animais , Ingestão de Energia/genética , Metabolismo Energético/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Rede Nervosa/fisiologia , Plasticidade Neuronal/genética , Técnicas de Cultura de Órgãos , Pró-Opiomelanocortina/metabolismo , Sialiltransferases/deficiência , Sialiltransferases/genética , Transdução de Sinais/genética , Aumento de Peso/genética
9.
Diabetes ; 61(2): 310-20, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22210322

RESUMO

Both acute and chronic apelin treatment have been shown to improve insulin sensitivity in mice. However, the effects of apelin on fatty acid oxidation (FAO) during obesity-related insulin resistance have not yet been addressed. Thus, the aim of the current study was to determine the impact of chronic treatment on lipid use, especially in skeletal muscles. High-fat diet (HFD)-induced obese and insulin-resistant mice treated by an apelin injection (0.1 µmol/kg/day i.p.) during 4 weeks had decreased fat mass, glycemia, and plasma levels of triglycerides and were protected from hyperinsulinemia compared with HFD PBS-treated mice. Indirect calorimetry experiments showed that apelin-treated mice had a better use of lipids. The complete FAO, the oxidative capacity, and mitochondrial biogenesis were increased in soleus of apelin-treated mice. The action of apelin was AMP-activated protein kinase (AMPK) dependent since all the effects studied were abrogated in HFD apelin-treated mice with muscle-specific inactive AMPK. Finally, the apelin-stimulated improvement of oxidative capacity led to decreased levels of acylcarnitines and enhanced insulin-stimulated glucose uptake in soleus. Thus, by promoting complete lipid use in muscle of insulin-resistant mice through mitochondrial biogenesis and tighter matching between FAO and the tricarboxylic acid cycle, apelin treatment could contribute to insulin sensitivity improvement.


Assuntos
Ácidos Graxos/metabolismo , Resistência à Insulina , Peptídeos e Proteínas de Sinalização Intercelular/farmacologia , Mitocôndrias Musculares/metabolismo , Músculo Esquelético/metabolismo , Proteínas Quinases Ativadas por AMP/fisiologia , Adipocinas , Animais , Apelina , Proteínas Quinases Dependentes de AMP Cíclico/fisiologia , Dieta Hiperlipídica , Metabolismo Energético/efeitos dos fármacos , Metabolismo dos Lipídeos/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Oxirredução
10.
Diabetes ; 58(7): 1544-9, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19389827

RESUMO

OBJECTIVE: Insulin plays an important role in the hypothalamic control of energy balance, especially by reducing food intake. Emerging data point to a pivotal role of reactive oxygen species (ROS) in energy homeostasis regulation, but their involvement in the anorexigenic effect of insulin is unknown. Furthermore, ROS signal derived from NADPH oxidase activation is required for physiological insulin effects in peripheral cells. In this study, we investigated the involvement of hypothalamic ROS and NADPH oxidase in the feeding behavior regulation by insulin. RESEARCH DESIGN AND METHODS: We first measured hypothalamic ROS levels and food intake after acute intracerebroventricular injection of insulin. Second, effect of pretreatment with a ROS scavenger or an NADPH oxidase inhibitor was evaluated. Third, we examined the consequences of two nutritional conditions of central insulin unresponsiveness (fasting or short-term high-fat diet) on the ability of insulin to modify ROS level and food intake. RESULTS: In normal chow-fed mice, insulin inhibited food intake. At the same dose, insulin rapidly and transiently increased hypothalamic ROS levels by 36%. The pharmacological suppression of this insulin-stimulated ROS elevation, either by antioxidant or by an NADPH oxidase inhibitor, abolished the anorexigenic effect of insulin. Finally, in fasted and short-term high-fat diet-fed mice, insulin did not promote elevation of ROS level and food intake inhibition, likely because of an increase in hypothalamic diet-induced antioxidant defense systems. CONCLUSIONS: A hypothalamic ROS increase through NADPH oxidase is required for the anorexigenic effect of insulin.


Assuntos
Ventrículos Cerebrais/fisiologia , Ingestão de Energia/fisiologia , Hipotálamo/fisiologia , Insulina/farmacologia , NADPH Oxidases/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Animais , Glicemia/metabolismo , Ventrículos Cerebrais/efeitos dos fármacos , Ingestão de Energia/efeitos dos fármacos , Metabolismo Energético , Glutationa/metabolismo , Homeostase/efeitos dos fármacos , Homeostase/fisiologia , Insulina/administração & dosagem , Insulina/sangue , Masculino , Camundongos , Camundongos Endogâmicos C57BL
11.
J Neurosci Methods ; 178(2): 301-7, 2009 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-19150628

RESUMO

Different roles of mitochondria in brain function according to brain area are now clearly emerging. Unfortunately, no technique is yet described to investigate mitochondria function in specific brain area. In this article, we provide a complete description of a procedure to analyze the mitochondrial function in rat brain biopsies. Our two-step method consists in a saponin permeabilization of fresh brain tissues in combination with high-resolution respirometry to acquire the integrated respiratory rate of the biopsy. In the first part, we carefully checked the mitochondria integrity after permeabilization, defined experimental conditions to determine the respiratory control ratio (RCR), and tested the reproducibility of this technique. In the second part, we applied our method to test its sensitivity. As a result, this method was sensitive enough to reveal region specificity of mitochondrial respiration within the brain. Moreover, we detected physiopathological modulation of the mitochondrial function in the hypothalamus. Thus this new technique that takes all cell types into account, and does not discard or select any mitochondria sub-population is very suitable to analyze the integrated mitochondrial respiration of brain biopsies.


Assuntos
Técnicas de Laboratório Clínico , Hipotálamo/fisiologia , Mitocôndrias/fisiologia , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/fisiologia , Respiração Celular , Jejum/fisiologia , Hiperglicemia/fisiopatologia , Hipotálamo/efeitos dos fármacos , Hipotálamo/ultraestrutura , Masculino , Microscopia Eletrônica , Mitocôndrias/ultraestrutura , Consumo de Oxigênio , Permeabilidade/efeitos dos fármacos , Fosforilação , Ratos , Ratos Wistar , Ratos Zucker , Saponinas/farmacologia , Estresse Fisiológico
12.
Int J Oncol ; 26(4): 1069-77, 2005 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15754004

RESUMO

Non-steroidal anti-inflammatory drugs (NSAIDs) have shown chemopreventive properties in colorectal cancer, involving both cyclooxygenase (COX)-dependent and -independent mechanisms. Apart from their selectivity for COX isoenzymes, NSAIDs differ in their acidic character which supports ability to uncouple oxidative phosphorylation. To assess the possible contribution of uncoupling to their antineoplastic properties, we compared the effect of sulindac sulfide (SS), an acidic NSAID and NS-398, a non-acidic tricyclic, on mitochondrial function and apoptosis in colorectal cancer cell lines (HT29, Caco-2, HCT15 and HCT116). Although cell lines displayed a different COX status, SS and NS-398 caused growth arrest in a dose-related manner. High dose (10(-4)M) of SS but not of NS-398, increased the percentage of subG1 cell population while reducing mitochondrial transmembrane potential (DeltaPsim). Cyclosporin A (CsA, 1 microM) prevented collapse of DeltaPsim induced by 10(-4)M SS but not by 7.5 microM FCCP used as a protonophoric control. SS and FCCP increased the cytosolic release of Smac/DIABLO which was differently affected by CsA pretreatment depending on the uncoupler. Finally, 7.5 microM FCCP failed to induce apoptosis whereas CsA prevented apoptosis induced by SS from 16% in HCT15 to 41% in HCT116. The present study shows that despite the ability of sulindac sulfide to behave as a protonophoric uncoupler, CsA-sensitive opening of mitochondrial permeability transition pore contributes little to its pro-apoptotic effect in colorectal cancer cells.


Assuntos
Anti-Inflamatórios não Esteroides/farmacologia , Apoptose , Proteínas de Transporte/metabolismo , Neoplasias Colorretais/patologia , Proteínas Mitocondriais/metabolismo , Sulindaco/análogos & derivados , Sulindaco/farmacologia , Proteínas Reguladoras de Apoptose , Quimioprevenção , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/fisiologia , Nitrobenzenos/farmacologia , Oxirredução , Fosforilação , Sulfonamidas/farmacologia , Células Tumorais Cultivadas , Desacopladores/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA