Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
PLoS Genet ; 15(10): e1008464, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31634348

RESUMO

SF3B1 is the most frequently mutated splicing factor in cancer. Mutations in SF3B1 likely confer clonal advantages to cancer cells but they may also confer vulnerabilities that can be therapeutically targeted. SF3B1 cancer mutations can be maintained in homozygosis in C. elegans, allowing synthetic lethal screens with a homogeneous population of animals. These mutations cause alternative splicing (AS) defects in C. elegans, as it occurs in SF3B1-mutated human cells. In a screen, we identified RNAi of U2 snRNP components that cause synthetic lethality with sftb-1/SF3B1 mutations. We also detected synthetic interactions between sftb-1 mutants and cancer-related mutations in uaf-2/U2AF1 or rsp-4/SRSF2, demonstrating that this model can identify interactions between mutations that are mutually exclusive in human tumors. Finally, we have edited an SFTB-1 domain to sensitize C. elegans to the splicing modulators pladienolide B and herboxidiene. Thus, we have established a multicellular model for SF3B1 mutations amenable for high-throughput genetic and chemical screens.


Assuntos
Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/genética , Neoplasias/genética , Fatores de Processamento de RNA/genética , Ribonucleoproteína Nuclear Pequena U2/genética , Processamento Alternativo/efeitos dos fármacos , Processamento Alternativo/genética , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Sistemas CRISPR-Cas , Modelos Animais de Doenças , Ensaios de Triagem em Larga Escala/métodos , Homozigoto , Humanos , Mutação de Sentido Incorreto , Neoplasias/tratamento farmacológico , Domínios Proteicos/genética , Interferência de RNA , Spliceossomos/efeitos dos fármacos , Mutações Sintéticas Letais
2.
Biochem J ; 475(8): 1523-1534, 2018 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-29626156

RESUMO

In eukaryotic cells, amino acid biosynthesis is feedback-inhibited by amino acids through inhibition of the conserved protein kinase Gcn2. This decreases phosphorylation of initiation factor eIF2α, resulting in general activation of translation but inhibition of translation of mRNA for transcription factor (TF) Gcn4 in yeast or ATF4 in mammals. These TFs are positive regulators of amino acid biosynthetic genes. As several enzymes of amino acid biosynthesis contain iron-sulfur clusters (ISCs) and iron excess is toxic, iron and amino acid homeostasis should be co-ordinated. Working with the yeast Saccharomyces cerevisiae, we found that amino acid supplementation down-regulates expression of genes for iron uptake and decreases intracellular iron content. This cross-regulation requires Aft1, the major TF activated by iron scarcity, as well as Gcn2 and phosphorylatable eIF2α but not Gcn4. A mutant with constitutive activity of Gcn2 (GCN2c ) shows less repression of iron transport genes by amino acids and increased nuclear localization of Aft1 in an iron-poor medium, and increases iron content in this medium. As Aft1 is activated by depletion of mitochondrial ISCs, it is plausible that the Gcn2-eIF2α pathway inhibits the formation of these complexes. Accordingly, the GCN2c mutant has strongly reduced activity of succinate dehydrogenase, an iron-sulfur mitochondrial enzyme, and is unable to grow in media with very low iron or with galactose instead of glucose, conditions where formation of ISCs is specially needed. This mechanism adjusts the uptake of iron to the needs of amino acid biosynthesis and expands the list of Gcn4-independent activities of the Gcn2-eIF2α regulatory system.


Assuntos
Aminoácidos/metabolismo , Fator de Iniciação 2 em Eucariotos/metabolismo , Homeostase , Ferro/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/metabolismo , Fator de Iniciação 2 em Eucariotos/genética , Fosforilação , Proteínas Serina-Treonina Quinases/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Proteínas de Saccharomyces cerevisiae/genética , Fatores de Transcrição/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA