Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
Theranostics ; 13(11): 3497-3508, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37441597

RESUMO

Background and rationale: Cancer therapy have evolved remarkably over the past decade, providing new strategies to inhibit cancer cell growth using immune modulation, with or without gene therapy. Specifically, suicide gene therapies and immunotoxins have been investigated for the treatment of tumors by direct cancer cell cytotoxicity. Recent advances in mRNA delivery also demonstrated the potential of mRNA-based vaccines and immune-modulators for cancer therapeutics by utilizing nanocarriers for mRNA delivery. Methods: We designed a bacterial toxin-encoding modified mRNA, delivered by lipid nanoparticles into a B16-melanoma mouse model. Results: We showed that local administration of LNPs entrapping a modified mRNA that encodes for a bacterial toxin, induced significant anti-tumor effects and improved overall survival of treated mice. Conclusions: We propose mmRNA-loaded LNPs as a new class of anti-tumoral, toxin-based therapy.


Assuntos
Toxinas Bacterianas , Nanopartículas , Neoplasias , Camundongos , Animais , RNA Mensageiro/genética , Lipossomos , Terapia Genética , Neoplasias/terapia , Toxinas Bacterianas/genética
2.
Nat Cancer ; 4(3): 401-418, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36797502

RESUMO

Brain metastasis still encompass very grim prognosis and therefore understanding the underlying mechanisms is an urgent need toward developing better therapeutic strategies. We uncover the intricate interactions between recruited innate immune cells and resident astrocytes in the brain metastatic niche that facilitate metastasis of melanoma and breast cancer. We show that granulocyte-derived lipocalin-2 (LCN2) induces inflammatory activation of astrocytes, leading to myeloid cell recruitment to the brain. LCN2 is central to inducing neuroinflammation as its genetic targeting or bone-marrow transplantation from LCN2-/- mice was sufficient to attenuate neuroinflammation and inhibit brain metastasis. Moreover, high LCN2 levels in patient blood and brain metastases in multiple cancer types were strongly associated with disease progression and poor survival. Our findings uncover a previously unknown mechanism, establishing a central role for the reciprocal interactions between granulocytes and astrocytes in promoting brain metastasis and implicate LCN2 as a prognostic marker and potential therapeutic target.


Assuntos
Astrócitos , Neoplasias Encefálicas , Camundongos , Animais , Lipocalina-2/genética , Lipocalina-2/metabolismo , Astrócitos/metabolismo , Doenças Neuroinflamatórias , Neoplasias Encefálicas/genética , Imunidade Inata
3.
Allergy ; 78(2): 464-476, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36070083

RESUMO

BACKGROUND: Eosinophilic esophagitis (EoE) is a chronic, food-driven allergic disease, characterized by eosinophil-rich inflammation in the esophagus. The histopathological and clinical features of EoE have been attributed to overproduction of the type 2 cytokines IL-4 and IL-13, which mediate profound alterations in the esophageal epithelium and neutralizing of their shared receptor component (IL-4Rα) with a human antibody drug (dupilumab) demonstrates clinical efficacy. Yet, the relative contribution of IL-4 and IL-13 and whether the type II IL-4 receptor (comprised of the IL-4Rα chain in association with IL-13Rα1) mediates this effect has not been determined. METHODS: Experimental EoE was induced in WT, Il13ra1-/- , and Krt14Cre /Il13ra1fl/fl mice by skin-sensitized using 4-ethoxymethylene-2-phenyl-2-oxazolin (OXA) followed by intraesophageal challenges. Esophageal histopathology was determined histologically. RNA was extracted and sequenced for transcriptome analysis and compared with human EoE RNAseq data. RESULTS: Induction of experimental EoE in mice lacking Il13ra1 and in vivo IL-13 antibody-based neutralization experiments blocked antigen-induced esophageal epithelial and lamina propria thickening, basal cell proliferation, eosinophilia, and tissue remodeling. In vivo targeted deletion of Il13ra1 in esophageal epithelial cells rendered mice protected from experimental EoE. Single-cell RNA sequencing analysis of human EoE biopsies revealed predominant expression of IL-13Rα1 in epithelial cells and that EoE signature genes correlated with IL-13 expression compared with IL-4. CONCLUSIONS: We demonstrate a definitive role for IL-13 signaling via IL-13Rα1 in EoE. These data provide mechanistic insights into the mode of action of current therapies in EoE and highlight the type II IL-4R as a future therapeutic target.


Assuntos
Esofagite Eosinofílica , Humanos , Camundongos , Animais , Esofagite Eosinofílica/patologia , Subunidade alfa1 de Receptor de Interleucina-13/metabolismo , Interleucina-4/genética , Interleucina-4/metabolismo , Interleucina-13/metabolismo , Células Epiteliais/metabolismo
4.
Cancer Immunol Immunother ; 69(7): 1337-1352, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32219500

RESUMO

Cleavage of the MUC1 glycoprotein yields two subunits, an extracellular alpha-subunit bound to a smaller transmembrane beta-subunit. Monoclonal antibodies (mAbs) directed against the MUC1 alpha-beta junction comprising the SEA domain, a stable cell-surface moiety, were generated. Sequencing of all seven anti-SEA domain mAbs showed that they clustered into four groups and sequences of all groups are presented here. mAb DMB5F3 with picomolar affinity for the MUC1 SEA target was selected for further evaluation. Immunohistochemical staining of a series of malignancies with DMB5F3 including lung, prostate, breast, colon, and pancreatic carcinomas revealed qualitative and qualitative differences between MUC1 expression on normal versus malignant cells: DMB5F3 strongly stained malignant cells in a near-circumferential pattern, whereas MUC1 in normal pancreatic and breast tissue showed only weak apical positivity of ductal/acinar cells. Humanized chimeric DMB5F3 linked to ZZ-PE38 (ZZ IgG-binding protein fused to Pseudomonas exotoxin) induced vigorous cytotoxicity of MUC1+ malignant cells in vitro. The intensity of cell killing correlated with the level of MUC1 expression by the target cell, suggesting a MUC1 expression threshold for cell killing. MUC1+ Colo357 pancreatic cancer cells xenotransplanted into nude and SCID mice models were treated with the chDMB5F3:ZZ-PE38 immunocomplex. In both transplant models, chDMB5F3:ZZ-PE38 exhibited significant in vivo anti-tumor activity, suppressing up to 90% of tumor volume in the SCID model compared with concomitant controls. The efficacy of chDMB5F3:ZZ-PE38 immunotoxin in mediating tumor killing both in vitro and in vivo strongly suggests a clinical role for anti-MUC1 SEA antibody in the treatment of MUC1-expressing malignancies.


Assuntos
Anticorpos Monoclonais/farmacologia , Antineoplásicos Imunológicos/farmacologia , Imunotoxinas/imunologia , Mucina-1/química , Mucina-1/imunologia , Neoplasias Pancreáticas/tratamento farmacológico , Animais , Apoptose , Proliferação de Células , Feminino , Humanos , Camundongos , Camundongos Nus , Camundongos SCID , Neoplasias Pancreáticas/imunologia , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Domínios Proteicos , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
5.
Sci Immunol ; 5(44)2020 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-32060143

RESUMO

IL-13 and IL-4 are potent mediators of type 2-associated inflammation such as those found in atopic dermatitis (AD). IL-4 shares overlapping biological functions with IL-13, a finding that is mainly explained by their ability to signal via the type 2 IL-4 receptor (R), which is composed of IL-4Rα in association with IL-13Rα1. Nonetheless, the role of the type 2 IL-4R in AD remains to be clearly defined. Induction of two distinct models of experimental AD in Il13ra1 -/- mice, which lack the type 2 IL-4R, revealed that dermatitis, including ear and epidermal thickening, was dependent on type 2 IL-4R signaling. Expression of TNF-α was dependent on the type 2 IL-4R, whereas induction of IL-4, IgE, CCL24, and skin eosinophilia was dependent on the type 1 IL-4R. Neutralization of IL-4, IL-13, and TNF-α as well as studies in bone marrow-chimeric mice revealed that dermatitis, TNF-α, CXCL1, and CCL11 expression were exclusively mediated by IL-13 signaling via the type 2 IL-4R expressed by nonhematopoietic cells. Conversely, induction of IL-4, CCL24, and eosinophilia was dependent on IL-4 signaling via the type 1 IL-4R expressed by hematopoietic cells. Last, we pharmacologically targeted IL-13Rα1 and established a proof of concept for therapeutic targeting of this pathway in AD. Our data provide mechanistic insight into the differential roles of IL-4, IL-13, and their receptor components in allergic skin and highlight type 2 IL-4R as a potential therapeutic target in AD and other allergic diseases such as asthma and eosinophilic esophagitis.


Assuntos
Dermatite Atópica/imunologia , Interleucina-13/imunologia , Receptores Tipo II de Interleucina-4/imunologia , Transdução de Sinais/imunologia , Animais , Dermatite Atópica/induzido quimicamente , Dinitrofluorbenzeno , Feminino , Interleucina-13/deficiência , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Oxazolona
6.
J Control Release ; 313: 33-41, 2019 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-31634546

RESUMO

Interferon regulatory factor 8 (IRF8) protein plays a critical role in the differentiation, polarization, and activation of mononuclear phagocytic cells. In light of previous studies, we explored the therapeutic potential of IRF8 inhibition as immunomodulatory therapy for inflammatory bowel disease (IBD). To this end, we utilized siRNA-loaded lipid-based nanoparticles (siLNPs) and demonstrated a ∼90% reduction of IRF8 mRNA levels in vitro (PV < 0.0001), alongside a notable reduction in IRF8 protein. Moreover, silencing IRF8 ex vivo in splenocytes lead to a profound downregulation of IRF8 protein, followed by an immunomodulatory effect, as represented by a decrease in the secretion of TNFα, IL6 and IL12/IL23 (IL12p40) proinflammatory cytokines (PV = 0.0045, 0.0330, <0.0001, respectively). In order to silence IRF8 in vivo, selectively in inflammatory leukocytes, we used siLNPs that were coated with anti-Ly6C antibodies via our recently published ASSET targeting approach. Through this strategy, we have demonstrated a selective binding of the targeted-LNPs (T-LNPs) to Ly6C + inflammatory leukocytes. Finally, an immunomodulatory effect was demonstrated in vivo in an IBD mouse model with a profound decrease of TNFα, IL6, IL12/IL23, and IL1ß pro-inflammatory cytokines (n = 5, PV < 0.0001, <0.0001, <0.0001, 0.02, respectively) and an improvement of colon-morphology as assessed by colon-length measurements and colonoscopy (PV < 0.0001). Overall, using antibody-targeted siLNPs, we showed a notable reduction of IRF8 mRNA and protein and demonstrated a targeted immunomodulation therapeutic effect ex vivo and in vivo, in the DSS colitis model. We claim that a selective silencing of IRF8 in inflammatory leukocytes (such as Ly6C+) may serve as a therapeutic approach for treating inflammatory disorders.


Assuntos
Anti-Inflamatórios/metabolismo , Doenças Inflamatórias Intestinais/terapia , Fatores Reguladores de Interferon/genética , Leucócitos/metabolismo , Lipídeos/química , Nanopartículas/química , RNA Interferente Pequeno/metabolismo , Animais , Anticorpos/química , Anticorpos/metabolismo , Colesterol/química , Modelos Animais de Doenças , Feminino , Terapia Genética , Humanos , Imunomodulação , Fatores Reguladores de Interferon/metabolismo , Interleucinas/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Fosfatidiletanolaminas/química , Polietilenoglicóis/química , Células RAW 264.7 , Propriedades de Superfície , Transfecção , Fator de Necrose Tumoral alfa/metabolismo
7.
Drug Resist Updat ; 45: 13-29, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31382144

RESUMO

Immune checkpoint inhibitors (ICI) have emerged as a remarkable treatment option for diverse cancer types. Currently, ICIs are approved for an expanding array of cancer indications. However, the majority of patients still do not demonstrate a durable long-term response following ICI therapy. In addition, many patients receiving ICI therapy develop immune-related adverse events (irAEs) affecting a wide variety of organs. To increase the percentage of patients who benefit from ICI therapy and to reduce the occurrence of irAEs, there is an ongoing effort to combine current ICIs with novel checkpoints inhibitors or other therapeutic approaches to achieve a synergistic effect which is larger than the sum of its parts. In this review we highlight the essential factors for more effective ICI combinations. We describe how the design of these strategies should be driven by the tumor's immunological context. We analyze current combination strategies and describe how they can be improved to unleash the immune system's full anti-cancer potential as well as convert immunologically "cold" tumors into "hot" ones. We examine the efforts to combine current ICIs (PD-1 and CTLA-4) with novel checkpoints (TIM-3, LAG-3, VISTA, TIGIT and others), immunotherapies (CAR-T cells and Cancer Vaccines) and delivery strategies (bispecific antibodies and other delivery platforms). Importantly, we outline how can one optimally combine ICIs with traditional pillars of cancer therapy such as radiation therapy (RT) and chemotherapy. We discuss the considerations regarding successful combination with RT and chemotherapy; these include fractionation schemes and selection of chemotherapeutics which can both directly eradicate cancer cells as well as increase the infiltration of immune cells into tumors. Finally, we critically assess these approaches and attempt to establish their strengths and weaknesses based on pre-clinical and clinical data.


Assuntos
Antineoplásicos Imunológicos/farmacologia , Terapia Combinada/métodos , Imunoterapia/métodos , Neoplasias/tratamento farmacológico , Neoplasias/terapia , Animais , Humanos , Fatores Imunológicos/imunologia , Neoplasias/imunologia
8.
Nano Lett ; 19(3): 1838-1843, 2019 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-30817160

RESUMO

The supply of growth factors to engineered tissues is essential for many physiological processes. These processes include the proper organization of the cells into functioning tissues, maintenance of their viability, vasculogenesis, proliferation, and differentiation. Systems to efficiently control the release of growth factors were previously incorporated into tissue engineering scaffolds to affect cells. However, because the initial concentration of the factors in these systems is finite, their ability to provide a long-term physiological effect is limited. Here, we report on a new reloadable system in which 3D fibrous scaffolds conjugated with an anti His-tag antibody enable the retention and controlled release of any His-tag-modified proteinaceous growth factor. The scaffolds can be reloaded in vitro or in vivo with any His-tagged biomolecule at any time according to the physiological need. We show the ability of the scaffolds to release angiogenic factors in a static cell culture or under flow in a microfluidics device and effect on endothelial cells. We also demonstrate the potential of the system to be sequentially reloaded in vivo with various factors, and as a proof of concept, we provide evidence for the efficient in vivo vascularization of scaffolds after reloading with tagged VEGF.


Assuntos
Imunoconjugados/química , Engenharia Tecidual , Alicerces Teciduais/química , Fator A de Crescimento do Endotélio Vascular/química , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Endoteliais/efeitos dos fármacos , Humanos , Imunoconjugados/imunologia , Fator A de Crescimento do Endotélio Vascular/imunologia
9.
J Mech Behav Biomed Mater ; 91: 345-354, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30654195

RESUMO

Detecting the presence of circulating tumor cells (CTCs) in peripheral blood can be useful for monitoring treatment in patients, metastasis prognosis, and even early detection. The epidermal growth factor receptor (EGFR) is overexpressed in carcinoma, e.g. in colorectal cancer. Here, we use atomic force microscopy (AFM) force spectroscopy to study the mechanical properties of A431 cells, which simulate EGFR-overexpressing epithelial CTCs and were magnetically isolated by Bio-Ferrography (BF). BF is found useful in isolating individual cancerous cells for mechanical testing, thus avoiding cell-cell interactions. Different stages in the pre-isolation sample preparation steps (namely, cell fixation, PLL coating of the glass substrate, and immunomagnetic labeling) are found to affect the estimated Young's modulus. The BF magnetic isolation step itself does not change the elasticity of the captured cells in comparison to the pre-isolated microbeads-bound cells. The reported increase in the estimated Young's modulus between BF-isolated target cells and fixed cells that are not bound to magnetic microbeads can be used as a quantitative mechanical indicator for objective detection of CTCs. Furthermore, we report a 2.8-fold increase in the adhesion force between the AFM tip and the BF-isolated cells compared to the pre-isolated magnetic microbead-bound A431 fixed cells. This adhesion force correlation could potentially serve as an additional quantitative mechanical indicator for distinguishing between the target and background cells, without the use of cell staining assay and subjective analysis by an expert pathologist. This study demonstrates the powerful combination of the highly sensitive cell isolation by BF and the subsequent analysis of mechanical properties of individual captured cancerous cells by AFM. This combination has potential use in cancer research.


Assuntos
Fenômenos Mecânicos , Microscopia de Força Atômica , Fenômenos Biomecânicos , Linhagem Celular Tumoral , Módulo de Elasticidade , Humanos , Metástase Neoplásica
10.
Front Immunol ; 10: 2921, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31921180

RESUMO

Drugs formulated from monoclonal antibodies (mAbs) are clinically effective in various diseases. Repeated administration of mAbs, however, elicits an immune response in the form of anti-drug-antibodies (ADA), thereby reducing the drug's efficacy. Notwithstanding their importance, the molecular landscape of ADA and the mechanisms involved in their formation are not fully understood. Using a newly developed quantitative bio-immunoassay, we found that ADA concentrations specific to TNFα antagonists can exceed extreme concentrations of 1 mg/ml with a wide range of neutralization capacity. Our data further suggest a preferential use of the λ light chain in a subset of neutralizing ADA. Moreover, we show that administration of TNFα antagonists result in a vaccine-like response whereby ADA formation is governed by the extrafollicular T cell-independent immune response. Our bio-immunoassay coupled with insights on the nature of the immune response can be leveraged to improve mAb immunogenicity assessment and facilitate improvement in therapeutic intervention strategies.


Assuntos
Anticorpos Monoclonais/imunologia , Fator de Necrose Tumoral alfa/antagonistas & inibidores , Humanos , Imunoensaio , Fator de Necrose Tumoral alfa/imunologia
11.
Methods Mol Biol ; 1904: 455-480, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30539486

RESUMO

Monoclonal antibodies (mAbs) are currently the fastest growing class of therapeutic proteins. Parallel to full-length IgG format the development of recombinant technologies provided the production of smaller recombinant antibody variants. The single-chain variable fragment (scFv) antibody is a minimal form of functional antibody comprised of the variable domains of immunoglobulin light and heavy chains connected by a flexible linker. In most cases, scFvs are expressed in the periplasm bacterium E. coli. The production of soluble scFvs is more effective in quantity, however, under the reducing conditions of the E. coli bacterial cytoplasm it is inefficient because of the inability of the disulfide bonds to form. Hence, scFvs are either secreted to the periplasm as soluble proteins or expressed in the cytoplasm as insoluble inclusion bodies and recovered by refolding. The cytoplasmic expression of scFvs as a C-terminal fusion to maltose-binding protein (MBP) provided the high-level production of stable, soluble, and functional fusion protein. The below protocol provides the detailed description of MBP-scFv production in E. coli utilizing two expression systems: pMALc-TNN and pMALc-NHNN. Although the MBP tag does not disrupt the most of antibody activities, the MBP-TNN-scFv product can be cleaved by Tobacco Etch Virus (TEV) protease in order to obtain untagged scFv.The second protocol is for efficient production of Fab antibody fragments as MBP fusion proteins secreted by transiently transfected mammalian cells. While transient transfection is a fast and effective way of obtaining several mgs of antibody for initial screening and validation of antibodies, some antibody sequences express poorly or not at all. For such antibodies, fusion to MBP provides an effective approach for solving the expression problem.


Assuntos
Citoplasma/metabolismo , Escherichia coli/crescimento & desenvolvimento , Anticorpos de Cadeia Única/metabolismo , Anticorpos Monoclonais/química , Anticorpos Monoclonais/genética , Anticorpos Monoclonais/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Células HEK293 , Humanos , Engenharia de Proteínas , Redobramento de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Anticorpos de Cadeia Única/química , Anticorpos de Cadeia Única/genética
12.
J Control Release ; 291: 80-89, 2018 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-30342077

RESUMO

BACKGROUND: Trastuzumab is a monoclonal antibody which demonstrates efficacy for HER2 positive breast cancer patients. Recently, an increased incidence of brain metastasis in trastuzumab-treated patients has been reported. The reason for this may be the effectiveness of systemic trastuzumab allowing patients to survive longer thus providing time for brain metastases to develop, along with the lack of penetration of systemic therapies through the blood brain barrier. In recent years, several administration routes to the brain have been evaluated. Albeit advances in the field, there is still a need for improved delivery of therapeutic antibodies to the brain. To address this challenge, we have developed two gene therapy-based methods enabling continuous secretion of active trastuzumab in the brain. METHODS: We have developed two gene therapy approaches for the delivery of the therapeutic anti-HER2 monoclonal antibody, trastuzumab, to the brain. We utilized the helper dependent adenovirus vector, containing trastuzumab light and heavy chains coding sequences (HDAd-trastuzumab). In the first approach, we used the Transduced Autologous Restorative Gene Therapy (TARGT) platform, in which dermal fibroblasts of human and mouse origin, are ex-vivo transduced with HDAd-trastuzumab vector, rendering continuous secretion of active trastuzumab from the cells locally. These genetically engineered cells were subsequently implanted intracranially to mice, contralateral to HER2 positive breast carcinoma cells inoculation site, enabling continuous secretion of trastuzumab in the brain. In the second approach, we used the same HDAd-trastuzumab viral vector, directly injected intracranially, contralateral to the HER2 positive breast carcinoma cells inoculation site. Both methods enabled therapeutic concentrations of local in-vivo production of active trastuzumab in a mouse model of brain metastatic breast cancer. RESULTS: Trastuzumab secreted from the TARGT platform demonstrated in-vitro affinity and immune recruitment activity (ADCC) similar to recombinant trastuzumab (Herceptin, Genentech). When implanted in the brain of HER2 positive tumor-bearing mice, both the TARGT platform of dermal fibroblasts engineered to secrete trastuzumab and direct injection of HDAd-trastuzumab demonstrated remarkable intracranial tumor growth inhibitory effect. CONCLUSIONS: This work presents two gene therapy approaches for the administration of therapeutic antibodies to the brain. The TARGT platform of dermal fibroblasts engineered to secrete active trastuzumab, and the direct injection of HDAd-trastuzumab viral vector, both rendered continuous in-vivo secretion of active trastuzumab in the brain and demonstrated high efficacy. These two approaches present a proof of concept for promising gene therapy based administration methods for intracranial tumors as well as other brain diseases.


Assuntos
Antineoplásicos Imunológicos/uso terapêutico , Neoplasias Encefálicas/secundário , Neoplasias Encefálicas/terapia , Neoplasias da Mama/patologia , Técnicas de Transferência de Genes , Trastuzumab/uso terapêutico , Adenoviridae/genética , Animais , Antineoplásicos Imunológicos/administração & dosagem , Antineoplásicos Imunológicos/metabolismo , Neoplasias Encefálicas/patologia , Neoplasias da Mama/terapia , Células Cultivadas , Sistemas de Liberação de Medicamentos/métodos , Feminino , Fibroblastos/metabolismo , Fibroblastos/transplante , Terapia Genética/métodos , Vetores Genéticos/genética , Vetores Genéticos/uso terapêutico , Humanos , Imunoterapia/métodos , Camundongos , Camundongos Endogâmicos BALB C , Transdução Genética , Trastuzumab/administração & dosagem , Trastuzumab/genética
13.
Nat Nanotechnol ; 13(3): 214-219, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29379205

RESUMO

Previous studies have identified relevant genes and signalling pathways that are hampered in human disorders as potential candidates for therapeutics. Developing nucleic acid-based tools to manipulate gene expression, such as short interfering RNAs1-3 (siRNAs), opens up opportunities for personalized medicine. Yet, although major progress has been made in developing siRNA targeted delivery carriers, mainly by utilizing monoclonal antibodies (mAbs) for targeting4-8, their clinical translation has not occurred. This is in part because of the massive development and production requirements and the high batch-to-batch variability of current technologies, which rely on chemical conjugation. Here we present a self-assembled modular platform that enables the construction of a theoretically unlimited repertoire of siRNA targeted carriers. The self-assembly of the platform is based on a membrane-anchored lipoprotein that is incorporated into siRNA-loaded lipid nanoparticles that interact with the antibody crystallizable fragment (Fc) domain. We show that a simple switch of eight different mAbs redirects the specific uptake of siRNAs by diverse leukocyte subsets in vivo. The therapeutic potential of the platform is demonstrated in an inflammatory bowel disease model by targeting colon macrophages to reduce inflammatory symptoms, and in a Mantle Cell Lymphoma xenograft model by targeting cancer cells to induce cell death and improve survival. This modular delivery platform represents a milestone in the development of precision medicine.


Assuntos
Colite/terapia , Sistemas de Liberação de Medicamentos/métodos , Lipossomos/química , RNA Interferente Pequeno/administração & dosagem , Terapêutica com RNAi/métodos , Animais , Anticorpos Monoclonais/química , Colite/genética , Feminino , Lipoproteínas/química , Camundongos , Camundongos Endogâmicos C57BL , Células RAW 264.7 , Interferência de RNA , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/farmacocinética , RNA Interferente Pequeno/uso terapêutico
14.
Adv Healthc Mater ; 7(9): e1701163, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29283226

RESUMO

Synthetic cells, artificial cell-like particles, capable of autonomously synthesizing RNA and proteins based on a DNA template, are emerging platforms for studying cellular functions and for revealing the origins-of-life. Here, it is shown for the first time that artificial lipid-based vesicles, containing the molecular machinery necessary for transcription and translation, can be used to synthesize anticancer proteins inside tumors. The synthetic cells are engineered as stand-alone systems, sourcing nutrients from their biological microenvironment to trigger protein synthesis. When pre-loaded with template DNA, amino acids and energy-supplying molecules, up to 2 × 107 copies of green fluorescent protein are synthesized in each synthetic cell. A variety of proteins, having molecular weights reaching 66 kDa and with diagnostic and therapeutic activities, are synthesized inside the particles. Incubating synthetic cells, encoded to secrete Pseudomonas exotoxin A (PE) with 4T1 breast cancer cells in culture, resulted in killing of most of the malignant cells. In mice bearing 4T1 tumors, histological evaluation of the tumor tissue after a local injection of PE-producing particles indicates robust apoptosis. Synthetic cells are new platforms for synthesizing therapeutic proteins on-demand in diseased tissues.


Assuntos
ADP Ribose Transferases/biossíntese , Células Artificiais/metabolismo , Toxinas Bacterianas/biossíntese , Exotoxinas/biossíntese , Neoplasias Experimentais , Microambiente Tumoral , Fatores de Virulência/biossíntese , Animais , Linhagem Celular Tumoral , Feminino , Proteínas de Fluorescência Verde/biossíntese , Camundongos , Camundongos Endogâmicos BALB C , Nanopartículas/química , Nanopartículas/uso terapêutico , Neoplasias Experimentais/metabolismo , Neoplasias Experimentais/patologia , Neoplasias Experimentais/terapia , Exotoxina A de Pseudomonas aeruginosa
15.
J Gene Med ; 19(8)2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28658716

RESUMO

BACKGROUND: Rheumatoid arthritis (RA) is a symmetric inflammatory polyarthritis associated with high concentrations of pro-inflammatory, cytokines including tumor necrosis factor (TNF)-α. Adalimumab is a monoclonal antibody (mAb) that binds TNF-α, and is widely used to treat RA. Despite its proven clinical efficacy, adalimumab and other therapeutic mAbs have disadvantages, including the requirement for repeated bolus injections and the appearance of treatment limiting anti-drug antibodies. To address these issues, we have developed an innovative ex vivo gene therapy approach, termed transduced autologous restorative gene therapy (TARGT), to produce and secrete adalimumab for the treatment of RA. METHODS: Helper-dependent (HD) adenovirus vector containing adalimumab light and heavy chain coding sequences was used to transduce microdermal tissues and cells of human and mouse origin ex vivo, rendering sustained secretion of active adalimumab. The genetically engineered tissues were subsequently implanted in a mouse model of RA. RESULTS: Transduced human microdermal tissues implanted in SCID mice demonstrated 49 days of secretion of active adalimumab in the blood, at levels of tens of microgram per milliliter. In addition, transduced autologous dermal cells were implanted in the RA mouse model and demonstrated statistically significant amelioration in RA symptoms compared to naïve cell implantation and were similar to recombinant adalimumab bolus injections. CONCLUSIONS: The results of the present study report microdermal tissues engineered to secrete active adalimumab as a proof of concept for sustained secretion of antibody from the novel ex vivo gene therapy TARGT platform. This technology may now be applied to a range of antibodies for the therapy of other diseases.


Assuntos
Adalimumab/uso terapêutico , Anticorpos Monoclonais/uso terapêutico , Artrite Reumatoide/tratamento farmacológico , Modelos Animais de Doenças , Fator de Necrose Tumoral alfa/metabolismo , Adalimumab/farmacocinética , Animais , Anticorpos Monoclonais/farmacocinética , Citocinas/metabolismo , Feminino , Engenharia Genética , Terapia Genética , Humanos , Masculino , Metotrexato/farmacologia , Camundongos , Camundongos SCID , Resultado do Tratamento
16.
Drug Resist Updat ; 30: 39-47, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-28363334

RESUMO

Drug resistance of tumor cells to chemotherapy is limiting the therapeutic efficacy of most anticancer drugs and represents a major obstacle in medical oncology. However, treatment of various human malignancies with biologics, mostly monoclonal antibodies (mAbs), is not limited by such chemoresistance mechanisms. However, other resistance or evasion mechanisms limit the efficacy to anticancer therapeutic mAbs that engage tumor-associated antigens on the surface of the malignant cells. Immune checkpoint blocking monoclonal antibodies are heralded as a promising therapeutic approach in clinical oncology. These mAbs do not directly attack the malignant cells as most anticancer mAbs; rather, they enhance the anti-tumor response of the immune system by targeting immune regulatory pathways. Three mAbs targeting immune checkpoint molecules are currently used in the clinic and new mAbs that target other potential inhibitory targets are being actively investigated. This therapeutic approach, while proving as highly beneficial for many patients, is prone to toxicities and side effects of an autoimmune nature. Defining suitable management algorithms and biomarkers that predict therapeutic effects and adverse toxicity are required to provide survival benefit for larger numbers of cancer patients. Overcoming these challenges, along with opportunities for new agents and combinatorial strategies are the main focus of immune checkpoint blockade research today.


Assuntos
Anticorpos Monoclonais/farmacologia , Antineoplásicos Imunológicos/farmacologia , Pontos de Checagem do Ciclo Celular/imunologia , Neoplasias/tratamento farmacológico , Anticorpos Monoclonais/efeitos adversos , Anticorpos Antineoplásicos/imunologia , Antígenos de Neoplasias/imunologia , Antineoplásicos Imunológicos/efeitos adversos , Biomarcadores , Biomarcadores Tumorais , Antígeno CTLA-4/imunologia , Humanos , Canais de Potássio Corretores do Fluxo de Internalização/imunologia , Receptor de Morte Celular Programada 1/imunologia
17.
Gut ; 65(7): 1132-8, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-25897019

RESUMO

OBJECTIVE: The cross-immunogenicity of the recently approved infliximab-biosimilar Remsima (CT-P13) with the originator drug Remicade is still unknown. DESIGN: Sera of patients with IBD with or without measurable anti-Remicade antibodies to infliximab (ATI) were tested for their cross-reactivity to two batches of Remsima. Experiments were repeated after deglycosylation of Remicade/Remsima, IgG purification, excipients' dialysis and monomer purification by size exclusion chromatography. Anti-Remicade antibodies were tested for their functional inhibition of TNF-α binding by Remsima/Remicade by competition assay. Cross-reactivity of anti-adalimumab antibodies with Remicade/Remsima was also investigated. RESULTS: 125 patients' and controls' sera were tested (median age 31 years, IQR 24.5-39.5). All 56 anti-Remicade ATI-negative controls (14 healthy individuals, 42 patients with IBD) were also negative for anti-Remsima ATI. All 69 positive anti-Remicade IBD sera were cross-reactive with Remsima. ATI titres against Remicade or Remsima were strongly correlated (r values between 0.92 and 0.99, p<0.001 for all experiments, Spearman's correlation test). The background ELISA signal for Remsima was slightly higher compared with Remicade in negative controls (1.25±0.6 µg/mL vs 0.76±0.5 µg/mL, respectively, p<0.001), and persisted after deglycosylation, dialysis or protein size filtration, but abolished by IgG purification and significantly diminished by monomer purification. Anti-Remicade ATIs of patients with IBD (n=10) exerted similar functional inhibition on Remsima or Remicade TNF-α binding capacity (p=NS for all inhibition curve points). Antibodies-to-adalimumab in adalimumab-treated patients with IBD (n=7) did not cross-react with either Remicade or Remsima. CONCLUSIONS: Anti-Remicade antibodies in patients with IBD recognise and functionally inhibit Remsima to a similar degree, suggesting similar immunogenicity and shared immunodominant epitopes on these two infliximab agents. In contrast, anti-adalimumab antibodies do not cross-react with Remsima or Remicade.


Assuntos
Anticorpos Monoclonais/imunologia , Anticorpos/imunologia , Fármacos Gastrointestinais/imunologia , Infliximab/imunologia , Adalimumab/imunologia , Adulto , Idoso , Anticorpos/sangue , Anticorpos Monoclonais/química , Anticorpos Monoclonais/metabolismo , Medicamentos Biossimilares , Reações Cruzadas , Fármacos Gastrointestinais/metabolismo , Glicosilação , Humanos , Imunoglobulina G/imunologia , Doenças Inflamatórias Intestinais/tratamento farmacológico , Infliximab/química , Infliximab/metabolismo , Pessoa de Meia-Idade , Fator de Necrose Tumoral alfa/metabolismo , Adulto Jovem
18.
Cytometry B Clin Cytom ; 88(5): 338-47, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25854597

RESUMO

BACKGROUND: Circulating tumor cells (CTCs) in blood circulation may play a role in monitoring and even in early detection of metastasis patients. Due to the limited presence of CTCs in blood circulation, viable CTCs isolation technology must supply a very high recovery rate. METHODS: Here, we implement design of experiments (DOE) methodology in order to optimize the Bio-Ferrography (BF) immunomagnetic isolation (IMI) procedure for the EGFR high positive CTCs application. All consequent DOE phases such as screening design, optimization experiments and validation experiments were used. RESULTS: A significant recovery rate of more than 95% was achieved while isolating 100 EGFR high positive CTCs from 1 mL human whole blood. CONCLUSIONS: The recovery achievement in this research positions BF technology as one of the most efficient IMI technologies, which is ready to be challenged with patients' blood samples.


Assuntos
Biomarcadores Tumorais/análise , Receptores ErbB/análise , Citometria de Fluxo/métodos , Separação Imunomagnética/métodos , Células Neoplásicas Circulantes/química , Linhagem Celular Tumoral , Desenho de Equipamento , Citometria de Fluxo/instrumentação , Humanos , Separação Imunomagnética/instrumentação
19.
Drug Resist Updat ; 18: 36-46, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25476546

RESUMO

Antibody-based therapy of various human malignancies has shown efficacy in the past 30 years and is now one of the most successful and leading strategies for targeted treatment of patients harboring hematological malignancies and solid tumors. Antibody-drug conjugates (ADCs) aim to take advantage of the affinity and specificity of monoclonal antibodies (mAbs) to selectively deliver potent cytotoxic drugs to antigen-expressing tumor cells. Key parameters for ADC include choosing the optimal components of the ADC (the antibody, the linker and the cytotoxic drug) and selecting the suitable cell-surface target antigen. Building on the success of recent FDA approval of brentuximab vedotin (Adcetris) and ado-trastuzumab emtansine (Kadcyla), ADCs are currently a class of drugs with a robust pipeline with clinical applications that are rapidly expanding. The more ADCs are being evaluated in preclinical models and clinical trials, the clearer are becoming the parameters and the challenges required for their therapeutic success. This rapidly growing knowledge and clinical experience are revealing novel modalities and mechanisms of resistance to ADCs, hence offering plausible solutions to such challenges. Here, we review the key parameters for designing a powerful ADC, focusing on how ADCs are addressing the challenge of multiple drug resistance (MDR) and its rational overcoming.


Assuntos
Anticorpos Monoclonais/uso terapêutico , Antineoplásicos/uso terapêutico , Neoplasias/tratamento farmacológico , Anticorpos Monoclonais/administração & dosagem , Antígenos de Neoplasias/metabolismo , Antineoplásicos/administração & dosagem , Sistemas de Liberação de Medicamentos , Desenho de Fármacos , Resistencia a Medicamentos Antineoplásicos , Humanos , Imunoconjugados/administração & dosagem , Imunoconjugados/uso terapêutico , Neoplasias/patologia
20.
Cytometry B Clin Cytom ; 88(2): 136-44, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25491065

RESUMO

BACKGROUND: The epidermal growth factor receptor (EGFR) is overexpressed in carcinoma. In some cases, including in colorectal cancer, it is used as a therapeutic target. Bio-Ferrography is a nondestructive method for isolating magnetized cells and tissues from a fluid onto a glass slide based on their interaction with an external, strong, and focused magnetic field. METHODS: Here, we implement Bio-Ferrography to separate EGFR-positive cancer cells from EGFR-negative noncancer cells, mixed at a ratio of 1 to 1 × 10(6) , from either phosphate-buffered saline or human whole blood. Incubation of the cells with an anti-EGFR antibody and magnetic microbeads coupled to a secondary antibody was used to magnetize the target cells prior to the ferrographic analysis. RESULTS: A procedure was developed for "a proof of concept" isolation. Recovery values as high as 78% for 1 mL phosphate-buffered saline, and 53% for 1 mL human whole blood, with a limit-of-detection of 30 and 100 target cells, respectively, were achieved. CONCLUSIONS: These capture efficiency values are considered significant and, therefore, warrant further study on isolation of real circulating tumor cells from blood samples of patients, aiming at early diagnosis of EGFR-overexpressing tumor types.


Assuntos
Receptores ErbB/análise , Receptores ErbB/biossíntese , Citometria de Fluxo/métodos , Imãs/análise , Células Neoplásicas Circulantes/química , Células Neoplásicas Circulantes/metabolismo , Animais , Humanos , Fenômenos Magnéticos , Camundongos , Células NIH 3T3
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA