Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Cancer Res ; 83(15): 2600-2613, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37145128

RESUMO

Somatic mutational profiling is increasingly being used to identify potential targets for breast cancer. However, limited tumor-sequencing data from Hispanic/Latinas (H/L) are available to guide treatment. To address this gap, we performed whole-exome sequencing (WES) and RNA sequencing on 146 tumors and WES of matched germline DNA from 140 H/L women in California. Tumor intrinsic subtype, somatic mutations, copy-number alterations, and expression profiles of the tumors were characterized and compared with data from tumors of non-Hispanic White (White) women in The Cancer Genome Atlas (TCGA). Eight genes were significantly mutated in the H/L tumors including PIK3CA, TP53, GATA3, MAP3K1, CDH1, CBFB, PTEN, and RUNX1; the prevalence of mutations in these genes was similar to that observed in White women in TCGA. Four previously reported Catalogue of Somatic Mutations in Cancer (COSMIC) mutation signatures (1, 2, 3, 13) were found in the H/L dataset, along with signature 16 that has not been previously reported in other breast cancer datasets. Recurrent amplifications were observed in breast cancer drivers including MYC, FGFR1, CCND1, and ERBB2, as well as a recurrent amplification in 17q11.2 associated with high KIAA0100 gene expression that has been implicated in breast cancer aggressiveness. In conclusion, this study identified a higher prevalence of COSMIC signature 16 and a recurrent copy-number amplification affecting expression of KIAA0100 in breast tumors from H/L compared with White women. These results highlight the necessity of studying underrepresented populations. SIGNIFICANCE: Comprehensive characterization of genomic and transcriptomic alterations in breast tumors from Hispanic/Latina patients reveals distinct genetic alterations and signatures, demonstrating the importance of inclusive studies to ensure equitable care for patients. See related commentary by Schmit et al., p. 2443.


Assuntos
Neoplasias da Mama , Hispânico ou Latino , Feminino , Humanos , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Hispânico ou Latino/genética , Mutação , Transcriptoma
2.
Eur Urol ; 79(1): 141-149, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33148472

RESUMO

BACKGROUND: Distinguishing indolent from aggressive prostate cancer remains a key challenge for decision making regarding prostate cancer management. A growing number of biomarkers are now available to help address this need, but these have rarely been examined together in the same patients to determine their potentially additive value. OBJECTIVE: To determine whether two previously validated plasma markers (transforming growth factor ß1 [TGFß1] and interleukin-6 soluble receptor [IL6-SR]) and two validated tissue scores (the Genomic Evaluators of Metastatic Prostate Cancer [GEMCaP] and cell cycle progression [CCP] scores) can improve on clinical parameters in predicting adverse pathology after prostatectomy, and how much they vary within tumors with heterogeneous Gleason grade. DESIGN, SETTING, AND PARTICIPANTS: A case-control study was conducted among men with low-risk cancers defined by biopsy grade group (GG) 1, prostate-specific antigen (PSA) ≤10 ng/mL, and clinical stage ≤ T2 who underwent immediate prostatectomy. We collected paraffin-fixed prostatectomy tissue and presurgical plasma samples from 381 cases from the University of California, San Francisco, and 260 cases from the University of Washington. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS: Pathologic outcomes were minor upgrading/upstaging (GG 2 or pT3a) or major upgrading/upstaging (GG ≥ 3 or ≥ pT3b), and multinomial regression was performed to determine putative markers' ability to predict these outcomes, controlling for PSA, percent of positive biopsy cores, age, and clinical site. For upgraded tumors, a secondary analysis of the GEMCaP and CCP scores from the higher-grade tumor was also performed to evaluate for heterogeneity. RESULTS AND LIMITATIONS: Overall, 357 men had no upgrading/upstaging event at prostatectomy, 236 had a minor event, and 67 had a major event. Neither TGFß1 nor IL6-SR was statistically significantly associated with any upgrading/upstaging. On the contrary, both the CCP and the GEMCaP score obtained from Gleason pattern 3 tissue were directly associated with minor and major upgrading/upstaging on univariate analysis. The two scores correlated with each other, but weakly. On multinomial analysis including both scores in the model, the CCP score predicted minor upgrading/upstaging (odds ratio [OR] 1.62, 95% confidence interval [CI] 1.05-2.49) and major upgrading/upstaging (OR 2.26, 95% CI 1.05-4.90), p =  0.04), and the GEMCaP score also predicted minor upgrading/upstaging (OR 1.05, 95% CI 1.03-1.08) and major upgrading/upstaging (OR 1.07, 95% CI 1.04-1.11), p <  0.01). The other clinical parameters were not significant in this model. Among upgraded tumors including both Gleason patterns 3 and 4, both the GEMCaP and the CCP score tended to be higher from the higher-grade tumor. The main limitation was the use of virtual biopsies from prostatectomy tissue as surrogates for prostate biopsies. CONCLUSIONS: Biomarker signatures based on analyses of both DNA and RNA significantly and independently predict adverse pathology among men with clinically low-risk prostate cancer undergoing prostatectomy. PATIENT SUMMARY: Validated biomarker scores derived from both prostate cancer DNA and prostate cancer RNA can add independent information to help predict outcomes after prostatectomy.


Assuntos
Biomarcadores Tumorais/análise , Neoplasias da Próstata/química , Neoplasias da Próstata/patologia , Idoso , Estudos de Casos e Controles , Humanos , Masculino , Pessoa de Meia-Idade , Valor Preditivo dos Testes , Prostatectomia , Neoplasias da Próstata/cirurgia
3.
Exp Hematol ; 90: 65-71.e1, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32946981

RESUMO

The finding that transformed mouse B-1 and B-2 progenitors give rise to B-cell acute lymphoblastic leukemias (B-ALLs) with varied aggressiveness suggests that B-cell lineage might also be a factor in the initiation and progression of pediatric B-ALLs in humans. If this is the case, we hypothesized that human pediatric B-ALLs would share gene expression patterns with mouse B-1 or B-2 progenitors. We tested this premise by deriving a distinct 30-gene B-1 and B-2 progenitor signature that was applied to a microarray data set of human pediatric ALLs. Cluster analysis revealed that CRLF2, E2A-PBX1, ERG, and ETV6-RUNX1 leukemias were B-1-like, whereas BCR-ABL1, hyperdiploid, and MLL leukemias were B-2-like. Examination of the 30-gene signature in two independent data sets of pediatric ALLs supported this result. Our data suggest that common genetic subtypes of human ALL have their origin in the B-1 or B-2 lineage.


Assuntos
Perfilação da Expressão Gênica , Regulação Leucêmica da Expressão Gênica , Proteínas de Neoplasias , Leucemia-Linfoma Linfoblástico de Células T Precursoras , Transcriptoma , Animais , Criança , Humanos , Camundongos , Proteínas de Neoplasias/biossíntese , Proteínas de Neoplasias/genética , Leucemia-Linfoma Linfoblástico de Células T Precursoras/classificação , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células T Precursoras/metabolismo
4.
BMC Bioinformatics ; 19(1): 196, 2018 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-29848293

RESUMO

BACKGROUND: Three dimensional (3D) genome spatial organization is critical for numerous cellular functions, including transcription, while certain conformation-driven structural alterations are frequently oncogenic. Genome conformation had been difficult to elucidate but the advent chromatin conformation capture assays, notably Hi-C, has transformed understanding of chromatin architecture and yielded numerous biological insights. Although most of these findings have flowed from analysis of proximity data produced by these assays, added value in generating 3D reconstructions has been demonstrated, deriving, in part, from superposing genomic features on the reconstruction. However, advantages of 3D structure-based analyses are clearly conditional on the accuracy of the attendant reconstructions, which is difficult to assess. Proponents of competing reconstruction algorithms have evaluated their accuracy by recourse to simulation of toy structures and/or limited fluorescence in situ hybridization (FISH) imaging that features a handful of low resolution probes. Accordingly, new methods of reconstruction accuracy assessment are needed. RESULTS: Here we utilize two recently devised assays to develop methodology for assessing 3D reconstruction accuracy. Multiplex FISH increases the number of probes by an order of magnitude and hence the number of inter-probe distances by two orders, providing sufficient information for structure-level evaluation via mean-squared deviations (MSD). Crucially, underscoring multiplex FISH applications are large numbers of coordinate-system aligned replicates that provide the basis for a referent distribution for MSD statistics. Using this system we show that reconstructions based on Hi-C data for IMR90 cells are accurate for some chromosomes but not others. The second new assay, genome architecture mapping, utilizes large numbers of thin cryosections to obtain a measure of proximity. We exploit the planarity of the cryosections - not used in inferring proximity - to obtain measures of reconstruction accuracy, with referents provided via resampling. Application to mouse embryonic stem cells shows reconstruction accuracies that vary by chromosome. CONCLUSIONS: We have developed methods for assessing the accuracy of 3D genome reconstructions that exploit features of recently advanced multiplex FISH and genome architecture mapping assays. These approaches can help overcome the absence of gold standards for making such assessments which are important in view of the considerable uncertainties surrounding 3D genome reconstruction.


Assuntos
Genoma , Genômica/métodos , Animais , Cromossomos de Mamíferos , Confiabilidade dos Dados , Hibridização in Situ Fluorescente , Camundongos , Conformação Molecular
5.
Nat Commun ; 9(1): 485, 2018 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-29396395

RESUMO

Pancreatic ß cells are highly specialized to regulate systemic glucose levels by secreting insulin. In adults, increase in ß-cell mass is limited due to brakes on cell replication. In contrast, proliferation is robust in neonatal ß cells that are functionally immature as defined by a lower set point for glucose-stimulated insulin secretion. Here we show that ß-cell proliferation and immaturity are linked by tuning expression of physiologically relevant, non-oncogenic levels of c-Myc. Adult ß cells induced to replicate adopt gene expression and metabolic profiles resembling those of immature neonatal ß that proliferate readily. We directly demonstrate that priming insulin-producing cells to enter the cell cycle promotes a functionally immature phenotype. We suggest that there exists a balance between mature functionality and the ability to expand, as the phenotypic state of the ß cell reverts to a less functional one in response to proliferative cues.


Assuntos
Proliferação de Células/genética , Células Secretoras de Insulina/citologia , Proteínas Proto-Oncogênicas c-myc/genética , Animais , Ciclo Celular , Diferenciação Celular/genética , Divisão Celular/genética , Expressão Gênica , Insulina/metabolismo , Secreção de Insulina , Células Secretoras de Insulina/metabolismo , Ilhotas Pancreáticas/citologia , Camundongos , Camundongos Transgênicos , Fenótipo
6.
Neuro Oncol ; 20(5): 632-641, 2018 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-29077933

RESUMO

Background: Rare multicentric lower-grade gliomas (LGGs) represent a unique opportunity to study the heterogeneity among distinct tumor foci in a single patient and to infer their origins and parallel patterns of evolution. Methods: In this study, we integrate clinical features, histology, and immunohistochemistry for 4 patients with multicentric LGG, arising both synchronously and metachronously. For 3 patients we analyze the phylogeny of the lesions using exome sequencing, including one case with a total of 8 samples from the 2 lesions. Results: One patient was diagnosed with multicentric isocitrate dehydrogenase 1 (IDH1) mutated diffuse astrocytomas harboring distinct IDH1 mutations, R132H and R132C; the latter mutation has been associated with Li-Fraumeni syndrome, which was subsequently confirmed in the patient's germline DNA and shown in additional cases with The Cancer Genome Atlas data. In another patient, phylogenetic analysis of synchronously arising grade II and grade III diffuse astrocytomas demonstrated a single shared mutation, IDH1 R132H, and revealed convergent evolution via non-overlapping mutations in ATRX and TP53. In 2 cases, there was divergent evolution of IDH1-mutated and 1p/19q-codeleted oligodendroglioma and IDH1-mutated and 1p/19q-intact diffuse astrocytoma, occurring synchronously in one case and metachronously in a second. Conclusions: Each tumor in multicentric LGG cases may arise independently or may diverge very early in their development, presenting as genetically and histologically distinct tumors. Comprehensive sampling of these lesions can therefore significantly alter diagnosis and management. Additionally, somatic IDH1 R132C mutation in either multicentric or solitary LGG identifies unsuspected germline TP53 mutation, validating the limited number of published cases.


Assuntos
Biomarcadores Tumorais/genética , Neoplasias Encefálicas/genética , Evolução Clonal , Genômica/métodos , Glioma/genética , Mutação , Adulto , Neoplasias Encefálicas/patologia , Feminino , Glioma/patologia , Humanos , Masculino , Pessoa de Meia-Idade , Gradação de Tumores , Filogenia , Adulto Jovem
7.
J Urol ; 199(3): 719-725, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-28941923

RESUMO

PURPOSE: We aimed to validate GEMCaP (Genomic Evaluators of Metastatic Cancer of the Prostate) as a novel copy number signature predictive of prostate cancer recurrence. MATERIALS AND METHODS: We randomly selected patients who underwent radical prostatectomy at Cleveland Clinic or University of Rochester from 2000 to 2005. DNA isolated from the cancer region was extracted and subjected to high resolution array comparative genomic hybridization. A high GEMCaP score was defined as 20% or greater of genomic loci showing copy number gain or loss in a given tumor. Cox regression was used to evaluate associations between the GEMCaP score and the risk of biochemical recurrence. RESULTS: We report results in 140 patients. Overall 38% of patients experienced recurrence with a median time to recurrence of 45 months. Based on the CAPRA-S (Cancer of the Prostate Risk Assessment Post-Surgical) score 39% of the patients were at low risk, 42% were at intermediate risk and 19% were at high risk. The GEMCaP score was high (20% or greater) in 31% of the cohort. A high GEMCaP score was associated with a higher risk of biochemical recurrence (HR 2.69, 95% CI 1.51-4.77) and it remained associated after adjusting for CAPRA-S score and age (HR 1.94, 95% CI 1.06-3.56). The C-index of GEMCaP alone was 0.64, which improved when combined with the CAPRA-S score and patient age (C-index = 0.75). CONCLUSIONS: A high GEMCaP score was associated with biochemical recurrence in 2 external cohorts. This remained true after adjusting for clinical and pathological factors. The GEMCaP biomarker could be an efficient and effective clinical risk assessment tool to identify patients with prostate cancer for early adjuvant therapy.


Assuntos
DNA de Neoplasias/genética , Recidiva Local de Neoplasia/diagnóstico , Próstata/patologia , Prostatectomia/métodos , Neoplasias da Próstata/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Biomarcadores Tumorais/sangue , Hibridização Genômica Comparativa , Seguimentos , Humanos , Masculino , Pessoa de Meia-Idade , Recidiva Local de Neoplasia/genética , Recidiva Local de Neoplasia/metabolismo , Valor Preditivo dos Testes , Prognóstico , Antígeno Prostático Específico/sangue , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/cirurgia , Estudos Retrospectivos , Medição de Risco
8.
Proc Natl Acad Sci U S A ; 114(40): 10743-10748, 2017 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-28916733

RESUMO

IDH1 mutation is the earliest genetic alteration in low-grade gliomas (LGGs), but its role in tumor recurrence is unclear. Mutant IDH1 drives overproduction of the oncometabolite d-2-hydroxyglutarate (2HG) and a CpG island (CGI) hypermethylation phenotype (G-CIMP). To investigate the role of mutant IDH1 at recurrence, we performed a longitudinal analysis of 50 IDH1 mutant LGGs. We discovered six cases with copy number alterations (CNAs) at the IDH1 locus at recurrence. Deletion or amplification of IDH1 was followed by clonal expansion and recurrence at a higher grade. Successful cultures derived from IDH1 mutant, but not IDH1 wild type, gliomas systematically deleted IDH1 in vitro and in vivo, further suggestive of selection against the heterozygous mutant state as tumors progress. Tumors and cultures with IDH1 CNA had decreased 2HG, maintenance of G-CIMP, and DNA methylation reprogramming outside CGI. Thus, while IDH1 mutation initiates gliomagenesis, in some patients mutant IDH1 and 2HG are not required for later clonal expansions.


Assuntos
Epigenômica , Amplificação de Genes , Glioma/genética , Isocitrato Desidrogenase/genética , Mutação , Recidiva Local de Neoplasia/genética , Deleção de Sequência , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Variações do Número de Cópias de DNA , Metilação de DNA , Perfilação da Expressão Gênica , Glioma/patologia , Glutaratos/metabolismo , Humanos , Isocitrato Desidrogenase/metabolismo , Recidiva Local de Neoplasia/metabolismo , Recidiva Local de Neoplasia/patologia , Células Tumorais Cultivadas
9.
BMC Bioinformatics ; 16: 373, 2015 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-26553003

RESUMO

BACKGROUND: The three-dimensional (3D) configuration of chromosomes within the eukaryote nucleus is an important factor for several cellular functions, including gene expression regulation, and has also been linked with cancer-causing translocation events. While visualization of such architecture remains limited to low resolutions, the ability to infer structures at increasing resolutions has been enabled by recently-devised chromosome conformation capture techniques. In particular, when coupled with next generation sequencing, such methods yield an inventory of genome-wide chromatin contacts or interactions. Various algorithms have been advanced to operate on such contact data to produce reconstructed 3D configurations. Studies have shown that these reconstructions can provide added value over raw interaction data with respect to downstream biological insights. However, only limited, low-resolution reconstructions have been realized for mammals due to computational bottlenecks. RESULTS: Here we propose a two-stage algorithm to partially overcome these computational barriers. The central idea is to initially utilize existing reconstruction techniques on an individual chromosome basis, using intra-chromosomal contacts, and then to relatively position these chromosome-level reconstructions using inter-chromosomal contacts. This two-stage strategy represents a natural approach in view of the within- versus between- chromosome distribution of contacts. It can increase resolution ≈ 20 fold for mouse and human. After describing the algorithm we present 3D architectures for mouse embryonic stem cells and human lymphoblastoid cells. We evaluate the impact of several factors on reconstruction reproducibility and explore a variety of sampling schemes. We further analyze replicate data at differing resolutions obtained from recently devised in situ Hi-C assays. In all instances we demonstrate insensitivity of the whole-genome 3D reconstruction obtained by the two-stage algorithm to the sampling strategy used. CONCLUSIONS: Our two-stage algorithm has the potential to significantly increase the resolution of 3D genome reconstructions. The improvements are such that we can progress from 1 Mb resolution to 100 kb resolution, notable since this latter value has been identified as critical to inferring topological domains in analyses performed on the contact (rather than 3D) level.


Assuntos
Algoritmos , Cromatina/química , Cromossomos/química , Genoma , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Conformação Molecular , Animais , Cromatina/genética , Cromossomos/genética , Células-Tronco Embrionárias/química , Humanos , Linfócitos/química , Camundongos , Modelos Moleculares , Reprodutibilidade dos Testes
10.
Cancer Res ; 75(15): 3065-76, 2015 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-26239477

RESUMO

Glioblastoma (GBM) is the most common and aggressive human brain tumor. Human cytomegalovirus (HCMV) immediate-early (IE) proteins that are endogenously expressed in GBM cells are strong viral transactivators with oncogenic properties. Here, we show how HCMV IEs are preferentially expressed in glioma stem-like cells (GSC), where they colocalize with the other GBM stemness markers, CD133, Nestin, and Sox2. In patient-derived GSCs that are endogenously infected with HCMV, attenuating IE expression by an RNAi-based strategy was sufficient to inhibit tumorsphere formation, Sox2 expression, cell-cycle progression, and cell survival. Conversely, HCMV infection of HMCV-negative GSCs elicited robust self-renewal and proliferation of cells that could be partially reversed by IE attenuation. In HCMV-positive GSCs, IE attenuation induced a molecular program characterized by enhanced expression of mesenchymal markers and proinflammatory cytokines, resembling the therapeutically resistant GBM phenotype. Mechanistically, HCMV/IE regulation of Sox2 occurred via inhibition of miR-145, a negative regulator of Sox2 protein expression. In a spontaneous mouse model of glioma, ectopic expression of the IE1 gene (UL123) specifically increased Sox2 and Nestin levels in the IE1-positive tumors, upregulating stemness and proliferation markers in vivo. Similarly, human GSCs infected with the HCMV strain Towne but not the IE1-deficient strain CR208 showed enhanced growth as tumorspheres and intracranial tumor xenografts, compared with mock-infected human GSCs. Overall, our findings offer new mechanistic insights into how HCMV/IE control stemness properties in GBM cells.


Assuntos
Antígenos Virais/metabolismo , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/virologia , Glioblastoma/patologia , Glioblastoma/virologia , Proteínas Imediatamente Precoces/metabolismo , Animais , Antígenos Virais/genética , Apoptose/genética , Neoplasias Encefálicas/metabolismo , Citomegalovirus/genética , Citomegalovirus/patogenicidade , Infecções por Citomegalovirus/patologia , Modelos Animais de Doenças , Técnicas de Silenciamento de Genes , Glioblastoma/metabolismo , Glioma/genética , Glioma/patologia , Humanos , Proteínas Imediatamente Precoces/genética , Camundongos Endogâmicos BALB C , MicroRNAs/genética , MicroRNAs/metabolismo , Células-Tronco Neoplásicas/patologia , Células-Tronco Neoplásicas/virologia , Fatores de Transcrição SOXB1/genética , Fatores de Transcrição SOXB1/metabolismo , Células Tumorais Cultivadas
11.
Genome Res ; 24(12): 2022-32, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25236618

RESUMO

Detection of DNA copy number aberrations by shallow whole-genome sequencing (WGS) faces many challenges, including lack of completion and errors in the human reference genome, repetitive sequences, polymorphisms, variable sample quality, and biases in the sequencing procedures. Formalin-fixed paraffin-embedded (FFPE) archival material, the analysis of which is important for studies of cancer, presents particular analytical difficulties due to degradation of the DNA and frequent lack of matched reference samples. We present a robust, cost-effective WGS method for DNA copy number analysis that addresses these challenges more successfully than currently available procedures. In practice, very useful profiles can be obtained with ∼0.1× genome coverage. We improve on previous methods by first implementing a combined correction for sequence mappability and GC content, and second, by applying this procedure to sequence data from the 1000 Genomes Project in order to develop a blacklist of problematic genome regions. A small subset of these blacklisted regions was previously identified by ENCODE, but the vast majority are novel unappreciated problematic regions. Our procedures are implemented in a pipeline called QDNAseq. We have analyzed over 1000 samples, most of which were obtained from the fixed tissue archives of more than 25 institutions. We demonstrate that for most samples our sequencing and analysis procedures yield genome profiles with noise levels near the statistical limit imposed by read counting. The described procedures also provide better correction of artifacts introduced by low DNA quality than prior approaches and better copy number data than high-resolution microarrays at a substantially lower cost.


Assuntos
Biologia Computacional , Variações do Número de Cópias de DNA , Genoma Humano , Sequenciamento de Nucleotídeos em Larga Escala , Algoritmos , Composição de Bases , Linhagem Celular Tumoral , Hibridização Genômica Comparativa , Biologia Computacional/métodos , Genômica/métodos , Humanos , Neoplasias/genética , Software
12.
Bioinformatics ; 28(13): 1793-4, 2012 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-22576175

RESUMO

SUMMARY: CalMaTe calibrates preprocessed allele-specific copy number estimates (ASCNs) from DNA microarrays by controlling for single-nucleotide polymorphism-specific allelic crosstalk. The resulting ASCNs are on average more accurate, which increases the power of segmentation methods for detecting changes between copy number states in tumor studies including copy neutral loss of heterozygosity. CalMaTe applies to any ASCNs regardless of preprocessing method and microarray technology, e.g. Affymetrix and Illumina. AVAILABILITY: The method is available on CRAN (http://cran.r-project.org/) in the open-source R package calmate, which also includes an add-on to the Aroma Project framework (http://www.aroma-project.org/).


Assuntos
Alelos , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Polimorfismo de Nucleotídeo Único , Software , Humanos , Neoplasias/genética
13.
Stat Appl Genet Mol Biol ; 11(2)2012 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-22499690

RESUMO

The advent of high-throughput biotechnologies, which can efficiently measure gene expression on a global basis, has led to the creation and population of correspondingly rich databases and compendia. Such repositories have the potential to add enormous scientific value beyond that provided by individual studies which, due largely to cost considerations, are typified by small sample sizes. Accordingly, substantial effort has been invested in devising analysis schemes for utilizing gene-expression repositories. Here, we focus on one such scheme, the Connectivity Map (cmap), that was developed with the express purpose of identifying drugs with putative efficacy against a given disease, where the disease in question is characterized by a (differential) gene-expression signature. Initial claims surrounding cmap intimated that such tools might lead to new, previously unanticipated applications of existing drugs. However, further application suggests that its primary utility is in connecting a disease condition whose biology is largely unknown to a drug whose mechanisms of action are well understood, making cmap a tool for enhancing biological knowledge.The success of the Connectivity Map is belied by its simplicity. The aforementioned signature serves as an unordered query which is applied to a customized database of (differential) gene-expression experiments designed to elicit response to a wide range of drugs, across of spectrum of concentrations, durations, and cell lines. Such application is effected by computing a per experiment score that measures "closeness" between the signature and the experiment. Top-scoring experiments, and the attendant drug(s), are then deemed relevant to the disease underlying the query. Inference supporting such elicitations is pursued via re-sampling. In this paper, we revisit two key aspects of the Connectivity Map implementation. Firstly, we develop new approaches to measuring closeness for the common scenario wherein the query constitutes an ordered list. These involve using metrics proposed for analyzing partially ranked data, these being of interest in their own right and not widely used. Secondly, we advance an alternate inferential approach based on generating empirical null distributions that exploit the scope, and capture dependencies, embodied by the database. Using these refinements we undertake a comprehensive re-evaluation of Connectivity Map findings that, in general terms, reveal that accommodating ordered queries is less critical than the mode of inference.


Assuntos
Mineração de Dados/métodos , Bases de Dados Genéticas , Perfilação da Expressão Gênica , Algoritmos , Biologia Computacional/métodos , Estrogênios/farmacologia , Expressão Gênica/efeitos dos fármacos , Predisposição Genética para Doença , Genômica/métodos , Inibidores de Histona Desacetilases/farmacologia , Humanos , Limoninas/farmacologia
14.
Proc Natl Acad Sci U S A ; 109(8): 2724-9, 2012 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-22003129

RESUMO

Breast cancers are comprised of molecularly distinct subtypes that may respond differently to pathway-targeted therapies now under development. Collections of breast cancer cell lines mirror many of the molecular subtypes and pathways found in tumors, suggesting that treatment of cell lines with candidate therapeutic compounds can guide identification of associations between molecular subtypes, pathways, and drug response. In a test of 77 therapeutic compounds, nearly all drugs showed differential responses across these cell lines, and approximately one third showed subtype-, pathway-, and/or genomic aberration-specific responses. These observations suggest mechanisms of response and resistance and may inform efforts to develop molecular assays that predict clinical response.


Assuntos
Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Neoplasias da Mama/classificação , Neoplasias da Mama/tratamento farmacológico , Transdução de Sinais/efeitos dos fármacos , Neoplasias da Mama/genética , Linhagem Celular Tumoral , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Dosagem de Genes/genética , Humanos , Modelos Biológicos , Transdução de Sinais/genética , Transcrição Gênica/efeitos dos fármacos
15.
Clin Cancer Res ; 17(22): 7024-34, 2011 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-22068658

RESUMO

PURPOSE: Problems in management of oral cancers or precancers include identification of patients at risk for metastasis, tumor recurrence, and second primary tumors or risk for progression of precancers (dysplasia) to cancer. Thus, the objective of this study was to clarify the role of genomic aberrations in oral cancer progression and metastasis. EXPERIMENTAL DESIGN: The spectrum of copy number alterations in oral dysplasia and squamous cell carcinomas (SCC) was determined by array comparative genomic hybridization. Associations with clinical characteristics were studied and results confirmed in an independent cohort. RESULTS: The presence of one or more of the chromosomal aberrations +3q24-qter, -8pter-p23.1, +8q12-q24.2, and +20 distinguishes a major subgroup (70%-80% of lesions, termed 3q8pq20 subtype) from the remainder (20%-30% of lesions, non-3q8pq20). The 3q8pq20 subtype is associated with chromosomal instability and differential methylation in the most chromosomally unstable tumors. The two subtypes differ significantly in clinical outcome with risk for cervical (neck) lymph node metastasis almost exclusively associated with the 3q8pq20 subtype in two independent oral SCC cohorts. CONCLUSIONS: Two subtypes of oral lesions indicative of at least two pathways for oral cancer development were distinguished that differ in chromosomal instability and risk for metastasis, suggesting that +3q,-8p, +8q, and +20 constitute a biomarker with clinical utility for identifying patients at risk for metastasis. Moreover, although increased numbers of genomic alterations can be harbingers of progression to cancer, dysplastic lesions lacking copy number changes cannot be considered benign as they are potential precursors to non-3q8pq20 locally invasive, yet not metastatic oral SCC.


Assuntos
Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patologia , Variações do Número de Cópias de DNA , Instabilidade Genômica , Neoplasias de Cabeça e Pescoço/secundário , Neoplasias Bucais/genética , Neoplasias Bucais/patologia , Estudos de Coortes , Hibridização Genômica Comparativa , Progressão da Doença , Feminino , Humanos , Metástase Linfática , Masculino , Pessoa de Meia-Idade , Lesões Pré-Cancerosas/genética , Lesões Pré-Cancerosas/patologia , Risco
16.
Bioinformatics ; 27(15): 2038-46, 2011 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-21666266

RESUMO

MOTIVATION: High-throughput techniques facilitate the simultaneous measurement of DNA copy number at hundreds of thousands of sites on a genome. Older techniques allow measurement only of total copy number, the sum of the copy number contributions from the two parental chromosomes. Newer single nucleotide polymorphism (SNP) techniques can in addition enable quantifying parent-specific copy number (PSCN). The raw data from such experiments are two-dimensional, but are unphased. Consequently, inference based on them necessitates development of new analytic methods. METHODS: We have adapted and enhanced the circular binary segmentation (CBS) algorithm for this purpose with focus on paired test and reference samples. The essence of paired parent-specific CBS (Paired PSCBS) is to utilize the original CBS algorithm to identify regions of equal total copy number and then to further segment these regions where there have been changes in PSCN. For the final set of regions, calls are made of equal parental copy number and loss of heterozygosity (LOH). PSCN estimates are computed both before and after calling. RESULTS: The methodology is evaluated by simulation and on glioblastoma data. In the simulation, PSCBS compares favorably to established methods. On the glioblastoma data, PSCBS identifies interesting genomic regions, such as copy-neutral LOH. AVAILABILITY: The Paired PSCBS method is implemented in an open-source R package named PSCBS, available on CRAN (http://cran.r-project.org/).


Assuntos
Algoritmos , Dosagem de Genes , Glioblastoma/genética , Análise de Sequência de DNA/métodos , Alelos , Simulação por Computador , Frequência do Gene , Humanos , Perda de Heterozigosidade , Polimorfismo de Nucleotídeo Único , Software
17.
PLoS One ; 6(3): e17793, 2011 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-21408189

RESUMO

Disorders of sex development (DSD), ranging in severity from mild genital abnormalities to complete sex reversal, represent a major concern for patients and their families. DSD are often due to disruption of the genetic programs that regulate gonad development. Although some genes have been identified in these developmental pathways, the causative mutations have not been identified in more than 50% 46,XY DSD cases. We used the Affymetrix Genome-Wide Human SNP Array 6.0 to analyse copy number variation in 23 individuals with unexplained 46,XY DSD due to gonadal dysgenesis (GD). Here we describe three discrete changes in copy number that are the likely cause of the GD. Firstly, we identified a large duplication on the X chromosome that included DAX1 (NR0B1). Secondly, we identified a rearrangement that appears to affect a novel gonad-specific regulatory region in a known testis gene, SOX9. Surprisingly this patient lacked any signs of campomelic dysplasia, suggesting that the deletion affected expression of SOX9 only in the gonad. Functional analysis of potential SRY binding sites within this deleted region identified five putative enhancers, suggesting that sequences additional to the known SRY-binding TES enhancer influence human testis-specific SOX9 expression. Thirdly, we identified a small deletion immediately downstream of GATA4, supporting a role for GATA4 in gonad development in humans. These CNV analyses give new insights into the pathways involved in human gonad development and dysfunction, and suggest that rearrangements of non-coding sequences disturbing gene regulation may account for significant proportion of DSD cases.


Assuntos
Variações do Número de Cópias de DNA/genética , Disgenesia Gonadal 46 XY/genética , Algoritmos , Animais , Proteína Quinase Tipo 1 Dependente de Cálcio-Calmodulina/genética , Proteína Quinase Tipo 1 Dependente de Cálcio-Calmodulina/metabolismo , Aberrações Cromossômicas , Deleção Cromossômica , Cromossomos Humanos Par 17/genética , Cromossomos Humanos Par 8/genética , Feminino , Fator de Transcrição GATA4/genética , Regulação da Expressão Gênica , Rearranjo Gênico/genética , Gônadas/embriologia , Gônadas/metabolismo , Proteínas de Choque Térmico HSP40/genética , Proteínas de Choque Térmico HSP40/metabolismo , Humanos , Masculino , Camundongos , Análise de Sequência com Séries de Oligonucleotídeos , Fatores de Transcrição SOX9/genética
19.
BMC Bioinformatics ; 11: 245, 2010 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-20462408

RESUMO

BACKGROUND: High-throughput genotyping microarrays assess both total DNA copy number and allelic composition, which makes them a tool of choice for copy number studies in cancer, including total copy number and loss of heterozygosity (LOH) analyses. Even after state of the art preprocessing methods, allelic signal estimates from genotyping arrays still suffer from systematic effects that make them difficult to use effectively for such downstream analyses. RESULTS: We propose a method, TumorBoost, for normalizing allelic estimates of one tumor sample based on estimates from a single matched normal. The method applies to any paired tumor-normal estimates from any microarray-based technology, combined with any preprocessing method. We demonstrate that it increases the signal-to-noise ratio of allelic signals, making it significantly easier to detect allelic imbalances. CONCLUSIONS: TumorBoost increases the power to detect somatic copy-number events (including copy-neutral LOH) in the tumor from allelic signals of Affymetrix or Illumina origin. We also conclude that high-precision allelic estimates can be obtained from a single pair of tumor-normal hybridizations, if TumorBoost is combined with single-array preprocessing methods such as (allele-specific) CRMA v2 for Affymetrix or BeadStudio's (proprietary) XY-normalization method for Illumina. A bounded-memory implementation is available in the open-source and cross-platform R package aroma.cn, which is part of the Aroma Project (http://www.aroma-project.org/).


Assuntos
Alelos , Dosagem de Genes/genética , Genômica/métodos , Genótipo , Neoplasias/genética , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Software , Perfilação da Expressão Gênica/métodos
20.
Cancer Cell ; 17(5): 510-22, 2010 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-20399149

RESUMO

We have profiled promoter DNA methylation alterations in 272 glioblastoma tumors in the context of The Cancer Genome Atlas (TCGA). We found that a distinct subset of samples displays concerted hypermethylation at a large number of loci, indicating the existence of a glioma-CpG island methylator phenotype (G-CIMP). We validated G-CIMP in a set of non-TCGA glioblastomas and low-grade gliomas. G-CIMP tumors belong to the proneural subgroup, are more prevalent among lower-grade gliomas, display distinct copy-number alterations, and are tightly associated with IDH1 somatic mutations. Patients with G-CIMP tumors are younger at the time of diagnosis and experience significantly improved outcome. These findings identify G-CIMP as a distinct subset of human gliomas on molecular and clinical grounds.


Assuntos
Neoplasias Encefálicas/genética , Ilhas de CpG , Metilação de DNA , Glioblastoma/genética , Neoplasias Encefálicas/patologia , Glioblastoma/patologia , Humanos , Isocitrato Desidrogenase/genética , Mutação , Fenótipo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA