Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Clin Chem Lab Med ; 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38915248

RESUMO

OBJECTIVES: Metabolomics aims for comprehensive characterization and measurement of small molecule metabolites (<1700 Da) in complex biological matrices. This study sought to assess the current understanding and usage of metabolomics in laboratory medicine globally and evaluate the perception of its promise and future implementation. METHODS: A survey was conducted by the IFCC metabolomics working group that queried 400 professionals from 79 countries. Participants provided insights into their experience levels, knowledge, and usage of metabolomics approaches, along with detailing the applications and methodologies employed. RESULTS: Findings revealed a varying level of experience among respondents, with varying degrees of familiarity and utilization of metabolomics techniques. Targeted approaches dominated the field, particularly liquid chromatography coupled to a triple quadrupole mass spectrometer, with untargeted methods also receiving significant usage. Applications spanned clinical research, epidemiological studies, clinical diagnostics, patient monitoring, and prognostics across various medical domains, including metabolic diseases, endocrinology, oncology, cardiometabolic risk, neurodegeneration and clinical toxicology. CONCLUSIONS: Despite optimism for the future of clinical metabolomics, challenges such as technical complexity, standardization issues, and financial constraints remain significant hurdles. The study underscores the promising yet intricate landscape of metabolomics in clinical practice, emphasizing the need for continued efforts to overcome barriers and realize its full potential in patient care and precision medicine.

2.
Biofactors ; 48(5): 1145-1159, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35388547

RESUMO

Complexes formed by the alpha1 N-terminal peptide of alpha-lactalbumin and oleic acid (alpha1-oleate) interact with lipid bilayers. Plasma membrane perturbations trigger tumor cell death but normal differentiated cells are more resistant, and their plasma membranes are less strongly affected. This study examined membrane lipid composition as a determinant of tumor cell reactivity. Bladder cancer tissue showed a higher abundance of unsaturated lipids enriched in phosphatidylcholine, PC (36:4) and PC (38:4), and sphingomyelin, SM (36:1) than healthy bladder tissue, where saturated lipids predominated and the lipid extracts from bladder cancer tissue inhibited the tumoricidal effect of the complex more effectively than healthy tissue extracts. Furthermore, unsaturated PC in solution inhibited tumor cell death, and the complex interacted with giant unilamellar vesicles formed by PC, confirming the affinity of alpha1-oleate for fluid membranes enriched in PC. Quartz Crystal Microbalance with dissipation monitoring (QCM-D) detected a preference of the complex for the liquid-disordered phase, suggesting that the insertion into PC-based membranes and the resulting membrane perturbations are influenced by membrane lipid saturation. The results suggest that the membrane lipid composition is functionally important and that specific unsaturated membrane lipids may serve as "recognition motifs" for broad-spectrum tumoricidal molecules such as alpha1-oleate.


Assuntos
Bicamadas Lipídicas , Neoplasias da Bexiga Urinária , Humanos , Lactalbumina/química , Lactalbumina/metabolismo , Lactalbumina/farmacologia , Bicamadas Lipídicas/química , Bicamadas Lipídicas/metabolismo , Lipídeos de Membrana/química , Lipídeos de Membrana/metabolismo , Ácido Oleico/química , Ácido Oleico/metabolismo , Ácido Oleico/farmacologia , Fosfatidilcolinas/química , Esfingomielinas/química , Extratos de Tecidos , Lipossomas Unilamelares
3.
Metabolites ; 11(9)2021 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-34564414

RESUMO

Cancer metabolism is associated with the enhanced lipogenesis required for rapid growth and proliferation. However, the magnitude of dysregulation of diverse lipid species still requires significant characterization, particularly in ovarian clear cell carcinoma (OCCC). Here, we have implemented a robust sample preparation workflow together with targeted LC-MS/MS to identify the lipidomic changes in formalin-fixed paraffin-embedded specimens from OCCC compared to tumor-free ovarian tissue. We quantitated 340 lipid species, representing 28 lipid classes. We observed differential regulation of diverse lipid species belonging to several glycerophospholipid classes and trihexosylceramide. A number of unsaturated lipid species were increased in OCCC, whereas saturated lipid species showed a decrease in OCCC compared to the controls. We also carried out total fatty acid analysis and observed an increase in the levels of several unsaturated fatty acids with a concomitant increase in the index of stearoyl-CoA desaturase (SCD) in OCCC. We confirmed the upregulation of SCD (the rate-limiting enzyme for the synthesis of monounsaturated fatty acids) by immunohistochemistry (IHC) assays. Hence, by carrying out a mass spectrometry analysis of archival tissue samples, we were able to provide insights into lipidomic alterations in OCCC.

4.
Clin Vaccine Immunol ; 16(10): 1420-8, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19692625

RESUMO

Burkholderia pseudomallei, the etiological agent of melioidosis, is a facultative intracellular pathogen. As B. pseudomallei is a gram-negative bacterium, its outer membrane contains lipopolysaccharide (LPS) molecules, which have been shown to have low-level immunological activities in vitro. In this study, the biological activities of B. pseudomallei LPS were compared to those of Burkholderia thailandensis LPS, and it was found that both murine and human macrophages produced levels of tumor necrosis factor alpha, interleukin-6 (IL-6), and IL-10 in response to B. pseudomallei LPS that were lower than those in response to B. thailandensis LPS in vitro. In order to elucidate the molecular mechanisms underlying the low-level immunological activities of B. pseudomallei LPS, its lipid A moiety was characterized using mass spectrometry. The major lipid A species identified in B. pseudomallei consists of a biphosphorylated disaccharide backbone, which is modified with 4-amino-4-deoxy-arabinose (Ara4N) at both phosphates and penta-acylated with fatty acids (FA) C(14:0)(3-OH), C(16:0)(3-OH), and either C(14:0) or C(14:0)(2-OH). In contrast, the major lipid A species identified in B. thailandensis was a mixture of tetra- and penta-acylated structures with differing amounts of Ara4N and FA C(14:0)(3-OH). Lipid A species acylated with FA C(14:0)(2-OH) were unique to B. pseudomallei and not found in B. thailandensis. Our data thus indicate that B. pseudomallei synthesizes lipid A species with long-chain FA C(14:0)(2-OH) and Ara4N-modified phosphate groups, allowing it to evade innate immune recognition.


Assuntos
Burkholderia pseudomallei/química , Burkholderia/química , Lipopolissacarídeos/química , Animais , Burkholderia/imunologia , Burkholderia pseudomallei/imunologia , Burkholderia pseudomallei/patogenicidade , Linhagem Celular , Citocinas/biossíntese , Cromatografia Gasosa-Espectrometria de Massas , Humanos , Imunidade Inata , Lipídeo A/química , Lipídeo A/imunologia , Lipopolissacarídeos/administração & dosagem , Lipopolissacarídeos/imunologia , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Camundongos , Estrutura Molecular , Especificidade da Espécie , Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas em Tandem , Receptor 4 Toll-Like/agonistas , Virulência/imunologia
5.
Proteomics ; 3(8): 1637-46, 2003 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-12923788

RESUMO

In this study, the phosphoproteome of Corynebacterium glutamicum, an industrially important soil bacterium of the Corynebacterium/Mycobacterium/Nocardia (CMN) group of Gram-positive bacteria, was investigated by two different detection methods: first, by in vivo radio-labeling using [(33)P]-phosphoric acid with subsequent autoradiography and second, by immunostaining with phosphoamino acid-specific monoclonal antibodies. After two-dimensional gel electrophoresis (2-DE), around 60 [(33)P]-labeled protein spots were visualized and around 90 antibody-decorated protein spots detected; 31 of the protein spots were detected with both methods. By peptide mass fingerprinting, 41 different proteins were identified, namely 5-enolpyruvylshikimate 3-phosphate synthase, aconitase, acyl-CoA carboxylase, acyl-CoA synthetase, ATP (synthase alpha- and beta-chain), carbamoyl-phosphate synthase, citrate synthase, cysteine synthase, DnaK, the elongation factors G, P, Ts and Tu, enolase, fructose bisphosphate aldolase, fumarase, Gap dehydrogenase, glutamine synthetase I, glycine hydroxymethyltransferase, GroEL2, GTPase, heat-inducible transcriptional repressor DnaJ2, inorganic pyrophosphatase, isocitrate dehydrogenase, ketol-acid reductoisomerase, lactate dehydrogenase, leucine-tRNA ligase, lipoamide dehydrogenase, methionine synthase, O-acetylhomoserine sulfhydrylase, pyruvate carboxylase, pyruvate kinase, pyruvate oxidase, ribosomal protein S1, RNA polymerase (beta-subunit), succinyl-CoA:CoA transferase, transketolase and UDP-N-acetylmuramoyl-L-alanine ligase, besides a hypothetical 35k protein and a hypothetical glucose kinase. Both detection techniques were used to create a phosphoproteome map. Additionally, the influence of nitrogen deprivation on the phosphoproteome of C. glutamicum was investigated.


Assuntos
Corynebacterium/metabolismo , Fosfoproteínas/metabolismo , Proteoma , Eletroforese em Gel Bidimensional
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA