Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Allergy Clin Immunol ; 152(3): 633-640.e4, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37301412

RESUMO

BACKGROUND: Histamine-releasing factor (HRF) is implicated in allergic diseases. We previously showed its pathogenic role in murine models of asthma. OBJECTIVE: We aim to present data analysis from 3 separate human samples (sera samples from asthmatic patients, nasal washings from rhinovirus [RV]-infected individuals, and sera samples from patients with RV-induced asthma exacerbation) and 1 mouse sample to investigate correlates of HRF function in asthma and virus-induced asthma exacerbations. METHODS: Total IgE and HRF-reactive IgE/IgG as well as HRF in sera from patients with mild/moderate asthma or severe asthma (SA) and healthy controls (HCs) were quantified by ELISA. HRF secretion in culture media from RV-infected adenovirus-12 SV40 hybrid virus transformed human bronchial epithelial cells and in nasal washings from experimentally RV-infected subjects was analyzed by Western blotting. HRF-reactive IgE/IgG levels in longitudinal serum samples from patients with asthma exacerbations were also quantified. RESULTS: HRF-reactive IgE and total IgE levels were higher in patients with SA than in HCs, whereas HRF-reactive IgG (and IgG1) level was lower in asthmatic patients versus HCs. In comparison with HRF-reactive IgElow asthmatic patients, HRF-reactive IgEhigh asthmatic patients had a tendency to release more tryptase and prostaglandin D2 on anti-IgE stimulation of bronchoalveolar lavage cells. RV infection induced HRF secretion from adenovirus-12 SV40 hybrid virus transformed bronchial epithelial cells, and intranasal RV infection of human subjects induced increased HRF secretion in nasal washes. Asthmatic patients had higher levels of HRF-reactive IgE at the time of asthma exacerbations associated with RV infection, compared with those after the resolution. This phenomenon was not seen in asthma exacerbations without viral infections. CONCLUSIONS: HRF-reactive IgE is higher in patients with SA. RV infection induces HRF secretion from respiratory epithelial cells both in vitro and in vivo. These results suggest the role of HRF in asthma severity and RV-induced asthma exacerbation.


Assuntos
Asma , Infecções por Enterovirus , Infecções por Picornaviridae , Humanos , Animais , Camundongos , Histamina , Rhinovirus , Imunoglobulina E , Imunoglobulina G , Infecções por Picornaviridae/complicações
2.
Sci Adv ; 6(30): eaba3688, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32743071

RESUMO

Mechanisms linking immune sensing of DNA danger signals in the extracellular environment to innate pathways in the cytosol are poorly understood. Here, we identify a previously unidentified immune-metabolic axis by which cells respond to purine nucleosides and trigger a type I interferon-ß (IFN-ß) response. We find that depletion of ADA2, an ectoenzyme that catabolizes extracellular dAdo to dIno, or supplementation of dAdo or dIno stimulates IFN-ß. Under conditions of reduced ADA2 enzyme activity, dAdo is transported into cells and undergoes catabolysis by the cytosolic isoenzyme ADA1, driving intracellular accumulation of dIno. dIno is a functional immunometabolite that interferes with the cellular methionine cycle by inhibiting SAM synthetase activity. Inhibition of SAM-dependent transmethylation drives epigenomic hypomethylation and overexpression of immune-stimulatory endogenous retroviral elements that engage cytosolic dsRNA sensors and induce IFN-ß. We uncovered a previously unknown cellular signaling pathway that responds to extracellular DNA-derived metabolites, coupling nucleoside catabolism by adenosine deaminases to cellular IFN-ß production.

3.
J Biol Chem ; 294(27): 10519-10529, 2019 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-31126984

RESUMO

Human cytomegalovirus (HCMV) is a ß-herpesvirus that has co-evolved with the host immune system to establish lifelong persistence. HCMV encodes many immunomodulatory molecules, including the glycoprotein UL144. UL144 is a structural mimic of the tumor necrosis factor receptor superfamily member HVEM (herpesvirus entry mediator), which binds to the various ligands LIGHT, LTα, BTLA, CD160, and gD. However, in contrast to HVEM, UL144 only binds BTLA, inhibiting T-cell activation. Here, we report the crystal structure of the UL144-BTLA complex, revealing that UL144 utilizes residues from its N-terminal cysteine-rich domain 1 (CRD1) to interact uniquely with BTLA. The shorter CRD2 loop of UL144 also alters the relative orientation of BTLA binding with both N-terminal CRDs. By employing structure-guided mutagenesis, we have identified a mutant of BTLA (L123A) that interferes with HVEM binding but preserves UL144 interactions. Furthermore, our results illuminate structural differences between UL144 and HVEM that explain its binding selectivity and highlight it as a suitable scaffold for designing superior, immune inhibitory BTLA agonists.


Assuntos
Citomegalovirus/metabolismo , Glicoproteínas de Membrana/química , Receptores Imunológicos/metabolismo , Membro 14 de Receptores do Fator de Necrose Tumoral/química , Proteínas Virais/química , Sequência de Aminoácidos , Sítios de Ligação , Cristalografia por Raios X , Humanos , Glicoproteínas de Membrana/metabolismo , Mutagênese Sítio-Dirigida , Ligação Proteica , Receptores Imunológicos/química , Receptores Imunológicos/genética , Membro 14 de Receptores do Fator de Necrose Tumoral/metabolismo , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Alinhamento de Sequência , Proteínas Virais/metabolismo
4.
J Virol ; 93(16)2019 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-31142671

RESUMO

Cytomegalovirus (CMV) establishes a lifelong infection facilitated, in part, by circumventing immune defenses mediated by tumor necrosis factor (TNF)-family cytokines. An example of this is the mouse CMV (MCMV) m166 protein, which restricts expression of the TNF-related apoptosis-inducing ligand (TRAIL) death receptors, promoting early-phase replication. We show here that replication of an MCMV mutant lacking m166 is also severely attenuated during viral persistence in the salivary glands (SG). Depleting group I innate lymphoid cells (ILCs) or infecting Trail-/- mice completely restored persistent replication of this mutant. Group I ILCs are comprised of two subsets, conventional natural killer cells (cNK) and tissue-resident cells often referred to as innate lymphoid type I cells (ILC1). Using recently identified phenotypic markers to discriminate between these two cell types, their relative expression of TRAIL and gamma interferon (IFN-γ) was assessed during both early and persistent infection. ILC1 were found to be the major TRAIL expressers during both of these infection phases, with cNK expressing very little, indicating that it is ILC1 that curtail replication via TRAIL in the absence of m166-imposed countermeasures. Notably, despite high TRAIL expression by SG-resident ILC1, IFN-γ production by both ILC1 and cNK was minimal at this site of viral persistence. Together these results highlight TRAIL as a key ILC1-utilized effector molecule that can operate in defense against persistent infection at times when other innate control mechanisms may be muted and highlight the importance for the evolution of virus-employed countermeasures.IMPORTANCE Cytomegalovirus (a betaherpesvirus) is a master at manipulating immune responses to promote its lifelong persistence, a result of millions of years of coevolution with its host. Using a one-of-a-kind MCMV mutant unable to restrict expression of the TNF-related apoptosis-inducing ligand death receptors (TRAIL-DR), we show that TRAIL-DR signaling significantly restricts both early and persistent viral replication. Our results also reveal that these defenses are employed by TRAIL-expressing innate lymphoid type I cells (ILC1) but not conventional NK cells. Overall, our results are significant because they show the key importance of viral counterstrategies specifically neutralizing TRAIL effector functions mediated by a specific, tissue-resident subset of group I ILCs.


Assuntos
Infecções por Citomegalovirus/imunologia , Infecções por Citomegalovirus/metabolismo , Infecções por Citomegalovirus/virologia , Citomegalovirus/fisiologia , Imunidade Inata , Subpopulações de Linfócitos , Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Animais , Biomarcadores , Interações Hospedeiro-Patógeno/imunologia , Imunofenotipagem , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Fígado/imunologia , Fígado/metabolismo , Fígado/virologia , Camundongos , Camundongos Knockout , Muromegalovirus/fisiologia , Glândulas Salivares/imunologia , Glândulas Salivares/metabolismo , Glândulas Salivares/virologia
5.
J Virol ; 93(3)2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30487283

RESUMO

Human cytomegalovirus (HCMV) is a ubiquitous human herpesvirus. While HCMV infection is generally asymptomatic in the immunocompetent, it can have devastating consequences in those with compromised or underdeveloped immune systems, including transplant recipients and neonates. Galectins are a widely expressed protein family that have been demonstrated to modulate both antiviral immunity and regulate direct host-virus interactions. The potential for galectins to directly modulate HCMV infection has not previously been studied, and our results reveal that galectin-9 (Gal-9) can potently inhibit HCMV infection. Gal-9-mediated inhibition of HCMV was dependent upon its carbohydrate recognition domains and thus dependent on glycan interactions. Temperature shift studies revealed that Gal-9 specific inhibition was mediated primarily at the level of virus-cell fusion and not binding. Additionally, we found that during reactivation of HCMV in hematopoietic stem cell transplant (HSCT) patients soluble Gal-9 is upregulated. This study provides the first evidence for Gal-9 functioning as a potent antiviral defense effector molecule against HCMV infection and identifies it as a potential clinical candidate to restrict HCMV infections.IMPORTANCE Human cytomegalovirus (HCMV) continues to cause serious and often life-threatening disease in those with impaired or underdeveloped immune systems. This virus is able to infect and replicate in a wide range of human cell types, which enables the virus to spread to other individuals in a number of settings. Current antiviral drugs are associated with a significant toxicity profile, and there is no vaccine; these factors highlight a need to identify additional targets for the development of anti-HCMV therapies. We demonstrate for the first time that secretion of a member of the galectin family of proteins, galectin-9 (Gal-9), is upregulated during natural HCMV-reactivated infection and that this soluble cellular protein possesses a potent capacity to block HCMV infection by inhibiting virus entry into the host cell. Our findings support the possibility of harnessing the antiviral properties of Gal-9 to prevent HCMV infection and disease.


Assuntos
Infecções por Citomegalovirus/prevenção & controle , Citomegalovirus/patogenicidade , Galectinas/metabolismo , Ativação Viral , Internalização do Vírus , Replicação Viral , Adulto , Antivirais/metabolismo , Estudos de Casos e Controles , Células Cultivadas , Infecções por Citomegalovirus/metabolismo , Infecções por Citomegalovirus/virologia , Fibroblastos/citologia , Fibroblastos/metabolismo , Fibroblastos/virologia , Transplante de Células-Tronco Hematopoéticas , Humanos , Estudos Prospectivos , Transplantados
6.
Sci Rep ; 8(1): 13670, 2018 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-30209334

RESUMO

Innate immune cells quickly infiltrate the site of pathogen entry and not only stave off infection but also initiate antigen presentation and promote adaptive immunity. The recruitment of innate leukocytes has been well studied in the context of extracellular bacterial and fungal infection but less during viral infections. We have recently shown that the understudied cytokine Interleukin (IL)-17D can mediate neutrophil, natural killer (NK) cell and monocyte infiltration in sterile inflammation and cancer. Herein, we show that early immune cell accumulation at the peritoneal site of infection by mouse cytomegalovirus (MCMV) is mediated by IL-17D. Mice deficient in IL-17D or the transcription factor Nuclear factor (erythroid-derived 2)-like 2 (Nrf2), an inducer of IL-17D, featured an early decreased number of innate immune cells at the point of viral entry and were more susceptible to MCMV infection. Interestingly, we were able to artificially induce innate leukocyte infiltration by applying the Nrf2 activator tert-butylhydroquinone (tBHQ), which rendered mice less susceptible to MCMV infection. Our results implicate the Nrf2/IL-17D axis as a sensor of viral infection and suggest therapeutic benefit in boosting this pathway to promote innate antiviral responses.


Assuntos
Infecções por Herpesviridae/imunologia , Imunidade Inata/imunologia , Interleucina-17/imunologia , Muromegalovirus/imunologia , Fator 2 Relacionado a NF-E2/imunologia , Animais , Linhagem Celular Tumoral , Inibidores Enzimáticos/farmacologia , Hidroquinonas/farmacologia , Interleucina-17/genética , Células Matadoras Naturais/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Muromegalovirus/crescimento & desenvolvimento , Fator 2 Relacionado a NF-E2/genética , Neutrófilos/imunologia , Interferência de RNA , RNA Interferente Pequeno/genética
7.
J Exp Med ; 215(2): 575-594, 2018 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-29282254

RESUMO

Upon infection with an intracellular pathogen, cytotoxic CD8+ T cells develop diverse differentiation states characterized by function, localization, longevity, and the capacity for self-renewal. The program of differentiation is determined, in part, by FOXO1, a transcription factor known to integrate extrinsic input in order to specify survival, DNA repair, self-renewal, and proliferation. At issue is whether the state of T cell differentiation is specified by initial conditions of activation or is actively maintained. To study the spectrum of T cell differentiation, we have analyzed an infection with mouse cytomegalovirus, a persistent-latent virus that elicits different cytotoxic T cell responses characterized as acute resolving or inflationary. Our results show that FOXO1 is continuously required for all the phenotypic characteristics of memory-effector T cells such that with acute inactivation of the gene encoding FOXO1, T cells revert to a short-lived effector phenotype, exhibit reduced viability, and manifest characteristics of anergy.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Anergia Clonal , Proteína Forkhead Box O1/imunologia , Memória Imunológica , Transferência Adotiva , Animais , Antígenos Virais , Linfócitos T CD8-Positivos/citologia , Diferenciação Celular/imunologia , Sobrevivência Celular/imunologia , Proteína Forkhead Box O1/deficiência , Proteína Forkhead Box O1/genética , Fator 1-alfa Nuclear de Hepatócito/imunologia , Lectinas Tipo C , Ativação Linfocitária , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Muromegalovirus/imunologia , Receptores Imunológicos/imunologia
8.
J Biol Chem ; 293(4): 1317-1329, 2018 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-29242193

RESUMO

4-1BB (CD137) is a TNF receptor superfamily (TNFRSF) member that is thought to undergo receptor trimerization upon binding to its trimeric TNF superfamily ligand (4-1BBL) to stimulate immune responses. 4-1BB also can bind to the tandem repeat-type lectin galectin-9 (Gal-9), and signaling through mouse (m)4-1BB is reduced in galectin-9 (Gal-9)-deficient mice, suggesting a pivotal role of Gal-9 in m4-1BB activation. Here, using sulfur-SAD phasing, we determined the crystal structure of m4-1BB to 2.2-Å resolution. We found that similar to other TNFRSFs, m4-1BB has four cysteine-rich domains (CRDs). However, the organization of CRD1 and the orientation of CRD3 and CRD4 with respect to CRD2 in the m4-1BB structure distinctly differed from those of other TNFRSFs. Moreover, we mapped two Asn residues within CRD4 that are N-linked glycosylated and mediate m4-1BB binding to Gal-9. Kinetics studies of m4-1BB disclosed a very tight nanomolar binding affinity to m4-1BBL with an unexpectedly strong avidity effect. Both N- and C-terminal domains of Gal-9 bound m4-1BB, but with lower affinity compared with m4-1BBL. Although the TNF homology domain (THD) of human (h)4-1BBL forms non-covalent trimers, we found that m4-1BBL formed a covalent dimer via 2 cysteines absent in h4-1BBL. As multimerization and clustering is a prerequisite for TNFR intracellular signaling, and as m4-1BBL can only recruit two m4-1BB monomers, we hypothesize that m4-1BBL and Gal-9 act together to aid aggregation of m4-1BB monomers to efficiently initiate m4-1BB signaling.


Assuntos
Ligante 4-1BB/química , Galectinas/química , Transdução de Sinais , Membro 9 da Superfamília de Receptores de Fatores de Necrose Tumoral/química , Ligante 4-1BB/genética , Ligante 4-1BB/metabolismo , Animais , Cristalografia por Raios X , Galectinas/genética , Galectinas/metabolismo , Células HEK293 , Humanos , Camundongos , Domínios Proteicos , Estrutura Quaternária de Proteína , Membro 9 da Superfamília de Receptores de Fatores de Necrose Tumoral/genética , Membro 9 da Superfamília de Receptores de Fatores de Necrose Tumoral/metabolismo
9.
J Exp Med ; 214(12): 3611-3626, 2017 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-29030458

RESUMO

Recognition of pathogen-associated molecular patterns and danger-associated molecular patterns by host cells is an important step in innate immune activation. The DNA sensor cyclic guanosine monophosphate-adenosine monophosphate (cGAMP) synthase (cGAS) binds to DNA and produces cGAMP, which in turn binds to stimulator of interferon genes (STING) to activate IFN-I. Here we show that cGAMP has a noncanonical function in inflammasome activation in human and mouse cells. Inflammasome activation requires two signals, both of which are activated by cGAMP. cGAMP alone enhances expression of inflammasome components through IFN-I, providing the priming signal. Additionally, when combined with a priming signal, cGAMP activates the inflammasome through an AIM2, NLRP3, ASC, and caspase-1 dependent process. These two cGAMP-mediated functions, priming and activation, have differential requirements for STING. Temporally, cGAMP induction of IFN-I precedes inflammasome activation, which then occurs when IFN-I is waning. In mice, cGAS/cGAMP amplify both inflammasome and IFN-I to control murine cytomegalovirus. Thus, cGAMP activates the inflammasome in addition to IFN-I, and activation of both is needed to control infection by a DNA virus.


Assuntos
Inflamassomos/metabolismo , Nucleotídeos Cíclicos/metabolismo , Animais , Morte Celular/efeitos dos fármacos , DNA/metabolismo , Proteínas de Ligação a DNA/metabolismo , Interleucina-18/metabolismo , Interleucina-1beta/metabolismo , Lipopolissacarídeos/farmacologia , Proteínas de Membrana/metabolismo , Camundongos Endogâmicos C57BL , Muromegalovirus/fisiologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Nucleotidiltransferases/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
10.
J Virol ; 90(2): 650-8, 2016 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-26491148

RESUMO

UNLABELLED: CD4 T cells provide protection against cytomegalovirus (CMV) and other persistent viruses, and the ability to quantify and characterize epitope-specific responses is essential to gain a more precise understanding of their effector roles in this regard. Here, we report the first two I-A(d)-restricted CD4 T cell responses specific for mouse CMV (MCMV) epitopes and use a major histocompatibility complex class II (MHC-II) tetramer to characterize their phenotypes and functions. We demonstrate that MCMV-specific CD4 T cells can express high levels of granzyme B and kill target cells in an epitope- and organ-specific manner. In addition, CD4 T cell epitope vaccination of immunocompetent mice reduced MCMV replication in the same organs where CD4 cytotoxic T lymphocyte (CTL) activity was observed. Together, our studies show that MCMV epitope-specific CD4 T cells have the potential to mediate antiviral defense by multiple effector mechanisms in vivo. IMPORTANCE: CD4 T cells mediate immune protection by using their T cell receptors to recognize specific portions of viral proteins, called epitopes, that are presented by major histocompatibility complex class II (MHC-II) molecules on the surfaces of professional antigen-presenting cells (APCs). In this study, we discovered the first two epitopes derived from mouse cytomegalovirus (MCMV) that are recognized by CD4 T cells in BALB/c mice, a mouse strain commonly used to study the pathogenesis of this virus infection. Here, we report the sequences of these epitopes, characterize the CD4 T cells that recognize them to fight off MCMV infection, and show that we can use the epitopes to vaccinate mice and protect against MCMV.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Vacinas contra Citomegalovirus/imunologia , Citotoxicidade Imunológica , Muromegalovirus/imunologia , Animais , Sobrevivência Celular/efeitos dos fármacos , Granzimas/metabolismo , Camundongos Endogâmicos BALB C , Tombusviridae
11.
J Immunol ; 195(5): 2157-67, 2015 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-26232430

RESUMO

Cardif, also known as IPS-1, VISA, and MAVS, is an intracellular adaptor protein that functions downstream of the retinoic acid-inducible gene I family of pattern recognition receptors. Cardif is required for the production of type I IFNs and other inflammatory cytokines after retinoic acid-inducible gene I-like receptors recognize intracellular antigenic RNA. Studies have recently shown that Cardif may have other roles in the immune system in addition to its role in viral immunity. In this study, we find that the absence of Cardif alters normal NK cell development and maturation. Cardif(-/-) mice have a 35% loss of mature CD27(-)CD11b(+) NK cells in the periphery. In addition, Cardif(-/-) NK cells have altered surface marker expression, lower cytotoxicity, decreased intracellular STAT1 levels, increased apoptosis, and decreased proliferation compared with wild-type NK cells. Mixed chimeric mice revealed that the defective maturation and increased apoptotic rate of peripheral Cardif(-/-) NK cells is cell intrinsic. However, Cardif(-/-) mice showed enhanced control of mouse CMV (a DNA ß-herpesvirus) by NK cells, commensurate with increased activation and IFN-γ production by these immature NK cell subsets. These results indicate that the skewed differentiation and altered STAT expression of Cardif(-/-) NK cells can result in their hyperresponsiveness in some settings and support recent findings that Cardif-dependent signaling can regulate aspects of immune cell development and/or function distinct from its well-characterized role in mediating cell-intrinsic defense to RNA viruses.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/imunologia , Apoptose/imunologia , Diferenciação Celular/imunologia , Proliferação de Células , Células Matadoras Naturais/imunologia , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Apoptose/genética , Western Blotting , Diferenciação Celular/genética , Células Cultivadas , Citotoxicidade Imunológica/genética , Citotoxicidade Imunológica/imunologia , Feminino , Citometria de Fluxo , Infecções por Herpesviridae/genética , Infecções por Herpesviridae/imunologia , Infecções por Herpesviridae/virologia , Interferon gama/biossíntese , Interferon gama/imunologia , Células Matadoras Naturais/metabolismo , Fígado/imunologia , Fígado/metabolismo , Contagem de Linfócitos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Muromegalovirus/imunologia , Muromegalovirus/fisiologia , Células NIH 3T3 , Fator de Transcrição STAT1/imunologia , Fator de Transcrição STAT1/metabolismo , Baço/imunologia , Baço/metabolismo
12.
PLoS Pathog ; 10(8): e1004268, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25122141

RESUMO

TNF-related apoptosis inducing ligand (TRAIL) death receptors (DR) regulate apoptosis and inflammation, but their role in antiviral defense is poorly understood. Cytomegaloviruses (CMV) encode many immune-modulatory genes that shape host immunity, and they utilize multiple strategies to target the TNF-family cytokines. Here we show that the m166 open reading frame (orf) of mouse CMV (MCMV) is strictly required to inhibit expression of TRAIL-DR in infected cells. An MCMV mutant lacking m166 expression (m166stop) is severely compromised for replication in vivo, most notably in the liver, and depleting natural killer (NK) cells, or infecting TRAIL-DR-/- mice, restored MCMV-m166stop replication completely. These results highlight the critical importance for CMV to have evolved a strategy to inhibit TRAIL-DR signaling to thwart NK-mediated defenses.


Assuntos
Infecções por Citomegalovirus/imunologia , Células Matadoras Naturais/imunologia , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/imunologia , Proteínas Virais/imunologia , Animais , Western Blotting , Infecções por Citomegalovirus/metabolismo , Modelos Animais de Doenças , Citometria de Fluxo , Imunofluorescência , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Muromegalovirus/imunologia , Muromegalovirus/metabolismo , Células NIH 3T3 , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Proteínas Virais/metabolismo
13.
Cell Host Microbe ; 15(4): 471-83, 2014 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-24721575

RESUMO

During primary infection, murine cytomegalovirus (MCMV) spreads systemically, resulting in virus replication and pathology in multiple organs. This disseminated infection is ultimately controlled, but the underlying immune defense mechanisms are unclear. Investigating the role of the cytokine IL-22 in MCMV infection, we discovered an unanticipated function for neutrophils as potent antiviral effector cells that restrict viral replication and associated pathogenesis in peripheral organs. NK-, NKT-, and T cell-secreted IL-22 orchestrated antiviral neutrophil-mediated responses via induction in stromal nonhematopoietic tissue of the neutrophil-recruiting chemokine CXCL1. The antiviral effector properties of infiltrating neutrophils were directly linked to the expression of TNF-related apoptosis-inducing ligand (TRAIL). Our data identify a role for neutrophils in antiviral defense, and establish a functional link between IL-22 and the control of antiviral neutrophil responses that prevents pathogenic herpesvirus infection in peripheral organs.


Assuntos
Infecções por Herpesviridae/imunologia , Interleucinas/imunologia , Muromegalovirus/imunologia , Neutrófilos/imunologia , Ligante Indutor de Apoptose Relacionado a TNF/biossíntese , Animais , Antivirais , Quimiocina CXCL1/imunologia , Infecções por Herpesviridae/patologia , Células Matadoras Naturais/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Muromegalovirus/patogenicidade , Células T Matadoras Naturais/imunologia , Replicação Viral/imunologia , Interleucina 22
14.
J Immunol ; 191(2): 828-36, 2013 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-23761635

RESUMO

Lymphocyte activation is regulated by costimulatory and inhibitory receptors, of which both B and T lymphocyte attenuator (BTLA) and CD160 engage herpesvirus entry mediator (HVEM). Notably, it remains unclear how HVEM functions with each of its ligands during immune responses. In this study, we show that HVEM specifically activates CD160 on effector NK cells challenged with virus-infected cells. Human CD56(dim) NK cells were costimulated specifically by HVEM but not by other receptors that share the HVEM ligands LIGHT, Lymphotoxin-α, or BTLA. HVEM enhanced human NK cell activation by type I IFN and IL-2, resulting in increased IFN-γ and TNF-α secretion, and tumor cell-expressed HVEM activated CD160 in a human NK cell line, causing rapid hyperphosphorylation of serine kinases ERK1/2 and AKT and enhanced cytolysis of target cells. In contrast, HVEM activation of BTLA reduced cytolysis of target cells. Together, our results demonstrate that HVEM functions as a regulator of immune function that activates NK cells via CD160 and limits lymphocyte-induced inflammation via association with BTLA.


Assuntos
Antígenos CD/metabolismo , Células Matadoras Naturais/imunologia , Receptores Imunológicos/metabolismo , Membro 14 de Receptores do Fator de Necrose Tumoral/metabolismo , Antígeno CD56/metabolismo , Linhagem Celular , Ativação Enzimática , Proteínas Ligadas por GPI/metabolismo , Células HEK293 , Humanos , Inflamação , Interferon Tipo I/metabolismo , Interferon gama/metabolismo , Interleucina-2/metabolismo , Células Matadoras Naturais/metabolismo , Ativação Linfocitária , Linfotoxina-alfa/metabolismo , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Membro 14 de Receptores do Fator de Necrose Tumoral/imunologia , Transdução de Sinais , Linfócitos T/imunologia , Membro 14 da Superfamília de Ligantes de Fatores de Necrose Tumoral/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
15.
PLoS Pathog ; 9(3): e1003224, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23555243

RESUMO

The TRAIL (TNF-related apoptosis inducing ligand) death receptors (DRs) of the tumor necrosis factor receptor superfamily (TNFRSF) can promote apoptosis and regulate antiviral immunity by maintaining immune homeostasis during infection. In turn, human cytomegalovirus (HCMV) expresses immunomodulatory proteins that down-regulate cell surface expression of TNFRSF members as well as poliovirus receptor-related proteins in an effort to inhibit host immune effector pathways that would lead to viral clearance. The UL141 glycoprotein of human cytomegalovirus inhibits host defenses by blocking cell surface expression of TRAIL DRs (by retention in ER) and poliovirus receptor CD155, a nectin-like Ig-fold molecule. Here we show that the immunomodulatory function of HCMV UL141 is associated with its ability to bind diverse proteins, while utilizing at least two distinct binding sites to selectively engage TRAIL DRs or CD155. Binding studies revealed high affinity interaction of UL141 with both TRAIL-R2 and CD155 and low affinity binding to TRAIL-R1. We determined the crystal structure of UL141 bound to TRAIL-R2 at 2.1 Å resolution, which revealed that UL141 forms a homodimer that engages two TRAIL-R2 monomers 90° apart to form a heterotetrameric complex. Our structural and biochemical data reveal that UL141 utilizes its Ig-domain to facilitate non-canonical death receptor interactions while UL141 partially mimics the binding site of TRAIL on TRAIL-R2, which we found to be distinct from that of CD155. Moreover, UL141 also binds to an additional surface patch on TRAIL-R2 that is distinct from the TRAIL binding site. Therefore, the breadth of UL141-mediated effects indicates that HCMV has evolved sophisticated strategies to evade the immune system by modulating multiple effector pathways.


Assuntos
Citomegalovirus/metabolismo , Proteínas Adaptadoras de Sinalização de Receptores de Domínio de Morte/metabolismo , Receptores de Morte Celular/metabolismo , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Sítios de Ligação , Citomegalovirus/química , Proteínas Adaptadoras de Sinalização de Receptores de Domínio de Morte/química , Interações Hospedeiro-Patógeno , Humanos , Evasão da Resposta Imune/genética , Imunomodulação , Mutação , Ligação Proteica , Dobramento de Proteína , Estrutura Terciária de Proteína , Receptores de Morte Celular/química , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/química , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/genética
16.
J Virol ; 87(12): 6851-65, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23576505

RESUMO

Cytomegaloviruses (CMVs) establish lifelong infections that are controlled in part by CD4(+) and CD8(+) T cells. To promote persistence, CMVs utilize multiple strategies to evade host immunity, including modulation of costimulatory molecules on infected antigen-presenting cells. In humans, CMV-specific memory T cells are characterized by the loss of CD27 expression, which suggests a critical role of the costimulatory receptor-ligand pair CD27-CD70 for the development of CMV-specific T cell immunity. In this study, the in vivo role of CD27-CD70 costimulation during mouse CMV infection was examined. During the acute phase of infection, the magnitudes of CMV-specific CD4(+) and CD8(+) T cell responses were decreased in mice with abrogated CD27-CD70 costimulation. Moreover, the accumulation of inflationary memory T cells during the persistent phase of infection and the ability to undergo secondary expansion required CD27-CD70 interactions. The downmodulation of CD27 expression, however, which occurs gradually and exclusively on inflationary memory T cells, is ligand independent. Furthermore, the IL-2 production in both noninflationary and inflationary CMV-specific T cells was dependent on CD27-CD70 costimulation. Collectively, these results highlight the importance of the CD27-CD70 costimulation pathway for the development of CMV-specific T cell immunity during acute and persistent infection.


Assuntos
Ligante CD27/imunologia , Linfócitos T CD4-Positivos/imunologia , Infecções por Citomegalovirus/imunologia , Citomegalovirus/imunologia , Membro 7 da Superfamília de Receptores de Fatores de Necrose Tumoral/imunologia , Doença Aguda , Animais , Ligante CD27/metabolismo , Linfócitos T CD8-Positivos/imunologia , Doença Crônica , Citomegalovirus/patogenicidade , Infecções por Citomegalovirus/virologia , Humanos , Memória Imunológica/imunologia , Interleucina-2/biossíntese , Ativação Linfocitária , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Membro 7 da Superfamília de Receptores de Fatores de Necrose Tumoral/metabolismo
17.
Cell Host Microbe ; 13(3): 324-35, 2013 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-23498957

RESUMO

Death receptors (DRs) of the TNFR superfamily contribute to antiviral immunity by promoting apoptosis and regulating immune homeostasis during infection, and viral inhibition of DR signaling can alter immune defenses. Here we identify the human cytomegalovirus (HCMV) UL141 glycoprotein as necessary and sufficient to restrict TRAIL DR function. Despite showing no primary sequence homology to TNF family cytokines, UL141 binds the ectodomains of both human TRAIL DRs with affinities comparable to the natural ligand TRAIL. UL141 binding promotes intracellular retention of the DRs, thus protecting virus infected cells from TRAIL and TRAIL-dependent NK cell-mediated killing. The identification of UL141 as a herpesvirus modulator of the TRAIL DRs strongly implicates this pathway as a regulator of host defense to HCMV and highlights UL141 as a pleiotropic inhibitor of NK cell effector function.


Assuntos
Infecções por Citomegalovirus/imunologia , Citomegalovirus/imunologia , Imunidade Inata , Glicoproteínas de Membrana/imunologia , Glicoproteínas de Membrana/metabolismo , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/imunologia , Proteínas Virais/imunologia , Proteínas Virais/metabolismo , Citomegalovirus/genética , Citomegalovirus/metabolismo , Infecções por Citomegalovirus/genética , Infecções por Citomegalovirus/metabolismo , Infecções por Citomegalovirus/virologia , Interações Hospedeiro-Patógeno , Humanos , Células Matadoras Naturais/imunologia , Glicoproteínas de Membrana/genética , Ligação Proteica , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/genética , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Proteínas Virais/genética
18.
Nat Rev Drug Discov ; 12(2): 147-68, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23334208

RESUMO

Inhibitors of tumour necrosis factor (TNF) are among the most successful protein-based drugs (biologics) and have proven to be clinically efficacious at reducing inflammation associated with several autoimmune diseases. As a result, attention is focusing on the therapeutic potential of additional members of the TNF superfamily of structurally related cytokines. Many of these TNF-related cytokines or their cognate receptors are now in preclinical or clinical development as possible targets for modulating inflammatory diseases and cancer as well as other indications. This Review focuses on the biologics that are currently in clinical trials for immune-related diseases and other syndromes, discusses the successes and failures to date as well as the expanding therapeutic potential of modulating the activity of this superfamily of molecules.


Assuntos
Inflamação/tratamento farmacológico , Inflamação/imunologia , Receptores do Fator de Necrose Tumoral/imunologia , Inibidores do Fator de Necrose Tumoral , Fatores de Necrose Tumoral/imunologia , Animais , Ensaios Clínicos como Assunto , Humanos , Inflamação/metabolismo , Terapia de Alvo Molecular/métodos , Receptores do Fator de Necrose Tumoral/metabolismo , Fatores de Necrose Tumoral/metabolismo
19.
J Exp Med ; 209(11): 1903-6, 2012 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-23091198

RESUMO

Since the discovery of TNF-related apoptosis-inducing ligand (TRAIL) and its network of receptors, the majority of attention has focused on the clinical potential of manipulating this pathway in cancer therapy. However, the widespread expression of TRAIL under inflammatory conditions and the ability to induce both apoptotic and prosurvival signaling pathways has suggested that TRAIL plays broader roles in regulating immune processes. Two new studies now show that expression of TRAIL by neutrophils in the lung facilitates defenses against bacterial pathogens, whereas expression of TRAIL by cells within arterioles exacerbates vascular disease. These differentiating results highlight that the context of TRAIL signaling can determine whether the outcome is beneficial or pathogenic for the host.


Assuntos
Apoptose/imunologia , Imunidade/imunologia , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/imunologia , Transdução de Sinais/imunologia , Ligante Indutor de Apoptose Relacionado a TNF/imunologia , Animais , Sobrevivência Celular/imunologia , Humanos , Modelos Imunológicos , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Ligante Indutor de Apoptose Relacionado a TNF/metabolismo
20.
J Virol ; 85(10): 5208-12, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21411536

RESUMO

Cytomegaloviruses (CMV) utilize a variety of immunomodulatory strategies to facilitate the establishment of lifelong persistence in their infected hosts. We show that the mouse CMV (MCMV) m155 open reading frame (ORF) is required for the posttranscriptional inhibition of CD40 expression in infected antigen-presenting cells. Consistent with the known importance of CD40-mediated costimulation of T cells, a m155-deficient virus induces enhanced MCMV epitope-specific CD4 T cell responses.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Antígenos CD40/antagonistas & inibidores , Glicoproteínas/metabolismo , Muromegalovirus/imunologia , Muromegalovirus/patogenicidade , Proteínas Virais/metabolismo , Animais , Glicoproteínas/imunologia , Camundongos , Proteínas Virais/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA