Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(3): e2307904121, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38207075

RESUMO

Respiratory chain dysfunction can decrease ATP and increase reactive oxygen species (ROS) levels. Despite the importance of these metabolic parameters to a wide range of cellular functions and disease, we lack an integrated understanding of how they are differentially regulated. To address this question, we adapted a CRISPRi- and FACS-based platform to compare the effects of respiratory gene knockdown on ROS to their effects on ATP. Focusing on genes whose knockdown is known to decrease mitochondria-derived ATP, we showed that knockdown of genes in specific respiratory chain complexes (I, III, and CoQ10 biosynthesis) increased ROS, whereas knockdown of other low ATP hits either had no impact (mitochondrial ribosomal proteins) or actually decreased ROS (complex IV). Moreover, although shifting metabolic conditions profoundly altered mitochondria-derived ATP levels, it had little impact on mitochondrial or cytosolic ROS. In addition, knockdown of a subset of complex I subunits-including NDUFA8, NDUFB4, and NDUFS8-decreased complex I activity, mitochondria-derived ATP, and supercomplex level, but knockdown of these genes had differential effects on ROS. Conversely, we found an essential role for ether lipids in the dynamic regulation of mitochondrial ROS levels independent of ATP. Thus, our results identify specific metabolic regulators of cellular ATP and ROS balance that may help dissect the roles of these processes in disease and identify therapeutic strategies to independently target energy failure and oxidative stress.


Assuntos
Mitocôndrias , Membranas Mitocondriais , Espécies Reativas de Oxigênio/metabolismo , Mitocôndrias/metabolismo , Membranas Mitocondriais/metabolismo , Proteínas Mitocondriais/metabolismo , Trifosfato de Adenosina/metabolismo , Estresse Oxidativo
2.
PLoS Biol ; 20(9): e3001753, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36137002

RESUMO

The Warburg effect, aerobic glycolysis, is a hallmark feature of cancer cells grown in culture. However, the relative roles of glycolysis and respiratory metabolism in supporting in vivo tumor growth and processes such as tumor dissemination and metastatic growth remain poorly understood, particularly on a systems level. Using a CRISPRi mini-library enriched for mitochondrial ribosomal protein and respiratory chain genes in multiple human lung cancer cell lines, we analyzed in vivo metabolic requirements in xenograft tumors grown in distinct anatomic contexts. While knockdown of mitochondrial ribosomal protein and respiratory chain genes (mito-respiratory genes) has little impact on growth in vitro, tumor cells depend heavily on these genes when grown in vivo as either flank or primary orthotopic lung tumor xenografts. In contrast, respiratory function is comparatively dispensable for metastatic tumor growth. RNA-Seq and metabolomics analysis of tumor cells expressing individual sgRNAs against mito-respiratory genes indicate overexpression of glycolytic genes and increased sensitivity of glycolytic inhibition compared to control when grown in vitro, but when grown in vivo as primary tumors these cells down-regulate glycolytic mechanisms. These studies demonstrate that discrete perturbations of mitochondrial respiratory chain function impact in vivo tumor growth in a context-specific manner with differential impacts on primary and metastatic tumors.


Assuntos
Glicólise , Neoplasias Pulmonares , Linhagem Celular Tumoral , Glicólise/genética , Humanos , Neoplasias Pulmonares/patologia , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Proteínas Ribossômicas/metabolismo
3.
Hum Mutat ; 43(12): 1970-1978, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36030551

RESUMO

Primary mitochondrial diseases are a group of genetically and clinically heterogeneous disorders resulting from oxidative phosphorylation (OXPHOS) defects. COX11 encodes a copper chaperone that participates in the assembly of complex IV and has not been previously linked to human disease. In a previous study, we identified that COX11 knockdown decreased cellular adenosine triphosphate (ATP) derived from respiration, and that ATP levels could be restored with coenzyme Q10 (CoQ10 ) supplementation. This finding is surprising since COX11 has no known role in CoQ10 biosynthesis. Here, we report a novel gene-disease association by identifying biallelic pathogenic variants in COX11 associated with infantile-onset mitochondrial encephalopathies in two unrelated families using trio genome and exome sequencing. Functional studies showed that mutant COX11 fibroblasts had decreased ATP levels which could be rescued by CoQ10 . These results not only suggest that COX11 variants cause defects in energy production but reveal a potential metabolic therapeutic strategy for patients with COX11 variants.


Assuntos
Doenças Mitocondriais , Encefalomiopatias Mitocondriais , Humanos , Encefalomiopatias Mitocondriais/genética , Encefalomiopatias Mitocondriais/metabolismo , Doenças Mitocondriais/genética , Doenças Mitocondriais/metabolismo , Mitocôndrias/metabolismo , Trifosfato de Adenosina/metabolismo , Proteínas de Transporte de Cobre/metabolismo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Complexo de Proteínas da Cadeia de Transporte de Elétrons/metabolismo
4.
Nat Commun ; 11(1): 4319, 2020 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-32859923

RESUMO

Disrupted energy metabolism drives cell dysfunction and disease, but approaches to increase or preserve ATP are lacking. To generate a comprehensive metabolic map of genes and pathways that regulate cellular ATP-the ATPome-we conducted a genome-wide CRISPR interference/activation screen integrated with an ATP biosensor. We show that ATP level is modulated by distinct mechanisms that promote energy production or inhibit consumption. In our system HK2 is the greatest ATP consumer, indicating energy failure may not be a general deficiency in producing ATP, but rather failure to recoup the ATP cost of glycolysis and diversion of glucose metabolites to the pentose phosphate pathway. We identify systems-level reciprocal inhibition between the HIF1 pathway and mitochondria; glycolysis-promoting enzymes inhibit respiration even when there is no glycolytic ATP production, and vice versa. Consequently, suppressing alternative metabolism modes paradoxically increases energy levels under substrate restriction. This work reveals mechanisms of metabolic control, and identifies therapeutic targets to correct energy failure.


Assuntos
Trifosfato de Adenosina/metabolismo , Redes e Vias Metabólicas/genética , Redes e Vias Metabólicas/fisiologia , Trifosfato de Adenosina/genética , Sistemas CRISPR-Cas , Linhagem Celular , Metabolismo Energético , Feminino , Fibroblastos , Regulação da Expressão Gênica , Técnicas de Silenciamento de Genes , Glucose/metabolismo , Glicólise/fisiologia , Hexoquinase/genética , Hexoquinase/metabolismo , Humanos , Células K562 , Metabolômica , Mitocôndrias/metabolismo , Via de Pentose Fosfato , Mutação Puntual
5.
PLoS Biol ; 16(8): e2004624, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30148842

RESUMO

Insufficient or dysregulated energy metabolism may underlie diverse inherited and degenerative diseases, cancer, and even aging itself. ATP is the central energy carrier in cells, but critical pathways for regulating ATP levels are not systematically understood. We combined a pooled clustered regularly interspaced short palindromic repeats interference (CRISPRi) library enriched for mitochondrial genes, a fluorescent biosensor, and fluorescence-activated cell sorting (FACS) in a high-throughput genetic screen to assay ATP concentrations in live human cells. We identified genes not known to be involved in energy metabolism. Most mitochondrial ribosomal proteins are essential in maintaining ATP levels under respiratory conditions, and impaired respiration predicts poor growth. We also identified genes for which coenzyme Q10 (CoQ10) supplementation rescued ATP deficits caused by knockdown. These included CoQ10 biosynthetic genes associated with human disease and a subset of genes not linked to CoQ10 biosynthesis, indicating that increasing CoQ10 can preserve ATP in specific genetic contexts. This screening paradigm reveals mechanisms of metabolic control and genetic defects responsive to energy-based therapies.


Assuntos
Trifosfato de Adenosina/análise , Metabolismo Energético/fisiologia , Ensaios de Triagem em Larga Escala/métodos , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Humanos , Mitocôndrias/genética , Mitocôndrias/metabolismo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Análise de Célula Única/métodos , Ubiquinona/análogos & derivados , Ubiquinona/metabolismo
6.
Cell ; 174(4): 953-967.e22, 2018 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-30033366

RESUMO

Seminal yeast studies have established the value of comprehensively mapping genetic interactions (GIs) for inferring gene function. Efforts in human cells using focused gene sets underscore the utility of this approach, but the feasibility of generating large-scale, diverse human GI maps remains unresolved. We developed a CRISPR interference platform for large-scale quantitative mapping of human GIs. We systematically perturbed 222,784 gene pairs in two cancer cell lines. The resultant maps cluster functionally related genes, assigning function to poorly characterized genes, including TMEM261, a new electron transport chain component. Individual GIs pinpoint unexpected relationships between pathways, exemplified by a specific cholesterol biosynthesis intermediate whose accumulation induces deoxynucleotide depletion, causing replicative DNA damage and a synthetic-lethal interaction with the ATR/9-1-1 DNA repair pathway. Our map provides a broad resource, establishes GI maps as a high-resolution tool for dissecting gene function, and serves as a blueprint for mapping the genetic landscape of human cells.


Assuntos
Biomarcadores/metabolismo , Colesterol/metabolismo , Epistasia Genética , Redes Reguladoras de Genes , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Células Jurkat , Células K562 , Mapeamento de Interação de Proteínas
7.
Sci Rep ; 7: 39406, 2017 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-28051095

RESUMO

While distinct stem cell phenotypes follow global changes in chromatin marks, single-cell chromatin technologies are unable to resolve or predict stem cell fates. We propose the first such use of optical high content nanoscopy of histone epigenetic marks (epi-marks) in stem cells to classify emergent cell states. By combining nanoscopy with epi-mark textural image informatics, we developed a novel approach, termed EDICTS (Epi-mark Descriptor Imaging of Cell Transitional States), to discern chromatin organizational changes, demarcate lineage gradations across a range of stem cell types and robustly track lineage restriction kinetics. We demonstrate the utility of EDICTS by predicting the lineage progression of stem cells cultured on biomaterial substrates with graded nanotopographies and mechanical stiffness, thus parsing the role of specific biophysical cues as sensitive epigenetic drivers. We also demonstrate the unique power of EDICTS to resolve cellular states based on epi-marks that cannot be detected via mass spectrometry based methods for quantifying the abundance of histone post-translational modifications. Overall, EDICTS represents a powerful new methodology to predict single cell lineage decisions by integrating high content super-resolution nanoscopy and imaging informatics of the nuclear organization of epi-marks.


Assuntos
Variação Biológica da População , Técnicas Citológicas/métodos , Epigênese Genética , Processamento de Imagem Assistida por Computador/métodos , Células-Tronco Mesenquimais/classificação , Células-Tronco Mesenquimais/citologia , Imagem Óptica/métodos , Núcleo Celular/química , Cromatina/química , Humanos
8.
Nat Commun ; 7: 10862, 2016 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-26983594

RESUMO

Cell replacement therapy with human pluripotent stem cell-derived neurons has the potential to ameliorate neurodegenerative dysfunction and central nervous system injuries, but reprogrammed neurons are dissociated and spatially disorganized during transplantation, rendering poor cell survival, functionality and engraftment in vivo. Here, we present the design of three-dimensional (3D) microtopographic scaffolds, using tunable electrospun microfibrous polymeric substrates that promote in situ stem cell neuronal reprogramming, neural network establishment and support neuronal engraftment into the brain. Scaffold-supported, reprogrammed neuronal networks were successfully grafted into organotypic hippocampal brain slices, showing an ∼ 3.5-fold improvement in neurite outgrowth and increased action potential firing relative to injected isolated cells. Transplantation of scaffold-supported neuronal networks into mouse brain striatum improved survival ∼ 38-fold at the injection site relative to injected isolated cells, and allowed delivery of multiple neuronal subtypes. Thus, 3D microscale biomaterials represent a promising platform for the transplantation of therapeutic human neurons with broad neuro-regenerative relevance.


Assuntos
Encéfalo/citologia , Reprogramação Celular , Imageamento Tridimensional , Neurônios/citologia , Neurônios/transplante , Alicerces Teciduais/química , Diferenciação Celular , Proliferação de Células , Sobrevivência Celular , Humanos , Polímeros/química , Fatores de Transcrição/metabolismo
9.
ACS Biomater Sci Eng ; 2(6): 1030-1038, 2016 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-32582837

RESUMO

While cell transplantation presents a potential strategy to treat the functional deficits of neurodegenerative diseases or central nervous system injuries, the poor survival rate of grafted cells in vivo is a major barrier to effective therapeutic treatment. In this study, we investigated the role of a peptide-based nanofibrous scaffold composed of the self-assembling peptide RADA16-I to support the reprogramming and maturation of human neurons in vitro and to transplant these neurons in vivo. The induced human neurons were generated via the single transcriptional factor transduction of induced pluripotent stem cells (iPSCs), which are a promising cell source for regenerative therapies. These neurons encapsulated within RADA16-I scaffolds displayed robust neurite outgrowth and demonstrated high levels of functional activity in vitro compared to that of 2-D controls, as determined by live cell calcium imaging. When evaluated in vivo as a transplantation vehicle for adherent, functional networks of neurons, monodisperse RADA16-I microspheres significantly increased survival (over 100-fold greater) compared to the conventional transplantation of unsupported neurons in suspension. The scaffold-encapsulated neurons integrated well in vivo within the injection site, extending neurites several hundred microns long into the host brain tissue. Overall, these results suggest that this biomaterial platform can be used to successfully improve the outcome of cell transplantation and neuro-regenerative therapies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA