Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 288
Filtrar
1.
Sci Rep ; 14(1): 15613, 2024 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-38971907

RESUMO

Glioblastoma is the most common and aggressive primary malignant brain tumor with poor prognosis. Novel immunotherapeutic approaches are currently under investigation. Even though magnetic resonance imaging (MRI) is the most important imaging tool for treatment monitoring, response assessment is often hampered by therapy-related tissue changes. As tumor and therapy-associated tissue reactions differ structurally, we hypothesize that biomechanics could be a pertinent imaging proxy for differentiation. Longitudinal MRI and magnetic resonance elastography (MRE) were performed to monitor response to immunotherapy with a toll-like receptor 7/8 agonist in orthotopic syngeneic experimental glioma. Imaging results were correlated to histology and light sheet microscopy data. Here, we identify MRE as a promising non-invasive imaging method for immunotherapy-monitoring by quantifying changes in response-related tumor mechanics. Specifically, we show that a relative softening of treated compared to untreated tumors is linked to the inflammatory processes following therapy-induced re-education of tumor-associated myeloid cells. Mechanistically, combined effects of myeloid influx and inflammation including extracellular matrix degradation following immunotherapy form the basis of treated tumors being softer than untreated glioma. This is a very early indicator of therapy response outperforming established imaging metrics such as tumor volume. The overall anti-tumor inflammatory processes likely have similar effects on human brain tissue biomechanics, making MRE a promising tool for gauging response to immunotherapy in glioma patients early, thereby strongly impacting patient pathway.


Assuntos
Neoplasias Encefálicas , Modelos Animais de Doenças , Glioma , Imunoterapia , Imageamento por Ressonância Magnética , Animais , Camundongos , Glioma/diagnóstico por imagem , Glioma/terapia , Glioma/imunologia , Glioma/patologia , Imunoterapia/métodos , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/imunologia , Neoplasias Encefálicas/terapia , Neoplasias Encefálicas/patologia , Imageamento por Ressonância Magnética/métodos , Técnicas de Imagem por Elasticidade/métodos , Linhagem Celular Tumoral , Fenômenos Biomecânicos , Humanos , Camundongos Endogâmicos C57BL , Biomarcadores Tumorais/metabolismo
2.
Neurooncol Adv ; 6(1): vdae112, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39022646

RESUMO

Background: The purpose of this study was to elucidate the relationship between distinct brain regions and molecular subtypes in glioblastoma (GB), focusing on integrating modern statistical tools and molecular profiling to better understand the heterogeneity of Isocitrate Dehydrogenase wild-type (IDH-wt) gliomas. Methods: This retrospective study comprised 441 patients diagnosed with new IDH-wt glioma between 2009 and 2020 at Heidelberg University Hospital. The diagnostic process included preoperative magnetic resonance imaging and molecular characterization, encompassing IDH-status determination and subclassification, through DNA-methylation profiling. To discern and map distinct brain regions associated with specific methylation subtypes, a support-vector regression-based lesion-symptom mapping (SVR-LSM) was employed. Lesion maps were adjusted to 2 mm³ resolution. Significance was assessed with beta maps, using a threshold of P < .005, with 10 000 permutations and a cluster size minimum of 100 voxels. Results: Of 441 initially screened glioma patients, 423 (95.9%) met the inclusion criteria. Following DNA-methylation profiling, patients were classified into RTK II (40.7%), MES (33.8%), RTK I (18%), and other methylation subclasses (7.6%). Between molecular subtypes, there was no difference in tumor volume. Using SVR-LSM, distinct brain regions correlated with each subclass were identified: MES subtypes were associated with left-hemispheric regions involving the superior temporal gyrus and insula cortex, RTK I with right frontal regions, and RTK II with 3 clusters in the left hemisphere. Conclusions: This study linked molecular diversity and spatial features in glioblastomas using SVR-LSM. Future studies should validate these findings in larger, independent cohorts to confirm the observed patterns.

3.
Artigo em Inglês | MEDLINE | ID: mdl-39054290

RESUMO

BACKGROUND AND PURPOSE: The novel MR imaging technique of vascular architecture mapping allows in vivo characterization of local changes in cerebral microvasculature, but reference ranges for vascular architecture mapping parameters in healthy brain tissue are lacking, limiting its potential applicability as an MR imaging biomarker in clinical practice. We conducted whole-brain vascular architecture mapping in a large cohort to establish vascular architecture mapping parameter references ranges and identify region-specific cortical and subcortical microvascular profiles. MATERIALS AND METHODS: This was a single-center examination of adult patients with unifocal, stable low-grade gliomas with multiband spin- and gradient-echo EPI sequence at 3T using parallel imaging. Voxelwise plotting of resulting values for gradient-echo (R2*) versus spin-echo (R2) relaxation rates during contrast agent bolus administration generates vessel vortex curves that allow the extraction of vascular architecture mapping parameters representative of, eg, vessel type, vessel radius, or CBV in the underlying voxel. Averaged whole-brain parametric maps were calculated for 9 parameters, and VOI analysis was conducted on the basis of a standardized brain atlas and individual cortical GM and WM segmentation. RESULTS: Prevalence of vascular risk factors among subjects (n = 106; mean age, 39.2 [SD, 12.5] years; 56 women) was similar to those in the German population. Compared with WM, we found cortical GM to have larger mean vascular calibers (5.80 [SD, 0.59] versus 4.25 [SD, 0.62] P < .001), increased blood volume fraction (20.40 [SD, 4.49] s-1 versus 11.05 [SD, 2.44] s-1; P < .001), and a dominance of venous vessels. Distinct microvascular profiles emerged for cortical GM, where vascular architecture mapping vessel type indicator differed, eg, between the thalamus and cortical GM (mean, -2.47 [SD, 4.02] s-2 versus -5.41 [SD, 2.84] s-2; P < .001). Intraclass correlation coefficient values indicated overall high test-retest reliability for vascular architecture mapping parameter mean values when comparing multiple scans per subject. CONCLUSIONS: Whole-brain vascular architecture mapping in the adult brain reveals region-specific microvascular profiles. The obtained parameter reference ranges for distinct anatomic and functional brain areas may be used for future vascular architecture mapping studies on cerebrovascular pathologies and might facilitate early discovery of microvascular changes, in, eg, neurodegeneration and neuro-oncology.

4.
Clin Cancer Res ; 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38829906

RESUMO

PURPOSE: To propose a novel recursive partitioning analysis (RPA) classification model in patients with IDH-wildtype glioblastomas that incorporates the recently expanded conception of the extent of resection (EOR) in terms of both supramaximal and total resections. EXPERIMENTAL DESIGN: This multicenter cohort study included a developmental cohort of 622 patients with IDH-wildtype glioblastomas from a single institution (Severance Hospital) and validation cohorts of 536 patients from three institutions (Seoul National University Hospital, Asan Medical Center, and Heidelberg University Hospital). All patients completed standard treatment including concurrent chemoradiotherapy and underwent testing to determine their IDH mutation and MGMTp methylation status. EORs were categorized into either supramaximal, total, or non-total resections. A novel RPA model was then developed and compared to a previous RTOG RPA model. RESULTS: In the developmental cohort, the RPA model included age, MGMTp methylation status, KPS, and EOR. Younger patients with MGMTp methylation and supramaximal resections showed a more favorable prognosis (class I: median overall survival [OS] 57.3 months), while low-performing patients with non-total resections and without MGMTp methylation showed the worst prognosis (class IV: median OS 14.3 months). The prognostic significance of the RPA was subsequently confirmed in the validation cohorts, which revealed a greater separation between prognostic classes for all cohorts compared to the previous RTOG RPA model. CONCLUSIONS: The proposed RPA model highlights the impact of supramaximal versus total resections and incorporates clinical and molecular factors into survival stratification. The RPA model may improve the accuracy of assessing prognostic groups.

5.
J Neurointerv Surg ; 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38906688

RESUMO

BACKGROUND: Recent studies, including the TENSION trial, support the use of endovascular thrombectomy (EVT) in acute ischemic stroke with large infarct (Alberta Stroke Program Early Computed Tomography Score (ASPECTS) 3-5). OBJECTIVE: To evaluate the cost-effectiveness of EVT compared with best medical care (BMC) alone in this population from a German healthcare payer perspective. METHODS: A short-term decision tree and a long-term Markov model (lifetime horizon) were used to compare healthcare costs and quality-adjusted life years (QALYs) between EVT and BMC. The effectiveness of EVT was reflected by the 90-day modified Rankin Scale (mRS) outcome from the TENSION trial. QALYs were based on published mRS-specific health utilities (EQ-5D-3L indices). Long-term healthcare costs were calculated based on insurance data. Costs (reported in 2022 euros) and QALYs were discounted by 3% annually. Cost-effectiveness was assessed using incremental cost-effectiveness ratios (ICERs). Deterministic and probabilistic sensitivity analyses were performed to account for parameter uncertainties. RESULTS: Compared with BMC, EVT yielded higher lifetime incremental costs (€24 257) and effects (1.41 QALYs), resulting in an ICER of €17 158/QALY. The results were robust to parameter variation in sensitivity analyses (eg, 95% probability of cost-effectiveness was achieved at a willingness to pay of >€22 000/QALY). Subgroup analyses indicated that EVT was cost-effective for all ASPECTS subgroups. CONCLUSIONS: EVT for acute ischemic stroke with established large infarct is likely to be cost-effective compared with BMC, assuming that an additional investment of €17 158/QALY is deemed acceptable by the healthcare payer.

6.
Neurooncol Adv ; 6(1): vdae043, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38596719

RESUMO

Background: This study investigates the influence of diffusion-weighted Magnetic Resonance Imaging (DWI-MRI) on radiomic-based prediction of glioma types according to molecular status and assesses the impact of DWI intensity normalization on model generalizability. Methods: Radiomic features, compliant with image biomarker standardization initiative standards, were extracted from preoperative MRI of 549 patients with diffuse glioma, known IDH, and 1p19q-status. Anatomical sequences (T1, T1c, T2, FLAIR) underwent N4-Bias Field Correction (N4) and WhiteStripe normalization (N4/WS). Apparent diffusion coefficient (ADC) maps were normalized using N4 or N4/z-score. Nine machine-learning algorithms were trained for multiclass prediction of glioma types (IDH-mutant 1p/19q codeleted, IDH-mutant 1p/19q non-codeleted, IDH-wild type). Four approaches were compared: Anatomical, anatomical + ADC naive, anatomical + ADC N4, and anatomical + ADC N4/z-score. The University of California San Francisco (UCSF)-glioma dataset (n = 409) was used for external validation. Results: Naïve-Bayes algorithms yielded overall the best performance on the internal test set. Adding ADC radiomics significantly improved AUC from 0.79 to 0.86 (P = .011) for the IDH-wild-type subgroup, but not for the other 2 glioma subgroups (P > .05). In the external UCSF dataset, the addition of ADC radiomics yielded a significantly higher AUC for the IDH-wild-type subgroup (P ≤ .001): 0.80 (N4/WS anatomical alone), 0.81 (anatomical + ADC naive), 0.81 (anatomical + ADC N4), and 0.88 (anatomical + ADC N4/z-score) as well as for the IDH-mutant 1p/19q non-codeleted subgroup (P < .012 each). Conclusions: ADC radiomics can enhance the performance of conventional MRI-based radiomic models, particularly for IDH-wild-type glioma. The benefit of intensity normalization of ADC maps depends on the type and context of the used data.

7.
Neuro Oncol ; 26(7): 1302-1309, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38452246

RESUMO

BACKGROUND: We previously reported that tumor 3D volume growth rate (3DVGR) classification could help in the assessment of drug activity in patients with meningioma using 3 main classes and a total of 5 subclasses: class 1: decrease; 2: stabilization or severe slowdown; 3: progression. The EORTC-BTG-1320 clinical trial was a randomized phase II trial evaluating the efficacy of trabectedin for recurrent WHO 2 or 3 meningioma. Our objective was to evaluate the discriminative value of 3DVGR classification in the EORTC-BTG-1320. METHODS: All patients with at least 1 available MRI before trial inclusion were included. 3D volume was evaluated on consecutive MRI until progression. 2D imaging response was centrally assessed by MRI modified Macdonald criteria. Clinical benefit was defined as neurological or functional status improvement or steroid decrease or discontinuation. RESULTS: Sixteen patients with a median age of 58.5 years were included. Best 3DVGR classes were: 1, 2A, 3A, and 3B in 2 (16.7%), 4 (33.3%), 2 (16.7%), and 4 (33.3%) patients, respectively. All patients with progression-free survival longer than 6 months had best 3DVGR class 1 or 2. 3DVGR classes 1 and 2 (combined) had a median overall survival of 34.7 months versus 7.2 months for class 3 (P = .061). All class 1 patients (2/2), 75% of class 2 patients (3/4), and only 10% of class 3 patients (1/10) had clinical benefit. CONCLUSIONS: Tumor 3DVGR classification may be helpful to identify early signals of treatment activity in meningioma clinical trials.


Assuntos
Neoplasias Meníngeas , Meningioma , Recidiva Local de Neoplasia , Humanos , Meningioma/patologia , Meningioma/tratamento farmacológico , Meningioma/diagnóstico por imagem , Neoplasias Meníngeas/tratamento farmacológico , Neoplasias Meníngeas/patologia , Feminino , Pessoa de Meia-Idade , Masculino , Recidiva Local de Neoplasia/tratamento farmacológico , Recidiva Local de Neoplasia/patologia , Idoso , Adulto , Imageamento por Ressonância Magnética/métodos , Imageamento Tridimensional , Gradação de Tumores , Seguimentos , Prognóstico , Carga Tumoral , Taxa de Sobrevida , Antineoplásicos Alquilantes/uso terapêutico
8.
iScience ; 27(2): 109023, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38352223

RESUMO

The preoperative distinction between glioblastoma (GBM) and primary central nervous system lymphoma (PCNSL) can be difficult, even for experts, but is highly relevant. We aimed to develop an easy-to-use algorithm, based on a convolutional neural network (CNN) to preoperatively discern PCNSL from GBM and systematically compare its performance to experienced neurosurgeons and radiologists. To this end, a CNN-based on DenseNet169 was trained with the magnetic resonance (MR)-imaging data of 68 PCNSL and 69 GBM patients and its performance compared to six trained experts on an external test set of 10 PCNSL and 10 GBM. Our neural network predicted PCNSL with an accuracy of 80% and a negative predictive value (NPV) of 0.8, exceeding the accuracy achieved by clinicians (73%, NPV 0.77). Combining expert rating with automated diagnosis in those cases where experts dissented yielded an accuracy of 95%. Our approach has the potential to significantly augment the preoperative radiological diagnosis of PCNSL.

9.
Lancet Oncol ; 25(3): 400-410, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38423052

RESUMO

BACKGROUND: The extended acquisition times required for MRI limit its availability in resource-constrained settings. Consequently, accelerating MRI by undersampling k-space data, which is necessary to reconstruct an image, has been a long-standing but important challenge. We aimed to develop a deep convolutional neural network (dCNN) optimisation method for MRI reconstruction and to reduce scan times and evaluate its effect on image quality and accuracy of oncological imaging biomarkers. METHODS: In this multicentre, retrospective, cohort study, MRI data from patients with glioblastoma treated at Heidelberg University Hospital (775 patients and 775 examinations) and from the phase 2 CORE trial (260 patients, 1083 examinations, and 58 institutions) and the phase 3 CENTRIC trial (505 patients, 3147 examinations, and 139 institutions) were used to develop, train, and test dCNN for reconstructing MRI from highly undersampled single-coil k-space data with various acceleration rates (R=2, 4, 6, 8, 10, and 15). Independent testing was performed with MRIs from the phase 2/3 EORTC-26101 trial (528 patients with glioblastoma, 1974 examinations, and 32 institutions). The similarity between undersampled dCNN-reconstructed and original MRIs was quantified with various image quality metrics, including structural similarity index measure (SSIM) and the accuracy of undersampled dCNN-reconstructed MRI on downstream radiological assessment of imaging biomarkers in oncology (automated artificial intelligence-based quantification of tumour burden and treatment response) was performed in the EORTC-26101 test dataset. The public NYU Langone Health fastMRI brain test dataset (558 patients and 558 examinations) was used to validate the generalisability and robustness of the dCNN for reconstructing MRIs from available multi-coil (parallel imaging) k-space data. FINDINGS: In the EORTC-26101 test dataset, the median SSIM of undersampled dCNN-reconstructed MRI ranged from 0·88 to 0·99 across different acceleration rates, with 0·92 (95% CI 0·92-0·93) for 10-times acceleration (R=10). The 10-times undersampled dCNN-reconstructed MRI yielded excellent agreement with original MRI when assessing volumes of contrast-enhancing tumour (median DICE for spatial agreement of 0·89 [95% CI 0·88 to 0·89]; median volume difference of 0·01 cm3 [95% CI 0·00 to 0·03] equalling 0·21%; p=0·0036 for equivalence) or non-enhancing tumour or oedema (median DICE of 0·94 [95% CI 0·94 to 0·95]; median volume difference of -0·79 cm3 [95% CI -0·87 to -0·72] equalling -1·77%; p=0·023 for equivalence) in the EORTC-26101 test dataset. Automated volumetric tumour response assessment in the EORTC-26101 test dataset yielded an identical median time to progression of 4·27 months (95% CI 4·14 to 4·57) when using 10-times-undersampled dCNN-reconstructed or original MRI (log-rank p=0·80) and agreement in the time to progression in 374 (95·2%) of 393 patients with data. The dCNN generalised well to the fastMRI brain dataset, with significant improvements in the median SSIM when using multi-coil compared with single-coil k-space data (p<0·0001). INTERPRETATION: Deep-learning-based reconstruction of undersampled MRI allows for a substantial reduction of scan times, with a 10-times acceleration demonstrating excellent image quality while preserving the accuracy of derived imaging biomarkers for the assessment of oncological treatment response. Our developments are available as open source software and hold considerable promise for increasing the accessibility to MRI, pending further prospective validation. FUNDING: Deutsche Forschungsgemeinschaft (German Research Foundation) and an Else Kröner Clinician Scientist Endowed Professorship by the Else Kröner Fresenius Foundation.


Assuntos
Aprendizado Profundo , Glioblastoma , Humanos , Inteligência Artificial , Biomarcadores , Estudos de Coortes , Glioblastoma/diagnóstico por imagem , Imageamento por Ressonância Magnética , Estudos Retrospectivos
10.
J Magn Reson Imaging ; 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38226697

RESUMO

Gadolinium-based contrast agents (GBCAs) are routinely used in magnetic resonance imaging (MRI). They are essential for choosing the most appropriate medical or surgical strategy for patients with serious pathologies, particularly in oncologic, inflammatory, and cardiovascular diseases. However, GBCAs have been associated with an increased risk of nephrogenic systemic fibrosis in patients with renal failure, as well as the possibility of deposition in the brain, bones, and other organs, even in patients with normal renal function. Research is underway to reduce the quantity of gadolinium injected, without compromising image quality and diagnosis. The next generation of GBCAs will enable a reduction in the gadolinium dose administered. Gadopiclenol is the first of this new generation of GBCAs, with high relaxivity, thus having the potential to reduce the gadolinium dose while maintaining good in vivo stability due to its macrocyclic structure. High-stability and high-relaxivity GBCAs will be one of the solutions for reducing the dose of gadolinium to be administered in clinical practice, while the development of new technologies, including optimization of MRI acquisitions, new contrast mechanisms, and artificial intelligence may help reduce the need for GBCAs. Future solutions may involve a combination of next-generation GBCAs and image-processing techniques to optimize diagnosis and treatment planning while minimizing exposure to gadolinium. LEVEL OF EVIDENCE: 5 TECHNICAL EFFICACY: Stage 3.

11.
Radiol Artif Intell ; 6(1): e230095, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38166331

RESUMO

Purpose To develop a fully automated device- and sequence-independent convolutional neural network (CNN) for reliable and high-throughput labeling of heterogeneous, unstructured MRI data. Materials and Methods Retrospective, multicentric brain MRI data (2179 patients with glioblastoma, 8544 examinations, 63 327 sequences) from 249 hospitals and 29 scanner types were used to develop a network based on ResNet-18 architecture to differentiate nine MRI sequence types, including T1-weighted, postcontrast T1-weighted, T2-weighted, fluid-attenuated inversion recovery, susceptibility-weighted, apparent diffusion coefficient, diffusion-weighted (low and high b value), and gradient-recalled echo T2*-weighted and dynamic susceptibility contrast-related images. The two-dimensional-midsection images from each sequence were allocated to training or validation (approximately 80%) and testing (approximately 20%) using a stratified split to ensure balanced groups across institutions, patients, and MRI sequence types. The prediction accuracy was quantified for each sequence type, and subgroup comparison of model performance was performed using χ2 tests. Results On the test set, the overall accuracy of the CNN (ResNet-18) ensemble model among all sequence types was 97.9% (95% CI: 97.6, 98.1), ranging from 84.2% for susceptibility-weighted images (95% CI: 81.8, 86.6) to 99.8% for T2-weighted images (95% CI: 99.7, 99.9). The ResNet-18 model achieved significantly better accuracy compared with ResNet-50 despite its simpler architecture (97.9% vs 97.1%; P ≤ .001). The accuracy of the ResNet-18 model was not affected by the presence versus absence of tumor on the two-dimensional-midsection images for any sequence type (P > .05). Conclusion The developed CNN (www.github.com/neuroAI-HD/HD-SEQ-ID) reliably differentiates nine types of MRI sequences within multicenter and large-scale population neuroimaging data and may enhance the speed, accuracy, and efficiency of clinical and research neuroradiologic workflows. Keywords: MR-Imaging, Neural Networks, CNS, Brain/Brain Stem, Computer Applications-General (Informatics), Convolutional Neural Network (CNN), Deep Learning Algorithms, Machine Learning Algorithms Supplemental material is available for this article. © RSNA, 2023.


Assuntos
Aprendizado Profundo , Humanos , Encéfalo/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Neuroimagem , Estudos Retrospectivos , Estudos Multicêntricos como Assunto
12.
BMC Cancer ; 24(1): 135, 2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38279087

RESUMO

BACKGROUND: Glioblastoma is the most frequent and a particularly malignant primary brain tumor with no efficacy-proven standard therapy for recurrence. It has recently been discovered that excitatory synapses of the AMPA-receptor subtype form between non-malignant brain neurons and tumor cells. This neuron-tumor network connectivity contributed to glioma progression and could be efficiently targeted with the EMA/FDA approved antiepileptic AMPA receptor inhibitor perampanel in preclinical studies. The PerSurge trial was designed to test the clinical potential of perampanel to reduce tumor cell network connectivity and tumor growth with an extended window-of-opportunity concept. METHODS: PerSurge is a phase IIa clinical and translational treatment study around surgical resection of progressive or recurrent glioblastoma. In this multicenter, 2-arm parallel-group, double-blind superiority trial, patients are 1:1 randomized to either receive placebo or perampanel (n = 66 in total). It consists of a treatment and observation period of 60 days per patient, starting 30 days before a planned surgical resection, which itself is not part of the study interventions. Only patients with an expected safe waiting interval are included, and a safety MRI is performed. Tumor cell network connectivity from resected tumor tissue on single cell transcriptome level as well as AI-based assessment of tumor growth dynamics in T2/FLAIR MRI scans before resection will be analyzed as the co-primary endpoints. Secondary endpoints will include further imaging parameters such as pre- and postsurgical contrast enhanced MRI scans, postsurgical T2/FLAIR MRI scans, quality of life, cognitive testing, overall and progression-free survival as well as frequency of epileptic seizures. Further translational research will focus on additional biological aspects of neuron-tumor connectivity. DISCUSSION: This trial is set up to assess first indications of clinical efficacy and tolerability of perampanel in recurrent glioblastoma, a repurposed drug which inhibits neuron-glioma synapses and thereby glioblastoma growth in preclinical models. If perampanel proved to be successful in the clinical setting, it would provide the first evidence that interference with neuron-cancer interactions may indeed lead to a benefit for patients, which would lay the foundation for a larger confirmatory trial in the future. TRIAL REGISTRATION: EU-CT number: 2023-503938-52-00 30.11.2023.


Assuntos
Glioblastoma , Humanos , Glioblastoma/tratamento farmacológico , Glioblastoma/cirurgia , Qualidade de Vida , Recidiva Local de Neoplasia/tratamento farmacológico , Convulsões/tratamento farmacológico , Nitrilas/uso terapêutico , Piridonas/uso terapêutico , Resultado do Tratamento , Método Duplo-Cego
13.
Eur Radiol ; 34(4): 2782-2790, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37672053

RESUMO

OBJECTIVES: Radiomic features have demonstrated encouraging results for non-invasive detection of molecular biomarkers, but the lack of guidelines for pre-processing MRI-data has led to poor generalizability. Here, we assessed the influence of different MRI-intensity normalization techniques on the performance of radiomics-based models for predicting molecular glioma subtypes. METHODS: Preoperative MRI-data from n = 615 patients with newly diagnosed glioma and known isocitrate dehydrogenase (IDH) and 1p/19q status were pre-processed using four different methods: no normalization (naive), N4 bias field correction (N4), N4 followed by either WhiteStripe (N4/WS), or z-score normalization (N4/z-score). A total of 377 Image-Biomarker-Standardisation-Initiative-compliant radiomic features were extracted from each normalized data, and 9 different machine-learning algorithms were trained for multiclass prediction of molecular glioma subtypes (IDH-mutant 1p/19q codeleted vs. IDH-mutant 1p/19q non-codeleted vs. IDH wild type). External testing was performed in public glioma datasets from UCSF (n = 410) and TCGA (n = 160). RESULTS: Support vector machine yielded the best performance with macro-average AUCs of 0.84 (naive), 0.84 (N4), 0.87 (N4/WS), and 0.87 (N4/z-score) in the internal test set. Both N4/WS and z-score outperformed the other approaches in the external UCSF and TCGA test sets with macro-average AUCs ranging from 0.85 to 0.87, replicating the performance of the internal test set, in contrast to macro-average AUCs ranging from 0.19 to 0.45 for naive and 0.26 to 0.52 for N4 alone. CONCLUSION: Intensity normalization of MRI data is essential for the generalizability of radiomic-based machine-learning models. Specifically, both N4/WS and N4/z-score approaches allow to preserve the high model performance, yielding generalizable performance when applying the developed radiomic-based machine-learning model in an external heterogeneous, multi-institutional setting. CLINICAL RELEVANCE STATEMENT: Intensity normalization such as N4/WS or N4/z-score can be used to develop reliable radiomics-based machine learning models from heterogeneous multicentre MRI datasets and provide non-invasive prediction of glioma subtypes. KEY POINTS: • MRI-intensity normalization increases the stability of radiomics-based models and leads to better generalizability. • Intensity normalization did not appear relevant when the developed model was applied to homogeneous data from the same institution. • Radiomic-based machine learning algorithms are a promising approach for simultaneous classification of IDH and 1p/19q status of glioma.


Assuntos
Neoplasias Encefálicas , Glioma , Humanos , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/genética , Radiômica , Glioma/diagnóstico por imagem , Glioma/genética , Imageamento por Ressonância Magnética/métodos , Biomarcadores , Isocitrato Desidrogenase/genética , Mutação , Estudos Retrospectivos
15.
Neuro Oncol ; 26(6): 1099-1108, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38153923

RESUMO

BACKGROUND: While the association between diffusion and perfusion magnetic resonance imaging (MRI) and survival in glioblastoma is established, prognostic models for patients are lacking. This study employed clustering of functional imaging to identify distinct functional phenotypes in untreated glioblastomas, assessing their prognostic significance for overall survival. METHODS: A total of 289 patients with glioblastoma who underwent preoperative multimodal MR imaging were included. Mean values of apparent diffusion coefficient normalized relative cerebral blood volume and relative cerebral blood flow were calculated for different tumor compartments and the entire tumor. Distinct imaging patterns were identified using partition around medoids (PAM) clustering on the training dataset, and their ability to predict overall survival was assessed. Additionally, tree-based machine-learning models were trained to ascertain the significance of features pertaining to cluster membership. RESULTS: Using the training dataset (231/289) we identified 2 stable imaging phenotypes through PAM clustering with significantly different overall survival (OS). Validation in an independent test set revealed a high-risk group with a median OS of 10.2 months and a low-risk group with a median OS of 26.6 months (P = 0.012). Patients in the low-risk cluster had high diffusion and low perfusion values throughout, while the high-risk cluster displayed the reverse pattern. Including cluster membership in all multivariate Cox regression analyses improved performance (P ≤ 0.004 each). CONCLUSIONS: Our research demonstrates that data-driven clustering can identify clinically relevant, distinct imaging phenotypes, highlighting the potential role of diffusion, and perfusion MRI in predicting survival rates of glioblastoma patients.


Assuntos
Neoplasias Encefálicas , Imagem de Difusão por Ressonância Magnética , Glioblastoma , Humanos , Glioblastoma/patologia , Glioblastoma/diagnóstico por imagem , Glioblastoma/mortalidade , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/diagnóstico por imagem , Prognóstico , Feminino , Masculino , Pessoa de Meia-Idade , Idoso , Imagem de Difusão por Ressonância Magnética/métodos , Análise por Conglomerados , Adulto , Taxa de Sobrevida , Circulação Cerebrovascular , Aprendizado de Máquina , Adulto Jovem , Seguimentos
16.
Radiol Imaging Cancer ; 6(1): e220127, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38133553

RESUMO

Malignant tumors commonly exhibit a reversed pH gradient compared with normal tissue, with a more acidic extracellular pH and an alkaline intracellular pH (pHi). In this prospective study, pHi values in gliomas were quantified using high-resolution phosphorous 31 (31P) spectroscopic MRI at 7.0 T and were used to correlate pHi alterations with histopathologic findings. A total of 12 participants (mean age, 58 years ± 18 [SD]; seven male, five female) with histopathologically proven, newly diagnosed glioma were included between September 2018 and November 2019. The 31P spectroscopic MRI scans were acquired using a double-resonant 31P/1H phased-array head coil together with a three-dimensional (3D) 31P chemical shift imaging sequence (5.7-mL voxel volume) performed with a 7.0-T whole-body system. The 3D volumetric segmentations were performed for the whole-tumor volumes (WTVs); tumor subcompartments of necrosis, gadolinium enhancement, and nonenhancing T2 (NCE T2) hyperintensity; and normal-appearing white matter (NAWM), and pHi values were compared. Spearman correlation was used to assess association between pHi and the proliferation index Ki-67. For all study participants, mean pHi values were higher in the WTV (7.057 ± 0.024) compared with NAWM (7.006 ± 0.012; P < .001). In eight participants with high-grade gliomas, pHi was increased in all tumor subcompartments (necrosis, 7.075 ± 0.033; gadolinium enhancement, 7.075 ± 0.024; NCE T2 hyperintensity, 7.043 ± 0.015) compared with NAWM (7.004 ± 0.014; all P < .01). The pHi values of WTV positively correlated with Ki-67 (R2 = 0.74, r = 0.78, P = .001). In conclusion, 31P spectroscopic MRI at 7.0 T enabled high-resolution quantification of pHi in gliomas, with pHi alteration associated with the Ki-67 proliferation index, and may aid in diagnosis and treatment monitoring. Keywords: 31P MRSI, pH, Glioma, Glioblastoma, Ultra-High-Field MRI, Imaging Biomarker, 7 Tesla Supplemental material is available for this article. © RSNA, 2023.


Assuntos
Neoplasias Encefálicas , Glioma , Masculino , Humanos , Feminino , Pessoa de Meia-Idade , Meios de Contraste , Estudos Prospectivos , Gadolínio , Antígeno Ki-67 , Neoplasias Encefálicas/diagnóstico por imagem , Glioma/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Encéfalo/patologia , Necrose , Concentração de Íons de Hidrogênio
17.
Sci Rep ; 13(1): 21231, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-38040865

RESUMO

Cerebral organoids recapitulate the structure and function of the developing human brain in vitro, offering a large potential for personalized therapeutic strategies. The enormous growth of this research area over the past decade with its capability for clinical translation makes a non-invasive, automated analysis pipeline of organoids highly desirable. This work presents a novel non-invasive approach to monitor and analyze cerebral organoids over time using high-field magnetic resonance imaging and state-of-the-art tools for automated image analysis. Three specific objectives are addressed, (I) organoid segmentation to investigate organoid development over time, (II) global cysticity classification and (III) local cyst segmentation for organoid quality assessment. We show that organoid growth can be monitored reliably over time and cystic and non-cystic organoids can be separated with high accuracy, with on par or better performance compared to state-of-the-art tools applied to brightfield imaging. Local cyst segmentation is feasible but could be further improved in the future. Overall, these results highlight the potential of the pipeline for clinical application to larger-scale comparative organoid analysis.


Assuntos
Cistos , Organoides , Humanos , Organoides/patologia , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Cistos/patologia , Inteligência Artificial
18.
Commun Med (Lond) ; 3(1): 186, 2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-38110626

RESUMO

BACKGROUND: Concurrent malignant brain tumors in patients with multiple sclerosis (MS) constitute a rare but paradigmatic phenomenon for studying neuroimmunological mechanisms from both molecular and clinical perspectives. METHODS: A multicenter cohort of 26 patients diagnosed with both primary brain tumors and multiple sclerosis was studied for disease localization, tumor treatment-related MS activity, and molecular characteristics specific for diffuse glioma in MS patients. RESULTS: MS neither predisposes nor protects from the development of gliomas. Patients with glioblastoma WHO grade 4 without isocitratdehydrogenase (IDH) mutations have a longstanding history of MS, whereas patients diagnosed with IDH-mutant astrocytoma WHO grade 2 receive multiple sclerosis diagnosis mostly at the same time or later. Concurrent MS is associated with a lesser extent of tumor resection and a worse prognosis in IDH-mutant glioma patients (PFS 32 vs. 64 months, p = 0.0206). When assessing tumor-intrinsic differences no distinct subgroup-defining methylation pattern is identified in gliomas of MS patients compared to other glioma samples. However, differential methylation of immune-related genetic loci including human leukocyte antigen locus on 6p21 and interleukin locus on 5q31 is found in MS patients vs. matched non-MS patients. In line, inflammatory disease activity increases in 42% of multiple sclerosis patients after brain tumor radiotherapy suggesting a susceptibility of multiple sclerosis brain tissue to pro-inflammatory stimuli such as ionizing radiation. CONCLUSIONS: Concurrent low-grade gliomas should be considered in multiple sclerosis patients with slowly progressive, expansive T2/FLAIR lesions. Our findings of typically reduced extent of resection in MS patients and increased MS activity after radiation may inform future treatment decisions.


Brain tumors such as gliomas can evade attacks by the immune system. In contrast, some diseases of the central nervous system such as multiple sclerosis (MS) are caused by an overactive immune system. Our study looks at a cohort of rare patients with both malignant glioma and concurrent MS and examines how each disease and their treatments affect each other. Our data suggest that even in patients with known MS, if medical imaging findings are unusual, a concurrent brain tumor should be excluded at an early stage. Radiotherapy, as is the standard of care for malignant brain tumors, may worsen the inflammatory disease activity in MS patients, which may be associated with certain genetic risk factors. Our findings may help to inform treatment of patients with brain tumors and MS.

19.
Theranostics ; 13(15): 5170-5182, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37908732

RESUMO

Rationale: Intrinsic brain tumors, such as gliomas are largely resistant to immunotherapies including immune checkpoint blockade. Adoptive cell therapies (ACT) including chimeric antigen receptor (CAR) or T cell receptor (TCR)-transgenic T cell therapy targeting glioma-associated antigens are an emerging field in glioma immunotherapy. However, imaging techniques for non-invasive monitoring of adoptively transferred T cells homing to the glioma microenvironment are currently lacking. Methods: Ultrasmall iron oxide nanoparticles (NP) can be visualized non-invasively by magnetic resonance imaging (MRI) and dedicated MRI sequences such as T2* mapping. Here, we develop a protocol for efficient ex vivo labeling of murine and human TCR-transgenic and CAR T cells with iron oxide NPs. We assess labeling efficiency and T cell functionality by flow cytometry and transmission electron microscopy (TEM). NP labeled T cells are visualized by MRI at 9.4 T in vivo after adoptive T cell transfer and correlated with 3D models of cleared brains obtained by light sheet microscopy (LSM). Results: NP are incorporated into T cells in subcellular cytoplasmic vesicles with high labeling efficiency without interfering with T cell viability, proliferation and effector function as assessed by cytokine secretion and antigen-specific killing assays in vitro. We further demonstrate that adoptively transferred T cells can be longitudinally monitored intratumorally by high field MRI at 9.4 Tesla in a murine glioma model with high sensitivity. We find that T cell influx and homogenous spatial distribution of T cells within the TME as assessed by T2* imaging predicts tumor response to ACT whereas incomplete T cell coverage results in treatment resistance. Conclusion: This study showcases a rational for monitoring adoptive T cell therapies non-invasively by iron oxide NP in gliomas to track intratumoral T cell influx and ultimately predict treatment outcome.


Assuntos
Glioma , Linfócitos T , Humanos , Animais , Camundongos , Glioma/diagnóstico por imagem , Glioma/terapia , Imunoterapia Adotiva , Receptores de Antígenos de Linfócitos T , Terapia Baseada em Transplante de Células e Tecidos , Microambiente Tumoral
20.
Neurol Res Pract ; 5(1): 55, 2023 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-37853454

RESUMO

INTRODUCTION: Diffuse midline gliomas (DMG) are universally lethal central nervous system tumors that carry almost unanimously the clonal driver mutation histone-3 K27M (H3K27M). The single amino acid substitution of lysine to methionine harbors a neoantigen that is presented in tumor tissue. The long peptide vaccine H3K27M-vac targeting this major histocompatibility complex class II (MHC class II)-restricted neoantigen induces mutation-specific immune responses that suppress the growth of H3K27M+ flank tumors in an MHC-humanized rodent model. METHODS: INTERCEPT H3 is a non-controlled open label, single arm, multicenter national phase 1 trial to assess safety, tolerability and immunogenicity of H3K27M-vac in combination with standard radiotherapy and the immune checkpoint inhibitor atezolizumab (ATE). 15 adult patients with newly diagnosed K27M-mutant histone-3.1 (H3.1K27M) or histone-3.3 (H3.3K27M) DMG will be enrolled in this trial. The 27mer peptide vaccine H3K27M-vac will be administered concomitantly to standard radiotherapy (RT) followed by combinatorial treatment with the programmed death-ligand 1 (PD-L1) targeting antibody ATE. The first three vaccines will be administered bi-weekly (q2w) followed by a dose at the beginning of recovery after RT and six-weekly administrations of doses 5 to 11 thereafter. In a safety lead-in, the first three patients (pts. 1-3) will be enrolled sequentially. PERSPECTIVE: H3K27M-vac is a neoepitope targeting long peptide vaccine derived from the clonal driver mutation H3K27M in DMG. The INTERCEPT H3 trial aims at demonstrating (1) safety and (2) immunogenicity of repeated fixed dose vaccinations of H3K27M-vac administered with RT and ATE in adult patients with newly diagnosed H3K27M-mutant DMG. TRIAL REGISTRATION: NCT04808245.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA