RESUMO
Breast cancer (BC) is defined by distinct molecular subtypes with different cells of origin. The transcriptional networks that characterize the subtype-specific tumor-normal lineages are not established. In this work, we applied bulk, single-cell and single-nucleus multi-omic techniques as well as spatial transcriptomics and multiplex imaging on 61 samples from 37 patients with BC to show characteristic links in gene expression and chromatin accessibility between BC subtypes and their putative cells of origin. Regulatory network analysis of transcription factors underscored the importance of BHLHE40 in luminal BC and luminal mature cells and KLF5 in basal-like tumors and luminal progenitor cells. Furthermore, we identify key genes defining the basal-like (SOX6 and KCNQ3) and luminal A/B (FAM155A and LRP1B) lineages. Exhausted CTLA4-expressing CD8+ T cells were enriched in basal-like BC, suggesting an altered means of immune dysfunction. These findings demonstrate analysis of paired transcription and chromatin accessibility at the single-cell level is a powerful tool for investigating cancer lineage and highlight transcriptional networks that define basal and luminal BC lineages.
RESUMO
Multiple myeloma (MM) is the cancer of plasma cells within the bone marrow and remains incurable. Tumor-associated macrophages (TAMs) within the tumor microenvironment often display a pro-tumor phenotype and correlate with tumor proliferation, survival, and therapy resistance. IL-10 is a key immunosuppressive cytokine that leads to recruitment and development of TAMs. In this study, we investigated the role of IL-10 in MM TAM development as well as the therapeutic application of IL-10/IL-10R/STAT3 signaling inhibition. We demonstrated that IL-10 is overexpressed in MM BM and mediates M2-like polarization of TAMs in patient BM, 3D co-cultures in vitro, and mouse models. In turn, TAMs promote MM proliferation and drug resistance, both in vitro and in vivo. Moreover, inhibition of IL-10/IL-10R/STAT3 axis using a blocking IL-10R monoclonal antibody and STAT3 protein degrader/PROTAC prevented M2 polarization of TAMs and the consequent TAM-induced proliferation of MM, and re-sensitized MM to therapy, in vitro and in vivo. Therefore, our findings suggest that inhibition of IL-10/IL-10R/STAT3 axis is a novel therapeutic strategy with monotherapy efficacy and can be further combined with current anti-MM therapy, such as immunomodulatory drugs, to overcome drug resistance. Future investigation is warranted to evaluate the potential of such therapy in MM patients.
Assuntos
Resistencia a Medicamentos Antineoplásicos , Interleucina-10 , Mieloma Múltiplo , Receptores de Interleucina-10 , Fator de Transcrição STAT3 , Microambiente Tumoral , Macrófagos Associados a Tumor , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/patologia , Humanos , Animais , Camundongos , Receptores de Interleucina-10/antagonistas & inibidores , Receptores de Interleucina-10/metabolismo , Macrófagos Associados a Tumor/efeitos dos fármacos , Macrófagos Associados a Tumor/metabolismo , Macrófagos Associados a Tumor/imunologia , Fator de Transcrição STAT3/metabolismo , Fator de Transcrição STAT3/antagonistas & inibidores , Microambiente Tumoral/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Linhagem Celular TumoralRESUMO
Clonal hematopoiesis (CH) is the expansion of somatically mutated cells in the hematopoietic compartment of individuals without hematopoietic dysfunction. Large CH clones (i.e., >2% variant allele fraction) predispose to hematologic malignancy, but CH is detected at lower levels in nearly all middle-aged individuals. Prior work has extensively characterized CH in peripheral blood, but the spatial distribution of hematopoietic clones in human bone marrow is largely undescribed. To understand CH at this level, we developed a method for spatially aware somatic mutation profiling and characterized the bone marrow of a patient with polycythemia vera. We identified the complex clonal distribution of somatic mutations in the hematopoietic compartment, the restriction of somatic mutations to specific subpopulations of hematopoietic cells, and spatial constraints of these clones in the bone marrow. This proof of principle paves the way to answering fundamental questions regarding CH spatial organization and factors driving CH expansion and malignant transformation in the bone marrow. SIGNIFICANCE: CH occurs commonly in humans and can predispose to hematologic malignancy. Although well characterized in blood, it is poorly understood how clones are spatially distributed in the bone marrow. To answer this, we developed methods for spatially aware somatic mutation profiling to describe clonal heterogeneity in human bone marrow. See related commentary by Austin and Aifantis, p. 139.
Assuntos
Medula Óssea , Hematopoiese Clonal , Mutação , Humanos , Medula Óssea/patologia , Hematopoiese Clonal/genética , Policitemia Vera/genética , Policitemia Vera/patologia , Policitemia Vera/diagnóstico , Células Clonais , Células-Tronco Hematopoéticas/patologiaRESUMO
Breast cancer is a heterogeneous disease, and treatment is guided by biomarker profiles representing distinct molecular subtypes. Breast cancer arises from the breast ductal epithelium, and experimental data suggests breast cancer subtypes have different cells of origin within that lineage. The precise cells of origin for each subtype and the transcriptional networks that characterize these tumor-normal lineages are not established. In this work, we applied bulk, single-cell (sc), and single-nucleus (sn) multi-omic techniques as well as spatial transcriptomics and multiplex imaging on 61 samples from 37 breast cancer patients to show characteristic links in gene expression and chromatin accessibility between breast cancer subtypes and their putative cells of origin. We applied the PAM50 subtyping algorithm in tandem with bulk RNA-seq and snRNA-seq to reliably subtype even low-purity tumor samples and confirm promoter accessibility using snATAC. Trajectory analysis of chromatin accessibility and differentially accessible motifs clearly connected progenitor populations with breast cancer subtypes supporting the cell of origin for basal-like and luminal A and B tumors. Regulatory network analysis of transcription factors underscored the importance of BHLHE40 in luminal breast cancer and luminal mature cells, and KLF5 in basal-like tumors and luminal progenitor cells. Furthermore, we identify key genes defining the basal-like ( PRKCA , SOX6 , RGS6 , KCNQ3 ) and luminal A/B ( FAM155A , LRP1B ) lineages, with expression in both precursor and cancer cells and further upregulation in tumors. Exhausted CTLA4-expressing CD8+ T cells were enriched in basal-like breast cancer, suggesting altered means of immune dysfunction among breast cancer subtypes. We used spatial transcriptomics and multiplex imaging to provide spatial detail for key markers of benign and malignant cell types and immune cell colocation. These findings demonstrate analysis of paired transcription and chromatin accessibility at the single cell level is a powerful tool for investigating breast cancer lineage development and highlight transcriptional networks that define basal and luminal breast cancer lineages.
RESUMO
BACKGROUND: Adoptive cellular therapies with chimeric antigen receptor T cells have revolutionized the treatment of some malignancies but have shown limited efficacy in solid tumors such as glioblastoma and face a scarcity of safe therapeutic targets. As an alternative, T cell receptor (TCR)-engineered cellular therapy against tumor-specific neoantigens has generated significant excitement, but there exist no preclinical systems to rigorously model this approach in glioblastoma. METHODS: We employed single-cell PCR to isolate a TCR specific for the Imp3D81N neoantigen (mImp3) previously identified within the murine glioblastoma model GL261. This TCR was used to generate the Mutant Imp3-Specific TCR TransgenIC (MISTIC) mouse in which all CD8 T cells are specific for mImp3. The therapeutic efficacy of neoantigen-specific T cells was assessed through a model of cellular therapy consisting of the transfer of activated MISTIC T cells and interleukin 2 into lymphodepleted tumor-bearing mice. We employed flow cytometry, single-cell RNA sequencing, and whole-exome and RNA sequencing to examine the factors underlying treatment response. RESULTS: We isolated and characterized the 3×1.1C TCR that displayed a high affinity for mImp3 but no wild-type cross-reactivity. To provide a source of mImp3-specific T cells, we generated the MISTIC mouse. In a model of adoptive cellular therapy, the infusion of activated MISTIC T cells resulted in rapid intratumoral infiltration and profound antitumor effects with long-term cures in a majority of GL261-bearing mice. The subset of mice that did not respond to the adoptive cell therapy showed evidence of retained neoantigen expression but intratumoral MISTIC T cell dysfunction. The efficacy of MISTIC T cell therapy was lost in mice bearing a tumor with heterogeneous mImp3 expression, showcasing the barriers to targeted therapy in polyclonal human tumors. CONCLUSIONS: We generated and characterized the first TCR transgenic against an endogenous neoantigen within a preclinical glioma model and demonstrated the therapeutic potential of adoptively transferred neoantigen-specific T cells. The MISTIC mouse provides a powerful novel platform for basic and translational studies of antitumor T-cell responses in glioblastoma.
Assuntos
Glioblastoma , Imunoterapia Adotiva , Camundongos , Humanos , Animais , Antígenos de Neoplasias , Linfócitos T CD8-Positivos , Receptores de Antígenos de Linfócitos TRESUMO
BACKGROUND: Recent investigations of the meninges have highlighted the importance of the dura layer in central nervous system immune surveillance beyond a purely structural role. However, our understanding of the meninges largely stems from the use of pre-clinical models rather than human samples. METHODS: Single-cell RNA sequencing of seven non-tumor-associated human dura samples and six primary meningioma tumor samples (4 matched and 2 non-matched) was performed. Cell type identities, gene expression profiles, and T cell receptor expression were analyzed. Copy number variant (CNV) analysis was performed to identify putative tumor cells and analyze intratumoral CNV heterogeneity. Immunohistochemistry and imaging mass cytometry was performed on selected samples to validate protein expression and reveal spatial localization of select protein markers. RESULTS: In this study, we use single-cell RNA sequencing to perform the first characterization of both non-tumor-associated human dura and primary meningioma samples. First, we reveal a complex immune microenvironment in human dura that is transcriptionally distinct from that of meningioma. In addition, we characterize a functionally diverse and heterogenous landscape of non-immune cells including endothelial cells and fibroblasts. Through imaging mass cytometry, we highlight the spatial relationship among immune cell types and vasculature in non-tumor-associated dura. Utilizing T cell receptor sequencing, we show significant TCR overlap between matched dura and meningioma samples. Finally, we report copy number variant heterogeneity within our meningioma samples. CONCLUSIONS: Our comprehensive investigation of both the immune and non-immune cellular landscapes of human dura and meningioma at single-cell resolution builds upon previously published data in murine models and provides new insight into previously uncharacterized roles of human dura.
Assuntos
Neoplasias Meníngeas , Meningioma , Animais , Células Endoteliais/patologia , Humanos , Imunidade , Neoplasias Meníngeas/genética , Neoplasias Meníngeas/patologia , Meninges/patologia , Meningioma/genética , Meningioma/patologia , Camundongos , Microambiente TumoralRESUMO
We compared the performance of two 96-well multiplex immunoassay platforms in assessing plasma cytokine concentrations in patients with glioblastoma (GBM; n = 27), individuals with melanoma, breast or lung cancer metastases to the brain (n = 17), and healthy volunteers (n = 11). Assays included a bead-based fluorescence MILLIPLEX® assay/Luminex (LMX) platform and 4 planar electrochemiluminescence kits from Meso Scale Discovery (MSD). The LMX kit evaluated 21 cytokines and the 3 MSD kits evaluated 20 cytokines in total, with 19 overlapping human cytokines between platforms (GM-CSF, IFNγ, IL-1ß, IL-2, IL-4, IL-5, IL-6, IL-7, IL-8, IL-10, IL-12p70, IL-13, IL-17A, IL-21, IL-23, MIP-1α, MIP-1ß, MIP-3α, TNFα). The MSD platform had lower LLoQs (lower limits of quantification) than LMX for 17/19 cytokines, and higher LLoQs for IFN-γ and IL-21. The ULoQs were higher in LMX versus MSD assays for 17/19 shared analytes, but lower than MSD for IL-17A and IL-21. With LMX, all 19 shared analytes were quantifiable in each of 55 samples. Although MSD recombinant protein standard curves indicated lower LLoQs than LMX for most cytokines, MSD detected 7/19 (37%) native analytes in <75% of samples, including 0% detection for IL-21 and 8% for IL-23. The LMX platform categorized identical samples at greater concentrations than the MSD system for most analytes (MIP-1ß the sole exception), sometimes by orders of magnitude. This mismatched quantification paradigm was supported by Bland-Altman analysis. LMX identified significantly elevated levels of 10 of 19 circulating cytokines in GBM: GM-CSF, IFN-γ, IL-1ß, IL-5, IL-10, IL-17A, IL-21, IL-23, MIP-1α, and MIP-3α, consistent with prior findings and confirming the utility of applying appropriate multiplex immunoassay technologies toward developing a cytokine signature profile for GBM.
RESUMO
Encouraging clinical results using immune checkpoint therapies to target the PD-1 axis in a variety of cancer types have paved the way for new immune therapy trials in brain tumor patients. However, the molecular mechanisms that regulate expression of the PD-1 pathway ligands, PD-L1 and PD-L2, remain poorly understood. To address this, we explored the cell-intrinsic mechanisms of constitutive PD-L1 and PD-L2 expression in brain tumors. PD-L1 and PD-L2 expression was assessed by flow cytometry and qRT-PCR in brain tumor cell lines and patient tumor-derived brain tumor-initiating cells (BTICs). Immunologic effects of PD-L2 overexpression were evaluated by IFN-γ ELISPOT. CD274 and PDCD1LG2 cis-regulatory regions were cloned from genomic DNA and assessed in full or by mutating and/or deleting regulatory elements by luciferase assays. Correlations between clinical responses and PD-L1 and PD-L2 expression status were evaluated in TCGA datasets in LGG and GBM patients. We found that a subset of brain tumor cell lines and BTICs expressed high constitutive levels of PD-L1 and PD-L2 and that PD-L2 overexpression inhibited neoantigen specific T cell IFN-γ production. Characterization of novel cis-regulatory regions in CD274 and PDCD1LG2 lead us to identify that GATA2 is sufficient to drive PD-L1 and PD-L2 expression and is necessary for PD-L2 expression. Importantly, in TCGA datasets, PD-L2 correlated with worse clinical outcomes in glioma patients.. By perturbing GATA2 biology, targeted therapies may be useful to decrease inhibitory effects of PD-L2 in the microenvironment.
Assuntos
Antígeno B7-H1/biossíntese , Neoplasias Encefálicas/imunologia , Fator de Transcrição GATA2/metabolismo , Glioma/imunologia , Proteína 2 Ligante de Morte Celular Programada 1/biossíntese , Animais , Antígeno B7-H1/genética , Antígeno B7-H1/imunologia , Antígeno B7-H1/metabolismo , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Linfócitos T CD8-Positivos/imunologia , Linhagem Celular Tumoral , Fator de Transcrição GATA2/genética , Glioma/genética , Glioma/metabolismo , Humanos , Camundongos , Proteína 2 Ligante de Morte Celular Programada 1/genética , Proteína 2 Ligante de Morte Celular Programada 1/imunologia , Proteína 2 Ligante de Morte Celular Programada 1/metabolismo , Microambiente TumoralRESUMO
BACKGROUND: Although clinical trials testing immunotherapies in glioblastoma (GBM) have yielded mixed results, new strategies targeting tumor-specific somatic coding mutations, termed "neoantigens," represent promising therapeutic approaches. We characterized the microenvironment and neoantigen landscape of the aggressive CT2A GBM model in order to develop a platform to test combination checkpoint blockade and neoantigen vaccination. METHODS: Flow cytometric analysis was performed on intracranial CT2A and GL261 tumor-infiltrating lymphocytes (TILs). Whole-exome DNA and RNA sequencing of the CT2A murine GBM was employed to identify expressed, somatic mutations. Predicted neoantigens were identified using the pVAC-seq software suite, and top-ranking candidates were screened for reactivity by interferon-gamma enzyme linked immunospot assays. Survival analysis was performed comparing neoantigen vaccination, anti-programmed cell death ligand 1 (αPD-L1), or combination therapy. RESULTS: Compared with the GL261 model, CT2A exhibited immunologic features consistent with human GBM including reduced αPD-L1 sensitivity and hypofunctional TILs. Of the 29 CT2A neoantigens screened, we identified neoantigen-specific CD8+ T-cell responses in the intracranial TIL and draining lymph nodes to two H2-Kb restricted (Epb4H471L and Pomgnt1R497L) and one H2-Db restricted neoantigen (Plin2G332R). Survival analysis showed that therapeutic neoantigen vaccination with Epb4H471L, Pomgnt1R497L, and Plin2G332R, in combination with αPD-L1 treatment was superior to αPD-L1 alone. CONCLUSIONS: We identified endogenous neoantigen specific CD8+ T cells within an αPD-L1 resistant murine GBM and show that neoantigen vaccination significantly augments survival benefit in combination with αPD-L1 treatment. These observations provide important preclinical correlates for GBM immunotherapy trials and support further investigation into the effects of multimodal immunotherapeutic interventions on antiglioma immunity. KEY POINTS: 1. Neoantigen vaccines combined with checkpoint blockade may be promising treatments.2. CT2A tumors exhibit features of human GBM microenvironments.3. Differential scanning fluorimetry assays may complement in silico neoantigen prediction tools.
Assuntos
Glioblastoma , Animais , Antígenos de Neoplasias , Linfócitos T CD8-Positivos , Glioblastoma/terapia , Humanos , Imunoterapia , Linfócitos do Interstício Tumoral , Camundongos , Microambiente Tumoral , Vacinas CombinadasRESUMO
Neoantigens represent promising targets for personalized cancer vaccine strategies. However, the feasibility of this approach in lower mutational burden tumors like glioblastoma (GBM) remains unknown. We have previously reported the use of an immunogenomics pipeline to identify candidate neoantigens in preclinical models of GBM. Here, we report the application of the same immunogenomics pipeline to identify candidate neoantigens and guide screening for neoantigen-specific T cell responses in a patient with GBM treated with a personalized synthetic long peptide vaccine following autologous tumor lysate DC vaccination. Following vaccination, reactivity to three HLA class I- and five HLA class II-restricted candidate neoantigens were detected by IFN-γ ELISPOT in peripheral blood. A similar pattern of reactivity was observed among isolated post-treatment tumor-infiltrating lymphocytes. Genomic analysis of pre- and post-treatment GBM reflected clonal remodeling. These data demonstrate the feasibility and translational potential of a therapeutic neoantigen-based vaccine approach in patients with primary CNS tumors.
RESUMO
The "cancer immunogenomics" paradigm has facilitated the search for tumor-specific antigens over the last 4 years by applying comprehensive cancer genomics to tumor antigen discovery. We applied this methodology to identify tumor-specific "neoantigens" in the C57BL/6-derived GL261 and VM/Dk-derived SMA-560 tumor models. Following DNA whole-exome and RNA sequencing, high-affinity candidate neoepitopes were predicted and screened for immunogenicity by ELISPOT and tetramer analyses. GL261 and SMA-560 harbored 4,932 and 2,171 nonsynonymous exome mutations, respectively, of which less than half were expressed. To establish the immunogenicities of H-2Kb and H-2Db candidate neoantigens, we assessed the ability of the epitopes predicted in silico to be the highest affinity binders to activate tumor-infiltrating T cells harvested from GL261 and SMA-560 tumors. Using IFNγ ELISPOT, we confirmed H-2Db-restricted Imp3D81N (GL261) and Odc1Q129L (SMA-560) along with H-2Kb-restricted E2f8K272R (SMA-560) as endogenous tumor-specific neoantigens that are functionally immunogenic. Furthermore, neoantigen-specific T cells to Imp3D81N and Odc1Q129L were detected within intracranial tumors as well as cervical draining lymph nodes by tetramer analysis. By establishing the immunogenicities of predicted high-affinity neoepitopes in these models, we extend the immunogenomics-based neoantigen discovery pipeline to glioblastoma models and provide a tractable system to further study the mechanism of action of T cell-activating immunotherapeutic approaches in preclinical models of glioblastoma. Cancer Immunol Res; 4(12); 1007-15. ©2016 AACR.
Assuntos
Antígenos de Neoplasias/imunologia , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/imunologia , Linfócitos T CD8-Positivos/imunologia , Glioblastoma/genética , Glioblastoma/imunologia , Animais , Modelos Animais de Doenças , Exoma , Genes MHC Classe I , Genômica , Camundongos Endogâmicos C57BL , Análise de Sequência de RNARESUMO
BACKGROUND: Langerhans cells (LCs) are antigen-presenting dendritic cells located in the skin. It has been reported that LC activation is associated with painful diabetic neuropathy (PDN); however, the mechanism of LC activation is still unclear. METHODS: The db/db mouse, a rodent model of PDN, was used to study the roles of LCs in the development of PDN in type 2 diabetes. Hind foot pads from db/db and control db/+ mice from 5 to 24 weeks of age (encompassing the period of mechanical allodynia development and its abatement) were collected and processed for immunohistochemistry studies. LCs were identified with immunohistochemistry using an antibody against CD207 (Langerin). The intraepidermal nerve fibers and subepidermal nerve plexus were identified by immunohistochemistry of protein gene product 9.5 (PGP 9.5) and tropomyosin-receptor kinase (Trk) A, the high affinity nerve growth factor receptor. RESULTS: CD207-positive LCs increased in the db/db mouse during the period of mechanical allodynia, from 8 to 10 weeks of age, in both the epidermis and subepidermal plexus. At 16 weeks of age, when mechanical allodynia diminishes, LC populations were reduced in the epidermis and subepidermal plexus. Epidermal LCs (ELCs) were positive for Trk A. Subepidermal LCs (SLCs) were positive for CD68, suggesting that they are immature LCs. Additionally, these SLCs were positive for the receptor of advanced glycation end products (RAGE) and were in direct contact with TNF-α-positive nerve fibers in the subepidermal nerve plexus during the period of mechanical allodynia. Intrathecal administration of SB203580, a p38 kinase inhibitor, significantly reduced mechanical allodynia, TNF-α expression in the subepidermal plexus, and increased both ELC and SLC populations during the period of mechanical allodynia. CONCLUSIONS: Our data support the hypothesis that increased LC populations in PDN are activated by p38-dependent neurogenic factors and may be involved in the pathogenesis of PDN.
Assuntos
Neuropatias Diabéticas/patologia , Hiperalgesia/patologia , Células de Langerhans/efeitos dos fármacos , Fatores de Crescimento Neural/fisiologia , Proteínas Quinases p38 Ativadas por Mitógeno/fisiologia , Envelhecimento/fisiologia , Animais , Anti-Inflamatórios não Esteroides/farmacologia , Antígenos de Superfície/metabolismo , Antígenos CD58/metabolismo , Interpretação Estatística de Dados , Imidazóis/farmacologia , Imuno-Histoquímica , Lectinas Tipo C/metabolismo , Sistema de Sinalização das MAP Quinases/fisiologia , Masculino , Lectinas de Ligação a Manose/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Piridinas/farmacologia , Receptor trkA/metabolismo , Fator de Necrose Tumoral alfa/biossínteseRESUMO
The peptidoglycan-polysaccharide (PGPS) model using inbred rats closely mimics Crohn's disease. Our aim was to identify mouse strains that develop ileocolitis in response to bowel wall injection with PGPS. Mouse strains studied included NOD2 knockout animals, RICK/RIP2 knockout animals, and genetically inbred strains that are susceptible to inflammation. Mice underwent laparotomy with intramural injection of PGPS or human serum albumin in the terminal ileum, ileal Peyer's patches, and cecum. Gross abdominal score, cecal histologic score, and levels of pro-fibrotic factor mRNAs were determined 20 to 32 days after laparotomy. PGPS-injected wild-type and knockout mice with mutations in the NOD2 pathway had higher abdominal scores than human serum albumin-injected mice. The RICK knockout animals tended to have higher mean abdominal scores than the NOD2 knockout animals, but the differences were not significant. CBA/J mice were shown to have the most robust response to PGPS, demonstrating consistently higher abdominal scores than other strains. Animals killed on day 26 had an average gross abdominal score of 6.1 ± 1.5, compared with those on day 20 (3.0 ± 0.0) or day 32 (2.8 ± 0.9). PGPS-injected CBA/J mice studied 26 days after laparotomy developed the most robust inflammation and most closely mimicked the PGPS rat model and human Crohn's disease.
Assuntos
Colite/patologia , Doença de Crohn/patologia , Modelos Animais de Doenças , Fibrose/patologia , Ileíte/patologia , Peptidoglicano/toxicidade , Animais , Ceco/metabolismo , Ceco/patologia , Colite/induzido quimicamente , Colite/genética , Doença de Crohn/induzido quimicamente , Doença de Crohn/genética , Fibrose/induzido quimicamente , Fibrose/genética , Humanos , Ileíte/induzido quimicamente , Ileíte/genética , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos CBA , Camundongos Knockout , Proteína Adaptadora de Sinalização NOD2/fisiologia , Nódulos Linfáticos Agregados/metabolismo , Nódulos Linfáticos Agregados/patologia , Ratos , Proteína Serina-Treonina Quinase 2 de Interação com Receptor , Proteína Serina-Treonina Quinases de Interação com Receptores/fisiologiaRESUMO
The generation of B-cell responses to proteins requires a functional thymus to produce CD4(+) T cells which helps in the activation and differentiation of B cells. Because the mature T-cell repertoire has abundant cells with the helper phenotype, one might predict that in mature individuals, the generation of B-cell memory would proceed independently of the thymus. Contrary to that prediction, we show here that the removal of the thymus after the establishment of the T-cell compartment or sham surgery without removal of the thymus impairs the affinity maturation of antibodies. Because removal or manipulation of the thymus did not decrease the frequency of mutation of the Ig variable heavy chain exons encoding antigen-specific antibodies, we conclude that the thymus controls affinity maturation of antibodies in the mature individual by facilitating the selection of B cells with high-affinity antibodies.
Assuntos
Afinidade de Anticorpos , Linfócitos B/metabolismo , Linfócitos T CD4-Positivos/metabolismo , Cadeias Pesadas de Imunoglobulinas/metabolismo , Timo/citologia , Animais , Afinidade de Anticorpos/genética , Formação de Anticorpos/genética , Linfócitos B/imunologia , Linfócitos B/patologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/patologia , Diferenciação Celular/genética , Células Cultivadas , Seleção Clonal Mediada por Antígeno , Cadeias Pesadas de Imunoglobulinas/genética , Cadeias Pesadas de Imunoglobulinas/imunologia , Memória Imunológica , Ativação Linfocitária/genética , Camundongos , Camundongos Endogâmicos C57BL , Timectomia , Timo/embriologia , Timo/crescimento & desenvolvimento , Timo/cirurgiaRESUMO
The regulation of neutrophil functions by Type I cGMP-dependent protein kinase (cGKI) was investigated in wild-type (WT) and cGKI-deficient (cGKI-/-) mice. We demonstrate that murine neutrophils expressed cGKIalpha. Similar to the regulation of Ca2+ by cGKI in other cells, there was a cGMP-dependent decrease in Ca2+ transients in response to C5a in WT, but not cGKI-/- bone marrow neutrophils. In vitro chemotaxis of bone marrow neutrophils to C5a or IL-8 was significantly greater in cGKI-/- than in WT. Enhanced chemotaxis was also observed with cGKI-/- peritoneal exudate neutrophils (PE-N). In vivo chemotaxis with an arachidonic acid-induced inflammatory ear model revealed an increase in both ear weight and myeloperoxidase (MPO) activity in ear punches of cGKI-/- vs WT mice. These changes were attributable to enhanced vascular permeability and increased neutrophil infiltration. The total extractable content of MPO, but not lysozyme, was significantly greater in cGKI-/- than in WT PE-N. Furthermore, the percentage of MPO released in response to fMLP from cGKI-/- (69%) was greater than that from WT PE-N (36%). PMA failed to induce MPO release from PE-N of either genotype. In contrast, fMLP and PMA released equivalent amounts of lysozyme from PE-N. However, the percentage released was less in cGKI-/- (approximately 60%) than in WT (approximately 90%) PE-N. Superoxide release (maximum velocity) revealed no genotype differences in responses to PMA or fMLP stimulation. In summary, these results show that cGKIalpha down-regulates Ca2+ transients and chemotaxis in murine neutrophils. The regulatory influences of cGKIalpha on the secretagogue responses are complex, depending on the granule subtype.