Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Environ Toxicol Chem ; 42(10): 2193-2200, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37401854

RESUMO

The potential impact of concrete mixtures containing steel slag (SS) as a partial replacement of natural aggregates (NA) on the terrestrial ecosystem was assessed using a battery of plant-based bioassays. Leaching tests were conducted on four concrete mixtures and one mixture containing only NA (reference concrete). Leachates were tested for phytotoxicity using seeds of Lepidium sativum, Cucumis sativus, and Allium cepa. Emerging seedlings of L. sativum and A. cepa were used to assess DNA damage (comet test). The genotoxicity of the leachates was also analyzed with bulbs of A. cepa using the comet and chromosome aberration tests. None of the samples caused phytotoxic effects. On the contrary, almost all the samples supported the seedlings; and two leachates, one from the SS-containing concrete and the other from the reference concrete, promoted the growth of C. sativus and A. cepa. The DNA damage of L. sativum and A. cepa seedlings was significantly increased only by the reference concrete sample. In contrast, the DNA damage in A. cepa bulbs was significantly enhanced by the reference concrete but also by that of a concrete sample with SS. Furthermore, all leachates caused an increase in chromosomal aberrations in A. cepa bulbs. Despite some genotoxic effects of the concrete on plant cells, the partial replacement of SS does not seem to make the concrete more hazardous than the reference concrete, suggesting the potential use of SS as a reliable recycled material. Environ Toxicol Chem 2023;42:2193-2200. © 2023 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.

2.
Bull Environ Contam Toxicol ; 111(1): 3, 2023 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-37341817

RESUMO

Steel slags, the main waste product from the steel industry, may have several reuse possibilities. Among others, building applications represent a crucial field. However, the potential impact of harmful substances on the environment should be assessed. The aim of this study was to assess the phytotoxicity of steel slags (SS) and concrete mixtures cast with a partial replacement of SS (CSS). Leaching tests were carried out on four SS and four CSS according to EN 12457-2 and UNI EN 15863, respectively. Each leachate was assayed using root elongation tests on 30 seeds of Allium cepa, Cucumis sativus, and Lepidium sativum, respectively, and on 12 bulbs of A. cepa. The latter also allowed the analysis of other macroscopic parameters of toxicity (turgidity, consistency, colour change and root tip shape) and the evaluation of the mitotic index on 20,000 root tip cells per sample. None of the samples induced phytotoxic effects on the organisms tested: all samples supported seedlings emergence, verified by root elongation comparable to, or even greater than, that of the negative controls, and did not affect cell division, as evidenced by mitotic index values. The absence of phytotoxicity demonstrated by the leachates allows SS and SS-derived concrete to be considered as reliable materials suitable for use in civil constructions or in other engineering applications, with economic and environmental advantages, such as the reduction of the final disposal in landfills as well as the consumption of natural resources.


Assuntos
Resíduos Industriais , Aço , Resíduos Industriais/análise , Sementes/química , Materiais de Construção/toxicidade
3.
Environ Mol Mutagen ; 62(1): 66-77, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32926468

RESUMO

Steel slags (SS) are the major waste produced by iron and steel industry. Slags may be reused as recycled materials, instead of natural aggregates (NA), to reduce the final disposal in a landfill and the exploitation of raw materials. However, the reuse of SS may generate a potential release of toxic compounds for the environment and humans. The purpose of this study was to evaluate the toxicity and genotoxicity of SS, in comparison with NA, by using an integrated chemical-biological approach to enable their safe reuse in engineering applications. Leaching solutions from samples were obtained by using short-term leaching tests (CEN EN 12457-2, 2004) usually adopted for the evaluation of waste recovery and final disposal. Chemical analyses of leachates were performed according to the Italian legislation on waste recovery (Ministerial Decree 186/2006). The leaching solutions were assayed by using toxicity test on Daphnia magna. Moreover, mutagenicity/genotoxicity tests on Salmonella typhimurium, Allium cepa, and human leucocytes and fibroblasts were carried out. The releases of pollutants from all samples were within the limits of the Italian legislation for waste recovery. Despite the effects that SS and NA could have on different cells, in terms of toxicity and genotoxicity, globally, SS do not seem to be any more hazardous than NA. This ecotoxicological assessment, never studied before, is important for promoting further studies that may support the decision-making process regarding the use of such types of materials.


Assuntos
Poluentes Ambientais/toxicidade , Resíduos Perigosos/efeitos adversos , Aço/toxicidade , Linhagem Celular , Ecotoxicologia/métodos , Fibroblastos/efeitos dos fármacos , Humanos , Leucócitos/efeitos dos fármacos , Masculino , Testes de Mutagenicidade/métodos , Testes de Toxicidade/métodos , Instalações de Eliminação de Resíduos
4.
Environ Sci Pollut Res Int ; 24(17): 14834-14846, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28477251

RESUMO

This work supports, for the first time, the integrated management of waste materials arising from industrial processes (fly ash from municipal solid waste incineration and coal fly ash), agriculture (rice husk ash), and domestic activities (ash from wood biomass burning in domestic stoves). The main novelty of the paper is the reuse of wood pellet ash, an underestimated environmental problem, by the application of a new technology (COSMOS-RICE) that already involves the reuse of fly ashes from industrial and agricultural origins. The reaction mechanism involves carbonation: this occurs at room temperature and promotes permanent carbon dioxide sequestration. The obtained samples were characterized using XRD and TGA (coupled with mass spectroscopy). This allowed quantification of the mass loss attributed to different calcium carbonate phases. In particular, samples stabilized using wood pellet ash show a weight loss, attributed to the decomposition of carbonates greater than 20%. In view of these results, it is possible to conclude that there are several environmental benefits from wood pellet ash reuse in this way. In particular, using this technology, it is shown that for wood pellet biomass the carbon dioxide conversion can be considered negative.


Assuntos
Dióxido de Carbono , Cinza de Carvão , Incineração , Biomassa , Carbono , Resíduos Sólidos , Madeira
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA