Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Microbiol Spectr ; : e0028323, 2023 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-37676031

RESUMO

Several P1B-type ATPases are important Cd2+/Cu2+ pumps in Aspergillus species, and they are tightly associated with the heavy metal stress tolerance of these ascomycetous fungi. To better understand the roles of the two P1B-type ATPases, Aspergillus nidulans CrpA Cd2+/Cu2+ pump (orthologue of the Candida albicans Crp1 Cd2+/Cu2+ pump) and Aspergillus fumigatus PcaA Cd2+ pump (orthologue of the Saccharomyces cerevisiae Pca1 Cd2+ pump), we have generated individual mutants and characterized their heavy metal susceptibilities. The deletion of CrpA in A. nidulans has led to the increased sensitivity of the fungus to stresses induced by Zn2+, Fe2+, or the combination of oxidative-stress-inducing menadione sodium bisulfite and Fe3+. Heterologous expression of A. fumigatus PcaA in the S. cerevisiae pca1 deletion mutant has resulted in enhanced tolerance of the yeast to stresses elicited by Cd2+or Zn2+ but not by Fe2+/Fe3+ or Cu2+. Mammalian host immune defense can attack microbes by secreting Zn2+ or Cu2+, and the oxidative stress induced by host immune systems can also disturb metal (Cu2+, Fe2+, and Zn2+) homeostasis in microbes. In summary, PcaA and CrpA can protect fungal cells from these complex stresses that contribute to the virulence of the pathogenic Aspergillus species. Moreover, due to their presence on the fungal cell surface, these P1B-type ATPases may serve as a novel drug target in the future. IMPORTANCE Mammalian host immune defense disrupts heavy metal homeostasis of fungal pathogens. P1B-type ATPase of Aspergillus fumigatus and Aspergillus nidulans may help to cope with this stress and serve as virulence traits. In our experiments, both A. nidulans Cd2+/Cu2+ pump CrpA and A. fumigatus Cd2+ pump PcaA protected fungal cells from toxic Zn2+, and CrpA also decreased Fe2+ susceptibility most likely indirectly. In addition, CrpA protected cells against the combined stress induced by the oxidative stressor menadione and Fe3+. Since P1B-type ATPases are present on the fungal cell surface, these proteins may serve as a novel drug target in the future.

2.
Life (Basel) ; 10(12)2020 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-33352712

RESUMO

The polyphyletic group of black fungi within the Ascomycota (Arthoniomycetes, Dothideomycetes, and Eurotiomycetes) is ubiquitous in natural and anthropogenic habitats. Partly because of their dark, melanin-based pigmentation, black fungi are resistant to stresses including UV- and ionizing-radiation, heat and desiccation, toxic metals, and organic pollutants. Consequently, they are amongst the most stunning extremophiles and poly-extreme-tolerant organisms on Earth. Even though ca. 60 black fungal genomes have been sequenced to date, [mostly in the family Herpotrichiellaceae (Eurotiomycetes)], the class Dothideomycetes that hosts the largest majority of extremophiles has only been sparsely sampled. By sequencing up to 92 species that will become reference genomes, the "Shed light in The daRk lineagES of the fungal tree of life" (STRES) project will cover a broad collection of black fungal diversity spread throughout the Fungal Tree of Life. Interestingly, the STRES project will focus on mostly unsampled genera that display different ecologies and life-styles (e.g., ant- and lichen-associated fungi, rock-inhabiting fungi, etc.). With a resequencing strategy of 10- to 15-fold depth coverage of up to ~550 strains, numerous new reference genomes will be established. To identify metabolites and functional processes, these new genomic resources will be enriched with metabolomics analyses coupled with transcriptomics experiments on selected species under various stress conditions (salinity, dryness, UV radiation, oligotrophy). The data acquired will serve as a reference and foundation for establishing an encyclopedic database for fungal metagenomics as well as the biology, evolution, and ecology of the fungi in extreme environments.

3.
Sci Adv ; 6(20): eaba3418, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32426509

RESUMO

Many animal viral proteins, e.g., Vpr of HIV-1, disrupt host mitosis by directly interrupting the mitotic entry switch Wee1-Cdc25-Cdk1. However, it is unknown whether plant viruses may use this mechanism in their pathogenesis. Here, we report that the 17K protein, encoded by barley yellow dwarf viruses and related poleroviruses, delays G2/M transition and disrupts mitosis in both host (barley) and nonhost (fission yeast, Arabidopsis thaliana, and tobacco) cells through interrupting the function of Wee1-Cdc25-CDKA/Cdc2 via direct protein-protein interactions and alteration of CDKA/Cdc2 phosphorylation. When ectopically expressed, 17K disrupts the mitosis of cultured human cells, and HIV-1 Vpr inhibits plant cell growth. Furthermore, 17K and Vpr share similar secondary structural feature and common amino acid residues required for interacting with plant CDKA. Thus, our work reveals a distinct class of mitosis regulators that are conserved between plant and animal viruses and play active roles in viral pathogenesis.


Assuntos
Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces , Animais , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Mitose , Proteínas Nucleares/metabolismo , Fosfoproteínas Fosfatases/metabolismo , Proteínas Tirosina Quinases/genética , Proteínas Tirosina Quinases/metabolismo , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Proteínas Virais/metabolismo
4.
PLoS One ; 11(3): e0151286, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26982200

RESUMO

BACKGROUND: HIV-1 protease (PR) is an essential viral enzyme. Its primary function is to proteolyze the viral Gag-Pol polyprotein for production of viral enzymes and structural proteins and for maturation of infectious viral particles. Increasing evidence suggests that PR cleaves host cellular proteins. However, the nature of PR-host cellular protein interactions is elusive. This study aimed to develop a fission yeast (Schizosaccharomyces pombe) model system and to examine the possible interaction of HIV-1 PR with cellular proteins and its potential impact on cell proliferation and viability. RESULTS: A fission yeast strain RE294 was created that carried a single integrated copy of the PR gene in its chromosome. The PR gene was expressed using an inducible nmt1 promoter so that PR-specific effects could be measured. HIV-1 PR from this system cleaved the same indigenous viral p6/MA protein substrate as it does in natural HIV-1 infections. HIV-1 PR expression in fission yeast cells prevented cell proliferation and induced cellular oxidative stress and changes in mitochondrial morphology that led to cell death. Both these PR activities can be prevented by a PR-specific enzymatic inhibitor, indinavir, suggesting that PR-mediated proteolytic activities and cytotoxic effects resulted from enzymatic activities of HIV-1 PR. Through genome-wide screening, a serine/threonine kinase, Hhp2, was identified that suppresses HIV-1 PR-induced protease cleavage and cell death in fission yeast and in mammalian cells, where it prevented PR-induced apoptosis and cleavage of caspase-3 and caspase-8. CONCLUSIONS: This is the first report to show that HIV-1 protease is functional as an enzyme in fission yeast, and that it behaves in a similar manner as it does in HIV-1 infection. HIV-1 PR-induced cell death in fission yeast could potentially be used as an endpoint for mechanistic studies, and this system could be used for developing a high-throughput system for drug screenings.


Assuntos
Protease de HIV/metabolismo , Schizosaccharomyces/enzimologia , Inibidores da Protease de HIV/farmacologia , Indinavir/farmacologia , Estresse Oxidativo , Schizosaccharomyces/efeitos dos fármacos
5.
Brain Struct Funct ; 221(6): 2963-84, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-26173976

RESUMO

Retinal connexins (Cx) form gap junctions (GJ) in key circuits that transmit average or synchronize signals. Expression of Cx36, -45, -50 and -57 have been described in many species but there is still a disconcerting paucity of information regarding the Cx makeup of human retinal GJs. We used well-preserved human postmortem samples to characterize Cx36 GJ constituent circuits of the outer plexiform layer (OPL). Based on their location, morphometric characteristics and co-localizations with outer retinal neuronal markers, we distinguished four populations of Cx36 plaques in the human OPL. Three of these were comprised of loosely scattered Cx36 plaques; the distalmost population 1 formed cone-to-rod GJs, population 2 in the mid-OPL formed cone-to-cone GJs, whereas the proximalmost population 4 likely connected bipolar cell dendrites. The fourth population (population 3) of Cx36 plaques conglomerated beneath cone pedicles and connected dendritic tips of bipolar cells that shared a common presynaptic cone. Overall, we show that the human outer retina displays a diverse cohort of Cx36 GJ that follows the general mammalian scheme and display a great functional diversity.


Assuntos
Conexinas/metabolismo , Junções Comunicantes/metabolismo , Retina/metabolismo , Adulto , Idoso , Calbindina 1/metabolismo , Dendritos/metabolismo , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Terminações Pré-Sinápticas/metabolismo , Proteína Quinase C-alfa/metabolismo , Receptores de Glutamato/metabolismo , Recoverina/metabolismo , Células Bipolares da Retina/metabolismo , Células Fotorreceptoras Retinianas Cones/metabolismo , Células Fotorreceptoras Retinianas Bastonetes/metabolismo , Sinapses/metabolismo , Proteína delta-2 de Junções Comunicantes
6.
Cell Biosci ; 5: 47, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26309721

RESUMO

BACKGROUND: The human immunodeficiency virus type 1 (HIV-1) genome (~9 kb RNA) is flanked by two long terminal repeats (LTR) promoter regions with nine open reading frames, which encode Gag, Pol and Env polyproteins, four accessory proteins (Vpu, Vif, Vpr, Nef) and two regulatory proteins (Rev, Tat). In this study, we carried out a genome-wide and functional analysis of the HIV-1 genome in fission yeast (Schizosaccharomyces pombe). RESULTS: Each one of the HIV-1 genes was cloned and expressed individually in fission yeast. Subcellular localization of each viral protein was first examined. The effect of protein expression on cellular proliferation and colony formations, an indication of cytotoxicity, were observed. Overall, there is a general correlation of subcellular localization of each viral protein between fission yeast and mammalian cells. Three viral proteins, viral protein R (Vpr), protease (PR) and regulator of expression of viral protein (Rev), were found to inhibit cellular proliferation. Rev was chosen for further analysis in fission yeast and mammalian cells. Consistent with the observation in fission yeast, expression of HIV-1 rev gene also caused growth retardation in mammalian cells. However, the observed growth delay was neither due to the cytotoxic effect nor due to alterations in cell cycling. Mechanistic testing of the Rev effect suggests it triggers transient induction of cellular oxidative stress. CONCLUSIONS: Some of the behavioral and functional similarities of Rev between fission yeast and mammalian cells suggest fission yeast might be a useful model system for further studies of molecular functions of Rev and other HIV-1 viral proteins.

7.
Cell Cycle ; 13(1): 72-7, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24196444

RESUMO

Two successive rounds of chromosome segregation following a single round of DNA replication enable the production of haploid gametes during meiosis. In the fission yeast Schizosaccharomyces pombe, karyogamy is the process where the nuclei from 2 haploid cells fuse to create a diploid nucleus, which then undergoes meiosis to produce 4 haploid spores. By screening a collection of S. pombe deletion strains, we found that the deletion of 2 genes, mal3 and mto1, leads to the production of asci containing up to 8 spores. Here, we show that Mal3, the fission yeast member of the EB1 family of conserved microtubule plus-end tracking proteins, is required for karyogamy, oscillatory nuclear movement, and proper segregation of chromosomes during meiosis. In the absence of Mal3, meiosis frequently initiates before the completion of karyogamy, thus producing up to 8 nuclei in a single ascus. Our results provide new evidence that fission yeast can initiate meiosis prior to completing karyogamy.


Assuntos
Segregação de Cromossomos/genética , Replicação do DNA/genética , Meiose/genética , Proteínas Associadas aos Microtúbulos/genética , Proteínas de Schizosaccharomyces pombe/genética , Núcleo Celular/genética , Microtúbulos/genética , Microtúbulos/metabolismo
8.
Cell Cycle ; 12(4): 618-24, 2013 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-23370392

RESUMO

The reduction of chromosome number during meiosis is achieved by two successive rounds of chromosome segregation after just single round of DNA replication. To identify novel proteins required for the proper segregation of chromosomes during meiosis, we analyzed the consequences of deleting Schizosaccharomyces pombe genes predicted to encode protein kinases that are not essential for cell viability. We show that Mph1, a member of the Mps1 family of spindle assembly checkpoint kinases, is required to prevent meiosis I homolog non-disjunction. We also provide evidence for a novel function of Spo4, the fission yeast ortholog of Dbf4-dependent Cdc7 kinase, in regulating the length of anaphase II spindles. In the absence of Spo4, abnormally elongated anaphase II spindles frequently overlap and thus destroy the linear order of nuclei in the ascus. Our observation that the spo4Δ mutant phenotype can be partially suppressed by inhibiting Cdc2-as suggests that dysregulation of the activity of this cyclin-dependent kinase may cause abnormal elongation of anaphase II spindles in spo4Δ mutant cells.


Assuntos
Cromossomos Fúngicos/genética , Regulação Fúngica da Expressão Gênica , Meiose/genética , Não Disjunção Genética , Schizosaccharomyces/genética , Proteína Quinase CDC2/antagonistas & inibidores , Proteína Quinase CDC2/genética , Proteína Quinase CDC2/metabolismo , Proteínas de Ciclo Celular/deficiência , Proteínas de Ciclo Celular/genética , Núcleo Celular/genética , Núcleo Celular/metabolismo , Cromossomos Fúngicos/ultraestrutura , Replicação do DNA , Técnicas de Inativação de Genes , Genótipo , Fenótipo , Plasmídeos/genética , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Proteínas Serina-Treonina Quinases/deficiência , Proteínas Serina-Treonina Quinases/genética , Schizosaccharomyces/metabolismo , Schizosaccharomyces/ultraestrutura , Proteínas de Schizosaccharomyces pombe/antagonistas & inibidores , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo
9.
Retrovirology ; 4: 16, 2007 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-17341318

RESUMO

BACKGROUND: Expression of the HIV-1 vpr gene in human and fission yeast cells displays multiple highly conserved activities, which include induction of cell cycle G2 arrest and cell death. We have previously characterized a yeast heat shock protein 16 (Hsp16) that suppresses the Vpr activities when it is overproduced in fission yeast. Similar suppressive effects were observed when the fission yeast hsp16 gene was overexpressed in human cells or in the context of viral infection. In this study, we further characterized molecular actions underlying the suppressive effect of Hsp16 on the Vpr activities. RESULTS: We show that the suppressive effect of Hsp16 on Vpr-dependent viral replication in proliferating T-lymphocytes is mediated through its C-terminal end. In addition, we show that Hsp16 inhibits viral infection in macrophages in a dose-dependent manner. Mechanistically, Hsp16 suppresses Vpr activities in a way that resembles the cellular heat shock response. In particular, Hsp16 activation is mediated by a heat shock factor (Hsf)-dependent mechanism. Interestingly, vpr gene expression elicits a moderate increase of endogenous Hsp16 but prevents its elevation when cells are grown under heat shock conditions that normally stimulate Hsp16 production. Similar responsive to Vpr elevation of Hsp and counteraction of this elevation by Vpr were also observed in our parallel mammalian studies. Since Hsf-mediated elevation of small Hsps occurs in all eukaryotes, this finding suggests that the anti-Vpr activity of Hsps is a conserved feature of these proteins. CONCLUSION: These data suggest that fission yeast could be used as a model to further delineate the potential dynamic and antagonistic interactions between HIV-1 Vpr and cellular heat shock responses involving Hsps.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Regulação Fúngica da Expressão Gênica , Produtos do Gene vpr/antagonistas & inibidores , Proteínas de Choque Térmico/metabolismo , Resposta ao Choque Térmico , Proteínas de Saccharomyces cerevisiae/metabolismo , Schizosaccharomyces/metabolismo , Fatores de Transcrição/metabolismo , Linfócitos T CD4-Positivos/virologia , Células Cultivadas , Proteínas de Ligação a DNA/farmacologia , Produtos do Gene vpr/metabolismo , Genes vpr , HIV-1/efeitos dos fármacos , HIV-1/metabolismo , HIV-1/fisiologia , Proteínas de Choque Térmico/farmacologia , Resposta ao Choque Térmico/efeitos dos fármacos , Humanos , Macrófagos/virologia , Proteínas de Saccharomyces cerevisiae/farmacologia , Schizosaccharomyces/crescimento & desenvolvimento , Schizosaccharomyces/fisiologia , Proteínas de Schizosaccharomyces pombe/metabolismo , Fatores de Transcrição/farmacologia , Replicação Viral/efeitos dos fármacos , Produtos do Gene vpr do Vírus da Imunodeficiência Humana
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA