Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Hum Mutat ; 41(1): 299-315, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31595648

RESUMO

We report 281 individuals carrying a pathogenic recurrent NF1 missense variant at p.Met1149, p.Arg1276, or p.Lys1423, representing three nontruncating NF1 hotspots in the University of Alabama at Birmingham (UAB) cohort, together identified in 1.8% of unrelated NF1 individuals. About 25% (95% confidence interval: 20.5-31.2%) of individuals heterozygous for a pathogenic NF1 p.Met1149, p.Arg1276, or p.Lys1423 missense variant had a Noonan-like phenotype, which is significantly more compared with the "classic" NF1-affected cohorts (all p < .0001). Furthermore, p.Arg1276 and p.Lys1423 pathogenic missense variants were associated with a high prevalence of cardiovascular abnormalities, including pulmonic stenosis (all p < .0001), while p.Arg1276 variants had a high prevalence of symptomatic spinal neurofibromas (p < .0001) compared with "classic" NF1-affected cohorts. However, p.Met1149-positive individuals had a mild phenotype, characterized mainly by pigmentary manifestations without externally visible plexiform neurofibromas, symptomatic spinal neurofibromas or symptomatic optic pathway gliomas. As up to 0.4% of unrelated individuals in the UAB cohort carries a p.Met1149 missense variant, this finding will contribute to more accurate stratification of a significant number of NF1 individuals. Although clinically relevant genotype-phenotype correlations are rare in NF1, each affecting only a small percentage of individuals, together they impact counseling and management of a significant number of the NF1 population.


Assuntos
Alelos , Estudos de Associação Genética , Predisposição Genética para Doença , Mutação de Sentido Incorreto , Neurofibromatose 1/diagnóstico , Neurofibromatose 1/genética , Neurofibromina 1/genética , Substituição de Aminoácidos , Estudos Transversais , Heterozigoto , Humanos , Fenótipo
2.
Hum Mol Genet ; 28(13): 2133-2142, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-30806661

RESUMO

Hereditary multiple osteochondromas (HMO) is a rare autosomal dominant skeletal disorder, caused by heterozygous variants in either EXT1 or EXT2, which encode proteins involved in the biogenesis of heparan sulphate. Pathogenesis and genotype-phenotype correlations remain poorly understood. We studied 114 HMO families (158 affected individuals) with causative EXT1 or EXT2 variants identified by Sanger sequencing, or multiplex ligation-dependent probe amplification and qPCR. Eighty-seven disease-causative variants (55 novel and 32 known) were identified including frameshift (42%), nonsense (32%), missense (11%), splicing (10%) variants and genomic rearrangements (5%). Informative clinical features were available for 42 EXT1 and 27 EXT2 subjects. Osteochondromas were more frequent in EXT1 as compared to EXT2 patients. Anatomical distribution of lesions showed significant differences based on causative gene. Microscopy analysis for selected EXT1 and EXT2 variants verified that EXT1 and EXT2 mutants failed to co-localize each other and loss Golgi localization by surrounding the nucleus and/or assuming a diffuse intracellular distribution. In a cell viability study, cells expressing EXT1 and EXT2 mutants proliferated more slowly than cells expressing wild-type proteins. This confirms the physiological relevance of EXT1 and EXT2 Golgi co-localization and the key role of these proteins in the cell cycle. Taken together, our data expand genotype-phenotype correlations, offer further insights in the pathogenesis of HMO and open the path to future therapies.


Assuntos
Exostose Múltipla Hereditária/genética , N-Acetilglucosaminiltransferases/genética , Proliferação de Células , Sobrevivência Celular , Feminino , Estudos de Associação Genética , Complexo de Golgi/enzimologia , Células HEK293 , Humanos , Masculino , Mutação , N-Acetilglucosaminiltransferases/análise
3.
Gene ; 515(2): 339-48, 2013 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-23262345

RESUMO

BACKGROUND: Hereditary multiple exostosis represents the most frequent bone tumor disease in humans. It consists of cartilage deformities affecting the juxta-ephyseal region of long bones. Usually benign, exostosis could degenerate in malignant chondrosarcoma form in less than 5% of the cases. Being caused by mutations in the predicted tumor suppressor genes, EXT1 (chr 8q23-q24) and EXT2 (chr 11p11-p12) genes, HMEs are usually inherited with an autosomal dominant pattern, although "de novo" cases are not infrequent. AIM: Here we present our genetic diagnostic report on the largest Southern Italy cohort of HME patients consisting of 90 subjects recruited over the last 5years. RESULTS: Molecular screening performed by direct sequencing of both EXT1 and EXT2 genes, by MLPA and Array CGH analyses led to the identification of 66 mutations (56 different occurrences) and one large EXT2 deletion out of 90 patients (74.4%). The total of 21 mutations (20 different occurrences, 33.3%) and the EXT2 gene deletion were novel. In agreement with literature data, EXT1 gene mutations were scattered along all the protein sequence, while EXT2 lesions fell in the first part of the protein. Conservation, damaging prediction and 3-D modeling, in-silico, analyses, performed on three novel missense variants, confirmed that at least in two cases the novel aminoacidic changes could alter the structure stability causing a strong protein misfolding. CONCLUSIONS: Here we present 20 novel EXT1/EXT2 mutations and one large EXT2 deletion identified in the largest Southern Italy cohort of patients affected by hereditary multiple exostosis.


Assuntos
Exostose Múltipla Hereditária/genética , N-Acetilglucosaminiltransferases/genética , Mutação Puntual , Deleção de Sequência , Adolescente , Adulto , Idoso , Sequência de Aminoácidos , Sequência de Bases , Criança , Pré-Escolar , Estudos de Coortes , Hibridização Genômica Comparativa , Sequência Conservada , Análise Mutacional de DNA , Feminino , Estudos de Associação Genética , Humanos , Lactente , Itália , Masculino , Pessoa de Meia-Idade , Modelos Moleculares , Dados de Sequência Molecular , Mutação de Sentido Incorreto , Linhagem , Polimorfismo de Nucleotídeo Único , Isoformas de Proteínas/genética , Estrutura Terciária de Proteína , Adulto Jovem
4.
Genet Med ; 12(7): 431-9, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20531206

RESUMO

PURPOSE: Nail-Patella syndrome (MIM 161200) is a rare autosomal dominant disorder characterized by hypoplastic or absent patellae, dystrophic nails, dysplasia of the elbows, and iliac horn. In 40% of cases, a glomerular defect is present and, less frequently, ocular damage is observed. Inter- and intrafamilial variable expressivity of the clinical phenotype is a common finding. Mutations in the human LMX1B gene have been demonstrated to be responsible for Nail-Patella syndrome in around 80% of cases. METHODS: Standard polymerase chain reaction and sequencing methods were used for mutation and single nucleotide polymorphism identification and control of cloned sequences. Array-CGH (Agilent, 244A Kit) was used for detection of deletions. Standard cloning techniques and the Snapshot method were used for analysis of mosaicism. RESULTS: In this study, we present the results of LMX1B screening of 20 Nail-Patella syndrome patients. The molecular defect was found in 17 patients. We report five novel mutations and a approximately 2 Mb deletion in chromosome 9q encompassing the entire LMX1B gene in a patient with a complex phenotype. We present evidence of somatic mosaicism in unaffected parents in two cases, which, to our knowledge, are the first reported cases of inheritance of a mutated LMX1B allele in Nail-Patella syndrome patients from a mosaic parent. CONCLUSION: The study of the described case series provides some original observations in an "old" genetic disorder.


Assuntos
Deleção Cromossômica , Proteínas de Homeodomínio/genética , Mosaicismo , Síndrome da Unha-Patela/genética , Mutação Puntual/genética , Fatores de Transcrição/genética , Criança , Cromossomos Humanos Par 9/genética , Hibridização Genômica Comparativa , Feminino , Humanos , Proteínas com Homeodomínio LIM , Masculino , Análise de Sequência com Séries de Oligonucleotídeos , Pais , Linhagem , Reação em Cadeia da Polimerase , Polimorfismo de Nucleotídeo Único , Prognóstico
5.
BMC Med Genet ; 5: 8, 2004 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-15084222

RESUMO

BACKGROUND: Cystic fibrosis (CF) is a multisystem disorder characterised by mutations of the CFTR gene, which encodes for an important component in the coordination of electrolyte movement across of epithelial cell membranes. Symptoms are pulmonary disease, pancreatic exocrine insufficiency, male infertility and elevated sweat concentrations. The CFTR gene has numerous mutations (>1000) and functionally important polymorphisms (>200). Early identification is important to provide appropriate therapeutic interventions, prognostic and genetic counselling and to ensure access to specialised medical services. However, molecular diagnosis by direct mutation screening has proved difficult in certain ethnic groups due to allelic heterogeneity and variable frequency of causative mutations. METHODS: We applied a gene scanning approach using DHPLC system for analysing specifically all CFTR exons and characterise sequence variations in a subgroup of CF Italian patients from the Lazio region (Central Italy) characterised by an extensive allelic heterogeneity. RESULTS: We have identified a total of 36 different mutations representing 88% of the CF chromosomes. Among these are two novel CFTR mutations, including one missense (H199R) and one microdeletion (4167delCTAAGCC). CONCLUSION: Using this approach, we were able to increase our standard power rate of mutation detection of about 11% (77% vs. 88%).


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Fibrose Cística/genética , Análise Mutacional de DNA/métodos , Análise Mutacional de DNA/tendências , Mutação/genética , Regiões 5' não Traduzidas/genética , Criança , Estudos de Coortes , Regulador de Condutância Transmembrana em Fibrose Cística/genética , DNA/sangue , DNA/genética , Éxons/genética , Testes Genéticos/métodos , Humanos , Íntrons/genética , Itália , Leucócitos/química , Mutação de Sentido Incorreto/genética , Desnaturação de Ácido Nucleico , Polimorfismo Genético/genética , Deleção de Sequência/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA