Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nature ; 618(7963): 169-179, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37225982

RESUMO

Target occupancy is often insufficient to elicit biological activity, particularly for RNA, compounded by the longstanding challenges surrounding the molecular recognition of RNA structures by small molecules. Here we studied molecular recognition patterns between a natural-product-inspired small-molecule collection and three-dimensionally folded RNA structures. Mapping these interaction landscapes across the human transcriptome defined structure-activity relationships. Although RNA-binding compounds that bind to functional sites were expected to elicit a biological response, most identified interactions were predicted to be biologically inert as they bind elsewhere. We reasoned that, for such cases, an alternative strategy to modulate RNA biology is to cleave the target through a ribonuclease-targeting chimera, where an RNA-binding molecule is appended to a heterocycle that binds to and locally activates RNase L1. Overlay of the substrate specificity for RNase L with the binding landscape of small molecules revealed many favourable candidate binders that might be bioactive when converted into degraders. We provide a proof of concept, designing selective degraders for the precursor to the disease-associated microRNA-155 (pre-miR-155), JUN mRNA and MYC mRNA. Thus, small-molecule RNA-targeted degradation can be leveraged to convert strong, yet inactive, binding interactions into potent and specific modulators of RNA function.


Assuntos
Endorribonucleases , MicroRNAs , RNA Mensageiro , Humanos , Genes jun/genética , Genes myc/genética , MicroRNAs/antagonistas & inibidores , MicroRNAs/química , MicroRNAs/genética , MicroRNAs/metabolismo , Conformação de Ácido Nucleico , RNA Mensageiro/antagonistas & inibidores , RNA Mensageiro/química , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Relação Estrutura-Atividade , Especificidade por Substrato , Endorribonucleases/química , Endorribonucleases/metabolismo , Transcriptoma
2.
Proc Natl Acad Sci U S A ; 119(6)2022 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-35110406

RESUMO

Nature evolves molecular interaction networks through persistent perturbation and selection, in stark contrast to drug discovery, which evaluates candidates one at a time by screening. Here, nature's highly parallel ligand-target search paradigm is recapitulated in a screen of a DNA-encoded library (DEL; 73,728 ligands) against a library of RNA structures (4,096 targets). In total, the screen evaluated ∼300 million interactions and identified numerous bona fide ligand-RNA three-dimensional fold target pairs. One of the discovered ligands bound a 5'GAG/3'CCC internal loop that is present in primary microRNA-27a (pri-miR-27a), the oncogenic precursor of microRNA-27a. The DEL-derived pri-miR-27a ligand was cell active, potently and selectively inhibiting pri-miR-27a processing to reprogram gene expression and halt an otherwise invasive phenotype in triple-negative breast cancer cells. By exploiting evolutionary principles at the earliest stages of drug discovery, it is possible to identify high-affinity and selective target-ligand interactions and predict engagements in cells that short circuit disease pathways in preclinical disease models.


Assuntos
DNA/genética , RNA não Traduzido/genética , Carcinogênese/efeitos dos fármacos , Carcinogênese/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Descoberta de Drogas/métodos , Expressão Gênica/genética , Biblioteca Gênica , Humanos , Ligantes , MicroRNAs/genética , Oncogenes/genética , Bibliotecas de Moléculas Pequenas/farmacologia , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/genética
3.
ACS Chem Biol ; 17(1): 5-10, 2022 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-34898169

RESUMO

Various studies have shown that selective molecular recognition of RNA targets by small molecules in cells, although challenging, is indeed possible. One facile strategy to enhance selectivity and potency is binding two or more sites within an RNA simultaneously with a single molecule. To simplify the identification of targets amenable to such a strategy, we informatically mined all human microRNA (miRNA) precursors to identify those with two proximal noncanonically paired sites. We selected oncogenic microRNA-27a (miR-27a) for further study as a lead molecule binds its Drosha site and a nearby internal loop, affording a homodimer that potently and specifically inhibits miR-27a processing in both breast cancer and prostate cancer cells. This reduction of mature miR-27a ameliorates an oncogenic cellular phenotype with nanomolar activity. Collectively, these studies demonstrate that synergistic bioinformatic and experimental approaches can define targets that may be more amenable to small molecule targeting than others.


Assuntos
Antineoplásicos/farmacologia , Biologia Computacional , MicroRNAs/antagonistas & inibidores , Antineoplásicos/química , Neoplasias da Mama , Linhagem Celular Tumoral , Sistemas de Liberação de Medicamentos , Feminino , Humanos , Masculino , MicroRNAs/genética , MicroRNAs/metabolismo , Neoplasias da Próstata
4.
J Am Chem Soc ; 143(33): 13044-13055, 2021 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-34387474

RESUMO

Reprogramming known medicines for a novel target with activity and selectivity over the canonical target is challenging. By studying the binding interactions between RNA folds and known small-molecule medicines and mining the resultant dataset across human RNAs, we identified that Dovitinib, a receptor tyrosine kinase (RTK) inhibitor, binds the precursor to microRNA-21 (pre-miR-21). Dovitinib was rationally reprogrammed for pre-miR-21 by using it as an RNA recognition element in a chimeric compound that also recruits RNase L to induce the RNA's catalytic degradation. By enhancing the inherent RNA-targeting activity and decreasing potency against canonical RTK protein targets in cells, the chimera shifted selectivity for pre-miR-21 by 2500-fold, alleviating disease progression in mouse models of triple-negative breast cancer and Alport Syndrome, both caused by miR-21 overexpression. Thus, targeted degradation can dramatically improve selectivity even across different biomolecules, i.e., protein versus RNA.


Assuntos
Benzimidazóis/farmacologia , MicroRNAs/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Quinolonas/farmacologia , Ribonucleases/antagonistas & inibidores , Bibliotecas de Moléculas Pequenas/farmacologia , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Benzimidazóis/química , Humanos , MicroRNAs/metabolismo , Estrutura Molecular , Nefrite Hereditária/tratamento farmacológico , Nefrite Hereditária/metabolismo , Inibidores de Proteínas Quinases/química , Quinolonas/química , Receptores Proteína Tirosina Quinases/antagonistas & inibidores , Receptores Proteína Tirosina Quinases/metabolismo , Ribonucleases/metabolismo , Bibliotecas de Moléculas Pequenas/química , Neoplasias de Mama Triplo Negativas/metabolismo
5.
Eur J Med Chem ; 179: 779-790, 2019 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-31288127

RESUMO

Azole antifungals inhibit the biosynthesis of ergosterol, the fungal equivalent of cholesterol in mammalian cells. Here we report an investigation of the activity of coumarin-substituted azole antifungals. Screening against a panel of Candida pathogens, including a mutant lacking CYP51, the target of antifungal azoles, revealed that this enzyme is inhibited by triazole-based antifungals, whereas imidazole-based derivatives have more than one mode of action. The imidazole-bearing antifungals more effectively reduced trailing growth associated with persistence and/or recurrence of fungal infections than triazole-based derivatives. The imidazole derivatives were more toxic to mammalian cells and more potently inhibited the activity of CYP3A4, which is one of the main causes of azole toxicity. Using live cell imaging, we showed that regardless of the type of azole ring fluorescent 7-diethylaminocoumarin-based azoles localized to the endoplasmic reticulum, the organelle that harbors CYP51. This study suggests that the coumarin is a promising scaffold for development of novel azole-based antifungals that effectively localize to the fungal cell endoplasmic reticulum.


Assuntos
Antifúngicos/farmacologia , Azóis/farmacologia , Candida/efeitos dos fármacos , Cumarínicos/farmacologia , Antifúngicos/síntese química , Antifúngicos/química , Azóis/síntese química , Azóis/química , Candida/citologia , Sobrevivência Celular/efeitos dos fármacos , Cumarínicos/química , Relação Dose-Resposta a Droga , Células HEK293 , Células Hep G2 , Humanos , Testes de Sensibilidade Microbiana , Estrutura Molecular , Imagem Óptica , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA