Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Am J Med Genet A ; 194(4): e63477, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37969032

RESUMO

Germline pathogenic variants in the RAS/mitogen-activated protein kinase (MAPK) signaling pathway are the molecular cause of RASopathies, a group of clinically overlapping genetic syndromes. RASopathies constitute a wide clinical spectrum characterized by distinct facial features, short stature, predisposition to cancer, and variable anomalies in nearly all the major body systems. With increasing global recognition of these conditions, the 8th International RASopathies Symposium spotlighted global perspectives on clinical care and research, including strategies for building international collaborations and developing diverse patient cohorts in anticipation of interventional trials. This biannual meeting, organized by RASopathies Network, was held in a hybrid virtual/in-person format. The agenda featured emerging discoveries and case findings as well as progress in preclinical and therapeutic pipelines. Stakeholders including basic scientists, clinician-scientists, practitioners, industry representatives, patients, and family advocates gathered to discuss cutting edge science, recognize current gaps in knowledge, and hear from people with RASopathies about the experience of daily living. Presentations by RASopathy self-advocates and early-stage investigators were featured throughout the program to encourage a sustainable, diverse, long-term research and advocacy partnership focused on improving health and bringing treatments to people with RASopathies.


Assuntos
Síndrome de Costello , Displasia Ectodérmica , Cardiopatias Congênitas , Neoplasias , Síndrome de Noonan , Humanos , Proteínas ras/genética , Sistema de Sinalização das MAP Quinases/genética , Síndrome de Costello/genética , Neoplasias/genética , Displasia Ectodérmica/genética , Síndrome de Noonan/genética , Cardiopatias Congênitas/genética
2.
Nat Commun ; 14(1): 5405, 2023 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-37669951

RESUMO

Nonalcoholic steatohepatitis (NASH) is triggered by hepatocyte death through activation of caspase 6, as a result of decreased adenosine monophosphate (AMP)-activated protein kinase-alpha (AMPKα) activity. Increased hepatocellular death promotes inflammation which drives hepatic fibrosis. We show that the nuclear-localized mitogen-activated protein kinase (MAPK) phosphatase-1 (MKP1) is upregulated in NASH patients and in NASH diet fed male mice. The focus of this work is to investigate whether and how MKP1 is involved in the development of NASH. Under NASH conditions increased oxidative stress, induces MKP1 expression leading to nuclear p38 MAPK dephosphorylation and decreases liver kinase B1 (LKB1) phosphorylation at a site required to promote LKB1 nuclear exit. Hepatic deletion of MKP1 in NASH diet fed male mice releases nuclear LKB1 into the cytoplasm to activate AMPKα and prevents hepatocellular death, inflammation and NASH. Hence, nuclear-localized MKP1-p38 MAPK-LKB1 signaling is required to suppress AMPKα which triggers hepatocyte death and the development of NASH.


Assuntos
Proteína Quinase 14 Ativada por Mitógeno , Hepatopatia Gordurosa não Alcoólica , Animais , Masculino , Camundongos , Proteínas Quinases Ativadas por AMP , Inflamação , Fosforilação , Proteínas Serina-Treonina Quinases
3.
bioRxiv ; 2023 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-37502892

RESUMO

Nonalcoholic steatohepatitis (NASH) is triggered by hepatocyte death through activation of caspase 6, as a result of decreased adenosine monophosphate (AMP)-activated protein kinase-alpha (AMPKα) activity. Increased hepatocellular death promotes inflammation which drives hepatic fibrosis. We show that the nuclear-localized mitogen-activated protein kinase (MAPK) phosphatase-1 (MKP1) is upregulated in NASH patients and in NASH diet fed mice. The focus of this work was to investigate whether and how MKP1 is involved in the development of NASH. Under NASH conditions increased oxidative stress, induces MKP1 expression leading to nuclear p38 MAPK dephosphorylation and decreased liver kinase B1 (LKB1) phosphorylation at a site required to promote LKB1 nuclear exit. Hepatic deletion of MKP1 in NASH diet fed mice released nuclear LKB1 into the cytoplasm to activate AMPKα and prevent hepatocellular death, inflammation and NASH. Hence, nuclear-localized MKP1-p38 MAPK-LKB1 signaling is required to suppress AMPKα which triggers hepatocyte death and the development of NASH.

4.
J Biol Chem ; 299(5): 104731, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37080392

RESUMO

The identification of substrates for protein tyrosine phosphatases (PTPs) is critical for a complete understanding of how these enzymes function. In a recent study in the JBC, Bonham et al. developed a modified method combining substrate-trapping mutations with proximity-labeling MS to identify the protein substrates and interactors of PTP1B. This method revealed interaction networks in breast cancer cell models and discovered novel targets of PTP1B that regulate HER2 signaling pathways. This strategy represents a versatile new tool for identifying the functional interactions between PTPs and their substrates.


Assuntos
Proteínas Tirosina Fosfatases , Transdução de Sinais , Fosforilação , Proteínas Tirosina Fosfatases/genética , Proteínas Tirosina Fosfatases/metabolismo , Proteínas/metabolismo , Mutação , Proteína Tirosina Fosfatase não Receptora Tipo 1/genética , Proteína Tirosina Fosfatase não Receptora Tipo 1/metabolismo , Especificidade por Substrato
5.
bioRxiv ; 2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36711578

RESUMO

The complexity of the multiple mechanisms underlying non-alcoholic fatty liver disease (NAFLD) progression remains a significant challenge for the development of effective therapeutics. miRNAs have shown great promise as regulators of biological processes and as therapeutic targets for complex diseases. Here, we study the role of hepatic miR-33, an important regulator of lipid metabolism, during the progression of NAFLD. We report that miR-33 is overexpressed in hepatocytes isolated from mice with NAFLD and demonstrate that its specific suppression in hepatocytes (miR-33 HKO ) improves multiple aspects of the disease, including insulin resistance, steatosis, and inflammation and limits the progression to non-alcoholic steatohepatitis (NASH), fibrosis and hepatocellular carcinoma (HCC). Mechanistically, we find that hepatic miR-33 deficiency reduces lipid biosynthesis and promotes mitochondrial fatty acid oxidation to reduce lipid burden in hepatocytes. Additionally, miR-33 deficiency improves mitochondrial function, reducing oxidative stress. In miR-33 deficient hepatocytes, we found an increase in AMPKα activation, which regulates several pathways resulting in the attenuation of liver disease. The reduction in lipid accumulation and liver injury resulted in decreased transcriptional activity of the YAP/TAZ pathway, which may be involved in the reduced progression to HCC in the HKO livers. Together, these results suggest suppressing hepatic miR-33 may be an effective therapeutic approach at different stages of NAFLD/NASH/HCC disease progression.

6.
Annu Rev Pharmacol Toxicol ; 63: 617-636, 2023 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-36662585

RESUMO

Phosphatases and kinases maintain an equilibrium of dephosphorylated and phosphorylated proteins, respectively, that are required for critical cellular functions. Imbalance in this equilibrium or irregularity in their function causes unfavorable cellular effects that have been implicated in the development of numerous diseases. Protein tyrosine phosphatases (PTPs) catalyze the dephosphorylation of protein substrates on tyrosine residues, and their involvement in cell signaling and diseases such as cancer and inflammatory and metabolic diseases has made them attractive therapeutic targets. However, PTPs have proved challenging in therapeutics development, garnering them the unfavorable reputation of being undruggable. Nonetheless, great strides have been made toward the inhibition of PTPs over the past decade. Here, we discuss the advancement in small-molecule inhibition for the PTP subfamily known as the mitogen-activated protein kinase (MAPK) phosphatases (MKPs). We review strategies and inhibitor discovery tools that have proven successful for small-molecule inhibition of the MKPs and discuss what the future of MKP inhibition potentially might yield.


Assuntos
Fosfatases da Proteína Quinase Ativada por Mitógeno , Humanos , Fosfatases da Proteína Quinase Ativada por Mitógeno/antagonistas & inibidores , Neoplasias/tratamento farmacológico , Proteínas Tirosina Fosfatases/antagonistas & inibidores , Proteínas Tirosina Fosfatases/metabolismo , Transdução de Sinais , /farmacologia
7.
Cardiovasc Drugs Ther ; 37(6): 1193-1204, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35156148

RESUMO

The RAS/mitogen-activated protein kinase (MAPK) pathway controls a plethora of developmental and post-developmental processes. It is now clear that mutations in the RAS-MAPK pathway cause developmental diseases collectively referred to as the RASopathies. The RASopathies include Noonan syndrome, Noonan syndrome with multiple lentigines, cardiofaciocutaneous syndrome, neurofibromatosis type 1, and Costello syndrome. RASopathy patients exhibit a wide spectrum of congenital heart defects (CHD), such as valvular abnormalities and hypertrophic cardiomyopathy (HCM). Since the cardiovascular defects are the most serious and recurrent cause of mortality in RASopathy patients, it is critical to understand the pathological signaling mechanisms that drive the disease. Therapies for the treatment of HCM and other RASopathy-associated comorbidities have yet to be fully realized. Recent developments have shown promise for the use of repurposed antineoplastic drugs that target the RAS-MAPK pathway for the treatment of RASopathy-associated HCM. However, given the impact of the RAS-MAPK pathway in post-developmental physiology, establishing safety and evaluating risk when treating children will be paramount. As such insight provided by preclinical and clinical information will be critical. This review will highlight the cardiovascular manifestations caused by the RASopathies and will discuss the emerging therapies for treatment.


Assuntos
Síndrome de Costello , Displasia Ectodérmica , Cardiopatias Congênitas , Síndrome de Noonan , Criança , Humanos , Cardiopatias Congênitas/tratamento farmacológico , Cardiopatias Congênitas/genética , Síndrome de Noonan/tratamento farmacológico , Síndrome de Noonan/genética , Síndrome de Costello/genética , Insuficiência de Crescimento/tratamento farmacológico , Insuficiência de Crescimento/genética , Displasia Ectodérmica/genética
8.
Am J Med Genet A ; 188(6): 1915-1927, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35266292

RESUMO

RASopathies are a group of genetic disorders that are caused by genes that affect the canonical Ras/mitogen-activated protein kinase (MAPK) signaling pathway. Despite tremendous progress in understanding the molecular consequences of these genetic anomalies, little movement has been made in translating these findings to the clinic. This year, the seventh International RASopathies Symposium focused on expanding the research knowledge that we have gained over the years to enhance new discoveries in the field, ones that we hope can lead to effective therapeutic treatments. Indeed, for the first time, research efforts are finally being translated to the clinic, with compassionate use of Ras/MAPK pathway inhibitors for the treatment of RASopathies. This biannual meeting, organized by the RASopathies Network, brought together basic scientists, clinicians, clinician scientists, patients, advocates, and their families, as well as representatives from pharmaceutical companies and the National Institutes of Health. A history of RASopathy gene discovery, identification of new disease genes, and the latest research, both at the bench and in the clinic, were discussed.


Assuntos
Síndrome de Costello , Síndrome de Noonan , Síndrome de Costello/genética , Humanos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Síndrome de Noonan/genética , Transdução de Sinais , Proteínas ras/genética , Proteínas ras/metabolismo
9.
Front Immunol ; 12: 790511, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34992607

RESUMO

Cardiac fibrosis, a pathological condition due to excessive extracellular matrix (ECM) deposition in the myocardium, is associated with nearly all forms of heart disease. The processes and mechanisms that regulate cardiac fibrosis are not fully understood. In response to cardiac injury, macrophages undergo marked phenotypic and functional changes and act as crucial regulators of myocardial fibrotic remodeling. Here we show that the mitogen-activated protein kinase (MAPK) phosphatase-5 (MKP-5) in macrophages is involved in pressure overload-induced cardiac fibrosis. Cardiac pressure overload resulting from transverse aortic constriction (TAC) leads to the upregulation of Mkp-5 gene expression in the heart. In mice lacking MKP-5, p38 MAPK and JNK were hyperactivated in the heart, and TAC-induced cardiac hypertrophy and myocardial fibrosis were attenuated. MKP-5 deficiency upregulated the expression of the ECM-degrading matrix metalloproteinase-9 (Mmp-9) in the Ly6Clow (M2-type) cardiac macrophage subset. Consistent with in vivo findings, MKP-5 deficiency promoted MMP-9 expression and activity of pro-fibrotic macrophages in response to IL-4 stimulation. Furthermore, using pharmacological inhibitors against p38 MAPK, JNK, and ERK, we demonstrated that MKP-5 suppresses MMP-9 expression through a combined effect of p38 MAPK/JNK/ERK, which subsequently contributes to the inhibition of ECM-degrading activity. Taken together, our study indicates that pressure overload induces MKP-5 expression and facilitates cardiac hypertrophy and fibrosis. MKP-5 deficiency attenuates cardiac fibrosis through MAPK-mediated regulation of MMP-9 expression in Ly6Clow cardiac macrophages.


Assuntos
Cardiomegalia/imunologia , Fosfatases de Especificidade Dupla/deficiência , Insuficiência Cardíaca/imunologia , Sistema de Sinalização das MAP Quinases/imunologia , Miocárdio/patologia , Animais , Pressão Sanguínea , Cardiomegalia/diagnóstico , Cardiomegalia/patologia , Células Cultivadas , Modelos Animais de Doenças , Fosfatases de Especificidade Dupla/genética , Ecocardiografia , Fibrose , Coração/diagnóstico por imagem , Insuficiência Cardíaca/patologia , Humanos , Interleucina-4/imunologia , Macrófagos/imunologia , Macrófagos/metabolismo , Masculino , Metaloproteinase 9 da Matriz/metabolismo , Camundongos , Camundongos Knockout , Fosforilação/imunologia , Cultura Primária de Células , Remodelação Ventricular/imunologia
10.
Am J Med Genet A ; 182(3): 597-606, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31825160

RESUMO

The RASopathies are a group of genetic disorders that result from germline pathogenic variants affecting RAS-mitogen activated protein kinase (MAPK) pathway genes. RASopathies share RAS/MAPK pathway dysregulation and share phenotypic manifestations affecting numerous organ systems, causing lifelong and at times life-limiting medical complications. RASopathies may benefit from precision medicine approaches. For this reason, the Sixth International RASopathies Symposium focused on exploring precision medicine. This meeting brought together basic science researchers, clinicians, clinician scientists, patient advocates, and representatives from pharmaceutical companies and the National Institutes of Health. Novel RASopathy genes, variants, and animal models were discussed in the context of medication trials and drug development. Attempts to define and measure meaningful endpoints for treatment trials were discussed, as was drug availability to patients after trial completion.


Assuntos
Doenças Genéticas Inatas/genética , Quinases de Proteína Quinase Ativadas por Mitógeno/genética , Proteínas ras/genética , Doenças Genéticas Inatas/patologia , Mutação em Linhagem Germinativa/genética , Humanos , Transdução de Sinais/genética
11.
JCI Insight ; 4(21)2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31672932

RESUMO

Worldwide, over a billion people suffer from chronic liver diseases, which often lead to fibrosis and then cirrhosis. Treatments for fibrosis remain experimental, in part because no unifying mechanism has been identified that initiates liver fibrosis. Necroptosis has been implicated in multiple liver diseases. Here, we report that O-linked ß-N-acetylglucosamine (O-GlcNAc) modification protects against hepatocyte necroptosis and initiation of liver fibrosis. Decreased O-GlcNAc levels were seen in patients with alcoholic liver cirrhosis and in mice with ethanol-induced liver injury. Liver-specific O-GlcNAc transferase-KO (OGT-LKO) mice exhibited hepatomegaly and ballooning degeneration at an early age and progressed to liver fibrosis and portal inflammation by 10 weeks of age. OGT-deficient hepatocytes underwent excessive necroptosis and exhibited elevated protein expression levels of receptor-interacting protein kinase 3 (RIPK3) and mixed lineage kinase domain-like (MLKL), which are key mediators of necroptosis. Furthermore, glycosylation of RIPK3 by OGT is associated with reduced RIPK3 protein stability. Taken together, these findings identify OGT as a key suppressor of hepatocyte necroptosis, and OGT-LKO mice may serve as an effective spontaneous genetic model of liver fibrosis.


Assuntos
Cirrose Hepática/prevenção & controle , N-Acetilglucosaminiltransferases/metabolismo , Necroptose , Animais , Feminino , Humanos , Cirrose Hepática/enzimologia , Cirrose Hepática/patologia , Masculino , Camundongos , Camundongos Knockout , N-Acetilglucosaminiltransferases/genética
12.
Am J Physiol Lung Cell Mol Physiol ; 317(5): L678-L689, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31483681

RESUMO

Mitogen-activated protein kinase (MAPK) phosphatase 5 (MKP-5) is a member of the dual-specificity family of protein tyrosine phosphatases that negatively regulates p38 MAPK and the JNK. MKP-5-deficient mice exhibit improved muscle repair and reduced fibrosis in an animal model of muscular dystrophy. Here, we asked whether the effects of MKP-5 on muscle fibrosis extend to other tissues. Using a bleomycin-induced model of pulmonary fibrosis, we found that MKP-5-deficient mice were protected from the development of lung fibrosis, expressed reduced levels of hydroxyproline and fibrogenic genes, and displayed marked polarization towards an M1-macrophage phenotype. We showed that the profibrogenic effects of the transforming growth factor-ß1 (TGF-ß1) were inhibited in MKP-5-deficient lung fibroblasts. MKP-5-deficient fibroblasts exhibited enhanced p38 MAPK activity, impaired Smad3 phosphorylation, increased Smad7 levels, and decreased expression of fibrogenic genes. Myofibroblast differentiation was attenuated in MKP-5-deficient fibroblasts. Finally, we found that MKP-5 expression was increased in idiopathic pulmonary fibrosis (IPF)-derived lung fibroblasts but not in whole IPF lungs. These data suggest that MKP-5 plays an essential role in promoting lung fibrosis. Our results couple MKP-5 with the TGF-ß1 signaling machinery and imply that MKP-5 inhibition may serve as a therapeutic target for human lung fibrosis.


Assuntos
Fosfatases de Especificidade Dupla/metabolismo , Fosfatases de Especificidade Dupla/fisiologia , Fibroblastos/patologia , Fosfatases da Proteína Quinase Ativada por Mitógeno/metabolismo , Fibrose Pulmonar/patologia , Fator de Crescimento Transformador beta1/farmacologia , Animais , Antibióticos Antineoplásicos/toxicidade , Bleomicina/toxicidade , Fosfatases de Especificidade Dupla/genética , Feminino , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Humanos , Sistema de Sinalização das MAP Quinases , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fosfatases da Proteína Quinase Ativada por Mitógeno/genética , Fosforilação , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/metabolismo , Transdução de Sinais
13.
Diabetes ; 67(4): 624-635, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29317435

RESUMO

Stress responses promote obesity and insulin resistance, in part, by activating the stress-responsive mitogen-activated protein kinases (MAPKs), p38 MAPK, and c-Jun NH2-terminal kinase (JNK). Stress also induces expression of MAPK phosphatase-1 (MKP-1), which inactivates both JNK and p38 MAPK. However, the equilibrium between JNK/p38 MAPK and MKP-1 signaling in the development of obesity and insulin resistance is unclear. Skeletal muscle is a major tissue involved in energy expenditure and glucose metabolism. In skeletal muscle, MKP-1 is upregulated in high-fat diet-fed mice and in skeletal muscle of obese humans. Mice lacking skeletal muscle expression of MKP-1 (MKP1-MKO) showed increased skeletal muscle p38 MAPK and JNK activities and were resistant to the development of diet-induced obesity. MKP1-MKO mice exhibited increased whole-body energy expenditure that was associated with elevated levels of myofiber-associated mitochondrial oxygen consumption. miR-21, a negative regulator of PTEN expression, was upregulated in skeletal muscle of MKP1-MKO mice, resulting in increased Akt activity consistent with enhanced insulin sensitivity. Our results demonstrate that skeletal muscle MKP-1 represents a critical signaling node through which inactivation of the p38 MAPK/JNK module promotes obesity and insulin resistance.


Assuntos
Fosfatase 1 de Especificidade Dupla/genética , Fosfatase 1 de Especificidade Dupla/metabolismo , Resistência à Insulina , MAP Quinase Quinase 4/metabolismo , Músculo Esquelético/metabolismo , Obesidade/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Animais , Dieta Hiperlipídica , Metabolismo Energético , Humanos , Camundongos , Camundongos Knockout , MicroRNAs/metabolismo , Mitocôndrias Musculares/metabolismo , Consumo de Oxigênio , Transdução de Sinais
14.
Hepatol Commun ; 1(1): 23-35, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28966992

RESUMO

Fatty liver is the most common type of liver disease, affecting nearly one third of the US population and more than half a billion people worldwide. Abnormalities in ER calcium handling and mitochondrial function each have been implicated in abnormal lipid droplet formation. Here we show that the type 1 isoform of the inositol 1,4,5-trisphosphate receptor (InsP3R1) specifically links ER calcium release to mitochondrial calcium signaling and lipid droplet formation in hepatocytes. Moreover, liver-specific InsP3R1 knockout mice have impaired mitochondrial calcium signaling, decreased hepatic triglycerides, reduced lipid droplet formation and are resistant to development of fatty liver. Patients with non-alcoholic steatohepatitis, the most malignant form of fatty liver, have increased hepatic expression of InsP3R1 and the extent of ER-mitochondrial co-localization correlates with the degree of steatosis in human liver biopsies. CONCLUSION: InsP3R1 plays a central role in lipid droplet formation in hepatocytes and the data suggest that it is involved in the development of human fatty liver disease.

15.
Skelet Muscle ; 7(1): 21, 2017 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-29047406

RESUMO

BACKGROUND: The mitogen-activated protein kinases (MAPKs) have been shown to be involved in regulating myofiber survival. In skeletal muscle, p38 MAPK and JNK are negatively regulated by MAPK phosphatase-5 (MKP-5). During muscle regeneration, MKP-5 is downregulated, thereby promoting p38 MAPK/JNK signaling, and subsequent repair of damaged muscle. Mice lacking MKP-5 expression exhibit enhanced regenerative myogenesis. However, the effect of MKP-5 on myofiber survival during regeneration is unclear. METHODS: To investigate whether MKP-5 is involved in myofiber survival, skeletal muscle injury was induced by cardiotoxin injection, and the effects on apoptosis were assessed by TUNEL assay in wild type and MKP-5-deficient mice. The contribution of MKP-5 to apoptotic signaling and its link to this pathway through mitochondrial function were determined in regenerating skeletal muscle of MKP-5-deficient mice. RESULTS: We found that loss of MKP-5 in skeletal muscle resulted in improved myofiber survival. In response to skeletal muscle injury, loss of MKP-5 decreased activation of the mitochondrial apoptotic pathway involving the signal transducer and activator of transcription 3 (STAT3) and increased expression of the anti-apoptotic transcription factor Bcl-2. Skeletal muscle of MKP-5-deficient mice also exhibited an improved anti-oxidant capacity as a result of increased expression of catalase further contributing to myofiber survival by attenuating oxidative damage. CONCLUSIONS: Taken together, these findings suggest that MKP-5 coordinates skeletal muscle regeneration by regulating mitochondria-mediated apoptosis. MKP-5 negatively regulates apoptotic signaling, and during regeneration, MKP-5 downregulation contributes to the restoration of myofiber survival. Finally, these results suggest that MKP-5 inhibition may serve as an important therapeutic target for the preservation of skeletal muscle survival in degenerative muscle diseases.


Assuntos
Apoptose , Fosfatases de Especificidade Dupla/genética , Desenvolvimento Muscular , Fibras Musculares Esqueléticas/metabolismo , Transdução de Sinais , Animais , Linhagem Celular , Fosfatases de Especificidade Dupla/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Fibras Musculares Esqueléticas/fisiologia , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Regeneração , Fator de Transcrição STAT3/metabolismo
16.
J Biol Chem ; 292(9): 3581-3590, 2017 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-28096466

RESUMO

The mitogen-activated protein kinases (MAPKs) have been shown to regulate skeletal muscle function. Previously, we showed that MAPK phosphatase-5 (MKP-5) negatively regulates myogenesis and regeneration of skeletal muscle through inhibition of p38 MAPK and c-Jun N-terminal kinase (JNK). However, the identity and contribution of MKP-5-regulated MAPK targets in the control of skeletal muscle function and regenerative myogenesis have not been established. To identify MKP-5-regulated MAPK substrates in skeletal muscle, we performed a global differential phospho-MAPK substrate screen in regenerating skeletal muscles of wild type and MKP-5-deficient mice. We discovered a novel MKP-5-regulated MAPK substrate called guanine nucleotide exchange factor for Rab3A (GRAB) that was hyperphosphorylated on a phospho-MAPK motif in skeletal muscle of MKP-5-deficient mice. GRAB was found to be phosphorylated by JNK on serine 169. Myoblasts overexpressing a phosphorylation-defective mutant of GRAB containing a mutation at Ser-169 to Ala-169 (GRAB-S169A) inhibited the ability of C2C12 myoblasts to differentiate. We found that GRAB phosphorylation at Ser-169 was required for the secretion of the promyogenic cytokine interleukin 6 (IL-6). Consistent with this observation, MKP-5-deficient mice exhibited increased circulating IL-6 expression as compared with wild type mice. Collectively, these data demonstrate a novel mechanism whereby MKP-5-mediated regulation of JNK negatively regulates phosphorylation of GRAB, which subsequently controls secretion of IL-6. These data support the notion that MKP-5 serves as a negative regulator of MAPK-dependent signaling of critical skeletal muscle signaling pathways.


Assuntos
Fosfatases de Especificidade Dupla/metabolismo , Regulação Enzimológica da Expressão Gênica , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Interleucina-6/metabolismo , Desenvolvimento Muscular , Proteína rab3A de Ligação ao GTP/metabolismo , Motivos de Aminoácidos , Animais , Movimento Celular , Proliferação de Células , Sistema de Sinalização das MAP Quinases , Camundongos , Camundongos Knockout , Músculo Esquelético/metabolismo , Mutação , Mioblastos/metabolismo , Fosforilação , Proteômica , Regeneração , Serina/química
17.
Am J Respir Crit Care Med ; 195(4): 500-514, 2017 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-27736153

RESUMO

RATIONALE: Idiopathic pulmonary fibrosis (IPF) is a chronic fatal lung disease with dismal prognosis and no cure. The potential role of the ubiquitously expressed SH2 domain-containing tyrosine phosphatase-2 (SHP2) as a therapeutic target has not been studied in IPF. OBJECTIVES: To determine the expression, mechanistic role, and potential therapeutic usefulness of SHP2 in pulmonary fibrosis. METHODS: The effects of SHP2 overexpression and inhibition on fibroblast response to profibrotic stimuli were analyzed in vitro in primary human and mouse lung fibroblasts. In vivo therapeutic effects were assessed in the bleomycin model of lung fibrosis by SHP2-lentiviral administration and transgenic mice carrying a constitutively active SHP2 mutation. MEASUREMENTS AND MAIN RESULTS: SHP2 was down-regulated in lungs and lung fibroblasts obtained from patients with IPF. Immunolocalization studies revealed that SHP2 was absent within fibroblastic foci. Loss of SHP2 expression or activity was sufficient to induce fibroblast-to-myofibroblast differentiation in primary human lung fibroblasts. Overexpression of constitutively active SHP2 reduced the responsiveness of fibroblasts to profibrotic stimuli, including significant reductions in cell survival and myofibroblast differentiation. SHP2 effects were mediated through deactivation of fibrosis-relevant tyrosine kinase and serine/threonine kinase signaling pathways. Mice carrying the Noonan syndrome-associated gain-of-function SHP2 mutation (SHP2D61G/+) were resistant to bleomycin-induced pulmonary fibrosis. Restoration of SHP2 levels in vivo through lentiviral delivery blunted bleomycin-induced pulmonary fibrosis. CONCLUSIONS: Our data suggest that SHP2 is an important regulator of fibroblast differentiation, and its loss as observed in IPF facilitates profibrotic phenotypic changes. Augmentation of SHP2 activity or expression should be investigated as a novel therapeutic strategy for IPF.


Assuntos
Fibroblastos/patologia , Fibrose Pulmonar Idiopática/genética , Proteína Tirosina Fosfatase não Receptora Tipo 11/genética , Animais , Antibióticos Antineoplásicos/administração & dosagem , Biópsia , Bleomicina/administração & dosagem , Modelos Animais de Doenças , Regulação para Baixo/efeitos dos fármacos , Regulação para Baixo/genética , Humanos , Fibrose Pulmonar Idiopática/patologia , Imunoprecipitação/métodos , Camundongos , Camundongos Endogâmicos C57BL , Nitrofenóis/análise , Proteína Tirosina Fosfatase não Receptora Tipo 11/efeitos dos fármacos , Estatísticas não Paramétricas
18.
JCI Insight ; 1(20): e90220, 2016 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-27942593

RESUMO

Noonan syndrome (NS) is a common autosomal dominant disorder that presents with short stature, craniofacial dysmorphism, and cardiac abnormalities. Activating mutations in the PTPN11 gene encoding for the Src homology 2 (SH2) domain-containing protein tyrosine phosphatase-2 (SHP2) causes approximately 50% of NS cases. In contrast, NS with multiple lentigines (NSML) is caused by mutations that inactivate SHP2, but it exhibits some overlapping abnormalities with NS. Protein zero-related (PZR) is a SHP2-binding protein that is hyper-tyrosyl phosphorylated in the hearts of mice from NS and NSML, suggesting that PZR and the tyrosine kinase that catalyzes its phosphorylation represent common targets for these diseases. We show that the tyrosine kinase inhibitor, dasatinib, at doses orders of magnitude lower than that used for its anticancer activities inhibited PZR tyrosyl phosphorylation in the hearts of NS mice. Low-dose dasatinib treatment of NS mice markedly improved cardiomyocyte contractility and functionality. Remarkably, a low dose of dasatinib reversed the expression levels of molecular markers of cardiomyopathy and reduced cardiac fibrosis in NS and NSML mice. These results suggest that PZR/SHP2 signaling is a common target of both NS and NSML and that low-dose dasatinib may represent a unifying therapy for the treatment of PTPN11-related cardiomyopathies.


Assuntos
Dasatinibe/administração & dosagem , Miócitos Cardíacos/efeitos dos fármacos , Síndrome de Noonan/tratamento farmacológico , Animais , Dasatinibe/farmacologia , Fibrose , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Mutação , Miocárdio/patologia , Fosfoproteínas/metabolismo , Fosforilação , Proteína Tirosina Fosfatase não Receptora Tipo 11/metabolismo , Transdução de Sinais
19.
Mol Cell ; 52(1): 101-12, 2013 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-24055342

RESUMO

Abundantly expressed in fetal tissues and adult muscle, the developmentally regulated H19 long noncoding RNA (lncRNA) has been implicated in human genetic disorders and cancer. However, how H19 acts to regulate gene function has remained enigmatic, despite the recent implication of its encoded miR-675 in limiting placental growth. We noted that vertebrate H19 harbors both canonical and noncanonical binding sites for the let-7 family of microRNAs, which plays important roles in development, cancer, and metabolism. Using H19 knockdown and overexpression, combined with in vivo crosslinking and genome-wide transcriptome analysis, we demonstrate that H19 modulates let-7 availability by acting as a molecular sponge. The physiological significance of this interaction is highlighted in cultures in which H19 depletion causes precocious muscle differentiation, a phenotype recapitulated by let-7 overexpression. Our results reveal an unexpected mode of action of H19 and identify this lncRNA as an important regulator of the major let-7 family of microRNAs.


Assuntos
Impressão Genômica , MicroRNAs/metabolismo , RNA Longo não Codificante/metabolismo , Animais , Sítios de Ligação , Diferenciação Celular , Biologia Computacional , Bases de Dados Genéticas , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica , Genótipo , Células HEK293 , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Camundongos , MicroRNAs/genética , Desenvolvimento Muscular , Mioblastos Esqueléticos/metabolismo , Fenótipo , Interferência de RNA , RNA Longo não Codificante/genética , Ribonucleoproteínas/metabolismo , Fatores de Tempo , Transfecção
20.
Mol Cell Biol ; 33(7): 1430-41, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23358419

RESUMO

Receptor tyrosine kinases (RTKs) exist in equilibrium between tyrosyl-phosphorylated and dephosphorylated states. Despite a detailed understanding of how RTKs become tyrosyl phosphorylated, much less is known about RTK tyrosyl dephosphorylation. Receptor protein tyrosine phosphatases (RPTPs) can play essential roles in the dephosphorylation of RTKs. However, a complete understanding of the involvement of the RPTP subfamily in RTK tyrosyl dephosphorylation has not been established. In this study, we have employed a small interfering RNA (siRNA) screen to identify RPTPs in the human genome that serve as RTK phosphatases. We observed that each RPTP induced a unique fingerprint of tyrosyl phosphorylation among 42 RTKs. We identified EphA2 as a novel LAR substrate. LAR dephosphorylated EphA2 at phosphotyrosyl 930, uncoupling Nck1 from EphA2 and thereby attenuating EphA2-mediated cell migration. These results demonstrate that each RPTP exerts a unique regulatory fingerprint of RTK tyrosyl dephosphorylation and suggest a complex signaling interplay between RTKs and RPTPs. Furthermore, we observed that LAR modulates cell migration through EphA2 site-specific dephosphorylation.


Assuntos
Movimento Celular/fisiologia , Proteínas Tirosina Quinases/metabolismo , Receptor EphA2/metabolismo , Proteínas Tirosina Fosfatases Semelhantes a Receptores/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Células COS , Linhagem Celular , Chlorocebus aethiops , Células Epiteliais/citologia , Células Epiteliais/enzimologia , Células Epiteliais/metabolismo , Células HEK293 , Humanos , Proteínas Oncogênicas/metabolismo , Fosforilação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA