Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Cell Physiol ; 239(5): e31214, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38358001

RESUMO

Alleviating bone loss is an essential way to prevent osteoporotic fractures. Proper exercise improves bone density without the side effects of long-term medications, but the mechanism is unclear. Our study explored the role of Antxr1/LncRNA H19/Wnt/ß-catenin axis in the process of exercise-mediated alleviation of bone loss. Here we discovered that moderate-intensity treadmill exercise alleviates bone loss caused by ovariectomy and ameliorates bone strength accompanied by an increased lncRNA H19 expression. Concomitantly, Antxr1, a mechanosensitive protein was found downregulated by exercise but upregulated by ovariectomy. Interestingly, knockdown expression of Antxr1 increased lncRNA H19 expression and Wnt/ß-catenin signaling pathway in bone marrow mesenchymal stem cells, whereas overexpression of Antxr1 decreased lncRNA H19 expression and Wnt/ß-catenin signaling pathway. Hence, our study demonstrates the regulation of Antxr1/LncRNA H19/Wnt/ß-catenin axis in the process of mechanical strain-induced osteogenic differentiation, which provides further mechanistic insight into the role of mechanical regulation in bone metabolism.


Assuntos
Proteínas dos Microfilamentos , Osteogênese , RNA Longo não Codificante , Receptores de Superfície Celular , Estresse Mecânico , Via de Sinalização Wnt , beta Catenina , Animais , Feminino , Camundongos , beta Catenina/metabolismo , beta Catenina/genética , Densidade Óssea/genética , Diferenciação Celular , Células-Tronco Mesenquimais/metabolismo , Osteogênese/genética , Osteoporose/genética , Osteoporose/metabolismo , Osteoporose/patologia , Ovariectomia/efeitos adversos , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Via de Sinalização Wnt/genética , Camundongos Endogâmicos C57BL , Proteínas dos Microfilamentos/metabolismo , Receptores de Superfície Celular/metabolismo
2.
Case Rep Oncol ; 17(1): 329-336, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38404406

RESUMO

Introduction: Acquired angioedema due to C1 esterase inhibitor deficiency (C1INH-AAE) is most associated with lymphoproliferative disorders (LPDs), particularly low-grade B-cell subtypes. The condition remains under-recognized with long diagnostic delays due to various challenges including a lack of awareness of the condition. Case Presentation: We discuss 4 cases of C1INH-AAE associated with low-grade B-cell LPDs, including various diagnostic and management challenges. As our cases illustrate, constitutional symptoms or overt manifestations of LPD at diagnosis are often absent. Hence, a comprehensive multimodal approach to screening for an underlying B-LPD is important when a diagnosis of acquired angioedema is made. Levels of complement C4, C1q, and C1INH are useful for diagnosing C1INH-AAE and for monitoring disease activity. Changes in these parameters may also indicate relapse of the underlying hematological malignancy. Treating the underlying disorder is important as this commonly leads to clinical improvement with decreased episodes of angioedema and normalization of complement studies. Conclusion: Awareness of C1INH-AAE can lead to an early diagnosis of hematological malignancies. The absence of constitutional symptoms emphasizes the need for a comprehensive multimodal approach to screening for LPD in C1INH-AAE. C4, C1INH level, and function are useful for monitoring disease activity.

3.
Front Pharmacol ; 14: 1111218, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37033622

RESUMO

Parthenolide (PTL or PAR) was first isolated from Magnolia grandiflora and identified as a small molecule cancer inhibitor. PTL has the chemical structure of C15H20O3 with characteristics of sesquiterpene lactones and exhibits the biological property of inhibiting DNA biosynthesis of cancer cells. In this review, we summarise the recent research progress of medicinal PTL, including the therapeutic effects on skeletal diseases, cancers, and inflammation-induced cytokine storm. Mechanistic investigations reveal that PTL predominantly inhibits NF-κB activation and other signalling pathways, such as reactive oxygen species. As an inhibitor of NF-κB, PTL appears to inhibit several cytokines, including RANKL, TNF-α, IL-1ß, together with LPS induced activation of NF-κB and NF-κB -mediated specific gene expression such as IL-1ß, TNF-α, COX-2, iNOS, IL-8, MCP-1, RANTES, ICAM-1, VCAM-1. It is also proposed that PTL could inhibit cytokine storms or hypercytokinemia triggered by COVID-19 via blocking the activation of NF-κB signalling. Understanding the pharmacologic properties of PTL will assist us in developing its therapeutic application for medical conditions, including arthritis, osteolysis, periodontal disease, cancers, and COVID-19-related disease.

4.
Front Endocrinol (Lausanne) ; 13: 1019943, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36561569

RESUMO

Galanin is a neurohormone as well as a neurotransmitter and plays versatile physiological roles for the neuroendocrine axis, such as regulating food intake, insulin level and somatostatin release. It is expressed in the central nervous system, including hypothalamus, pituitary, and the spinal cord, and colocalises with other neuronal peptides within neurons. Structural analyses reveal that the human galanin precursor is 104 amino acid (aa) residues in length, consisting of a mature galanin peptide (aa 33-62), and galanin message-associated peptide (GMAP; aa 63-104) at the C-terminus. GMAP appears to exhibit distinctive biological effects on anti-fungal activity and the spinal flexor reflex. Galanin-like peptide (GALP) has a similar structure to galanin and acts as a hypothalamic neuropeptide to mediate metabolism and reproduction, food intake, and body weight. Alarin, a differentially spliced variant of GALP, is specifically involved in vasoactive effect in the skin and ganglionic differentiation in neuroblastic tumors. Dysregulation of galanin, GALP and alarin has been implicated in various neuroendocrine conditions such as nociception, Alzheimer's disease, seizures, eating disorders, alcoholism, diabetes, and spinal cord conditions. Further delineation of the common and distinctive effects and mechanisms of various types of galanin family proteins could facilitate the design of therapeutic approaches for neuroendocrine diseases and spinal cord injury.


Assuntos
Galanina , Sistemas Neurossecretores , Hormônios Peptídicos , Medula Espinal , Humanos , Galanina/química , Galanina/metabolismo , Estrutura Molecular , Hormônios Peptídicos/química , Hormônios Peptídicos/metabolismo , Medula Espinal/metabolismo , Sistemas Neurossecretores/metabolismo
5.
Front Physiol ; 13: 1003931, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36117697

RESUMO

Junctional epithelium (JE) is a vital epithelial component which forms an attachment to the tooth surface at the gingival sulcus by the adhesion of protein complexes from its basal layer. Disruption of the JE is associated with the development of gingivitis, periodontal disease, and alveolar bone loss. Odontogenic ameloblast-associated (ODAM) is comprised of a signal peptide and an ODAM protein with 12 putative glycosylation sites. It is expressed during odontogenesis by maturation stage ameloblasts and is incorporated into the enamel matrix during the formation of outer and surface layer enamel. ODAM, as a secreted protein which is accumulated at the interface between basal lamina and enamel, mediates the adhesion of the JE to the tooth surface; and is involved with extracellular signalling of WNT and ARHGEF5-RhoA, as well as intracellular signalling of BMP-2-BMPR-IB-ODAM. ODAM is also found to be highly expressed in salivary glands and appears to have implications for the regulation of formation, repair, and regeneration of the JE. Bioinformatics and research data have identified the anti-cancer properties of ODAM, indicating its potential both as a prognostic biomarker and therapeutic target. Understanding the biology of ODAM will help to design therapeutic strategies for periodontal and dental disorders.

6.
J Cell Physiol ; 237(1): 480-488, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34550600

RESUMO

Leukocyte cell-derived chemotaxin-2 (LECT2 or LECT-2), also called chondromodulin II (ChM-II or CHM2) plays a versatile role in various tissues. It was first identified as a chemotactic factor to promote the migration of neutrophils. It was also reported as a hepatokine to regulate glucose metabolism, obesity, and nonalcoholic fatty liver disease. As a secreted factor, LECT2 binds to several cell surface receptors CD209a, Tie1, and Met to regulate inflammatory reaction, fibrogenesis, vascular invasion, and tumor metastasis in various cell types. As an intracellular molecule, it is associated with LECT2-mediated amyloidosis, in which LECT2 misfolding results in insoluble fibrils in multiple tissues such as the kidney, liver, and lung. Recently, LECT2 was found to be associated with the development of rheumatoid arthritis and osteoarthritis, involving the dysregulation of osteoclasts, mesenchymal stem cells, osteoblasts, chondrocytes, and endothelial cells in the bone microenvironment. LECT2 is implicated in the development of cancers, such as hepatocellular carcinoma via MET-mediated PTP1B/Raf1/ERK signaling pathways and is proposed as a biomarker. The mechanisms by which LECT2 regulates diverse pathogenic conditions in various tissues remain to be fully elucidated. Further research to understand the role of LECT2 in a tissue tropism-dependent manner would facilitate the development of LECT2 as a biomarker for diagnosis and therapeutic target.


Assuntos
Artrite , Neoplasias , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Artrite/genética , Artrite/metabolismo , Biomarcadores/metabolismo , Células Endoteliais/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Estrutura Molecular , Neoplasias/genética , Neoplasias/metabolismo , Microambiente Tumoral
7.
Biochem Genet ; 60(3): 843-867, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34689290

RESUMO

Nuclear enriched abundant transcript 1 (NEAT1), consisting of two kinds of lncRNAs of 3.7 kB NEAT1-1 and 23 kB NEAT1-2, can be highly expressed in organs and tissues such as the ovary, prostate, colon, and pancreas, and is involved in paraspeckle formation and mRNA editing and gene expression. Therefore, NEAT1 is a potential biomarker for the treatment of a variety of diseases, which may be caused by two factors (isoforms of NEAT1 and NEAT1 sponging miRNA as ceRNA). However, there is still much confusion about the mechanism and downstream effector between the abnormal expression of NEAT1 and various diseases. This review summarizes recent research progress on NEAT1 in cancer and other pathologies and provides a more reliable theoretical basis for the treatment of related diseases.


Assuntos
MicroRNAs , Neoplasias , RNA Longo não Codificante , Feminino , Humanos , Masculino , MicroRNAs/genética , MicroRNAs/metabolismo , Neoplasias/genética , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo
8.
J Cell Physiol ; 236(10): 7211-7222, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33782965

RESUMO

Monocyte chemoattractant protein-1, also called chemokine (C-C motif) ligand 2 (CCL2) or small inducible cytokine A2, is an inflammatory mediator capable of recruiting monocytes, memory T cells, and dendritic cells. CCL2 is a member of the CC chemokine superfamily, which binds to its receptor, C-C motif chemokine receptor-2 (CCR2), for the induction of chemotactic activity and an increase of calcium influx. It exerts multiple effects on a variety of cells, including monocytes, macrophages, osteoclasts, basophils, and endothelial cells, and is involved in a diverse range of diseases. This review discusses the molecular structure and role of CCL2 and CCR2 in skeletal biology and disease. Molecular structure analyses reveal that CCL2 shares a conserved C-C motif; however, it has only limited sequence homology with other CCL family members. Likewise, CCR2, as a member of the G-protein-coupled seven-transmembrane receptor superfamily, shares conserved cysteine residues, but exhibits very limited sequence homology with other CCR family members. In the skeletal system, the expression of CCL2 is regulated by a variety of factors, such as parathyroid hormone/parathyroid hormone-related peptide, interleukin 1b, tumor necrosis factor-α and transforming growth factor-beta, RANKL, and mechanical forces. The interaction of CCL2 and CCR2 activates several signaling cascades, including PI3K/Akt/ERK/NF-κB, PI3K/MAPKs, and JAK/STAT-1/STAT-3. Understanding the role of CCL2 and CCR2 will facilitate the development of novel therapies for skeletal disorders, including rheumatoid arthritis, osteolysis and other inflammatory diseases related to abnormal chemotaxis.


Assuntos
Doenças Ósseas/metabolismo , Remodelação Óssea , Osso e Ossos/metabolismo , Quimiocina CCL2/metabolismo , Osteogênese , Receptores CCR2/metabolismo , Animais , Doenças Ósseas/diagnóstico , Doenças Ósseas/tratamento farmacológico , Doenças Ósseas/fisiopatologia , Remodelação Óssea/efeitos dos fármacos , Osso e Ossos/efeitos dos fármacos , Osso e Ossos/patologia , Osso e Ossos/fisiopatologia , Quimiocina CCL2/antagonistas & inibidores , Quimiocina CCL2/química , Humanos , Osteogênese/efeitos dos fármacos , Conformação Proteica , Receptores CCR2/antagonistas & inibidores , Receptores CCR2/química , Transdução de Sinais , Relação Estrutura-Atividade
9.
Cell Biochem Funct ; 39(5): 588-595, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33615507

RESUMO

Whey acidic proteins (WAP) perform a diverse range of important biological functions, including proteinase activity, calcium transport and bacterial growth. The WAP four-disulphide core domain protein 1 (WFDC1) gene (also called PS20), encodes the 20 kDa prostate stromal protein (ps20), which is a member of the WAP-type four-disulphide core domain family of proteins, and exhibits characteristics of serine protease inhibitors, such as elafin and secretory leukocyte protease inhibitor. Molecular structural analysis reveals that ps20 consists of four-disulphide bonds formed by eight cysteine residues located at the carboxyl terminus of the protein. Wfdc1-null mice were found to display no overt developmental phenotype, suggesting a dispensable role in organ growth and development. However, WFDC1 was able to mediate endothelial cell migration and pericyte stabilization, which are vital for the formation of functional vascular structures. WFDC1 was also found to be downregulated in cancers and exhibited a regulatory effect on cell proliferation. In addition, it was involved in the modulation of memory T cells during human immunodeficiency virus infection. Gaining a solid understanding of the mechanisms by which WFDC1 regulates tissue homeostasis and disease processes, in a tissue specific manner, will be an important move towards the development of WFDC1/ps20 as potential therapeutic targets.


Assuntos
Neoplasias/metabolismo , Neovascularização Patológica/metabolismo , Proteínas/metabolismo , Humanos , Neoplasias/patologia , Neovascularização Patológica/patologia , Conformação Proteica , Proteínas/química , Proteínas/genética
10.
J Orthop Translat ; 27: 57-66, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33437638

RESUMO

Generally, mammals are unable to regenerate complex tissues and organs however the deer antler provides a rare anomaly to this rule. This osseous cranial appendage which is located on the frontal bone of male deer is capable of stem cell-based organogenesis, annual casting, and cyclic de novo regeneration. A series of recent studies have classified this form of regeneration as epimorphic stem cell based. Antler renewal is initiated by the activation of neural crest derived pedicle periosteal cells (PPCs) found residing within the pedicle periosteum (PP), these PPCs have the potential to differentiate into multiple lineages. Other antler stem cells (ASCs) are the reserve mesenchymal cells (RMCs) located in the antlers tip, which develop into cartilage tissue. Antlerogenic periosteal cells (APCs) found within the antlerogenic periosteum (AP) form the tissues of both the pedicle and first set of antlers. Antler stem cells (ASCs) further appear to progress through various stages of activation, this coordinated transition is considered imperative for stem cell-based mammalian regeneration. The latest developments have shown that the rapid elongation of the main beam and antler branches are a controlled form of tumour growth, regulated by the tumour suppressing genes TP73 and ADAMTS18. Both osteoclastogenesis, as well as osteogenic and chondrogenic differentiation are also involved. While there remains much to uncover this review both summarises and comprehensively evaluates our existing knowledge of tissue regeneration in the deer antler. This will assist in achieving the goal of in vitro organ regeneration in humans by furthering the field of modern regenerative medicine. THE TRANSLATIONAL POTENTIAL OF THIS ARTICLE: As a unique stem cell-based organ regeneration process in mammals, the deer antler represents a prime model system for investigating mechanisms of regeneration in mammalian tissues. Novel ASCs could provide cell-based therapies for regenerative medicine and bone remodelling for clinical application. A greater understanding of this process and a more in-depth defining of ASCs will potentiate improved clinical outcomes.

11.
Cell Biochem Funct ; 39(4): 458-467, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33354822

RESUMO

Research into the diagnosis, treatment and prevention of childhood-related diseases is the key to reducing their morbidity and mortality. Circular RNAs (circRNAs) play critical roles, both in physiology and pathology, and there is ample evidence to show that they play varying roles in tissue development and gene regulation. Studies on circRNAs in different childhood-related diseases have confirmed their great potential for disease prevention and treatment. These breakthroughs highlight the pathological role of circRNAs in cancers, as well as cardiovascular and hereditary childhood illnesses. In this review, we summarize the role of circRNAs in childhood-related diseases and cancer, and provide an update of the possible diagnostic and therapeutic application of circRNAs.


Assuntos
Doenças Cardiovasculares/metabolismo , Neoplasias/metabolismo , Pneumonia/metabolismo , RNA Circular/metabolismo , Doenças Cardiovasculares/diagnóstico , Doenças Cardiovasculares/tratamento farmacológico , Criança , Humanos , Neoplasias/diagnóstico , Neoplasias/tratamento farmacológico , Pneumonia/diagnóstico , Pneumonia/tratamento farmacológico , RNA Circular/genética
12.
Cell Prolif ; 54(2): e12974, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33382511

RESUMO

Signal transducer and activator of transcription 3 (STAT3) is one of seven STAT family members involved with the regulation of cellular growth, differentiation and survival. STAT proteins are conserved among eukaryotes and are important for biological functions of embryogenesis, immunity, haematopoiesis and cell migration. STAT3 is widely expressed and located in the cytoplasm in an inactive form. STAT3 is rapidly and transiently activated by tyrosine phosphorylation by a range of signalling pathways, including cytokines from the IL-6 family and growth factors, such as EGF and PDGF. STAT3 activation and subsequent dimer formation initiates nuclear translocation of STAT3 for the regulation of target gene transcription. Four STAT3 isoforms have been identified, which have distinct biological functions. STAT3 is considered a proto-oncogene and constitutive activation of STAT3 is implicated in the development of various cancers, including multiple myeloma, leukaemia and lymphomas. In this review, we focus on recent progress on STAT3 and osteosarcoma (OS). Notably, STAT3 is overexpressed and associated with the poor prognosis of OS. Constitutive activation of STAT3 in OS appears to upregulate the expression of target oncogenes, leading to OS cell transformation, proliferation, tumour formation, invasion, metastasis, immune evasion and drug resistance. Taken together, STAT3 is a target for cancer therapy, and STAT3 inhibitors represent potential therapeutic candidates for the treatment of OS.


Assuntos
Neoplasias Ósseas/patologia , Osteossarcoma/patologia , Fator de Transcrição STAT3/metabolismo , Neoplasias Ósseas/tratamento farmacológico , Neoplasias Ósseas/metabolismo , Citocinas/genética , Citocinas/metabolismo , Resistencia a Medicamentos Antineoplásicos , Inibidores Enzimáticos/química , Inibidores Enzimáticos/uso terapêutico , Humanos , Metástase Neoplásica , Osteossarcoma/tratamento farmacológico , Osteossarcoma/metabolismo , Prognóstico , Isoformas de Proteínas/antagonistas & inibidores , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proto-Oncogene Mas , Fator de Transcrição STAT3/antagonistas & inibidores , Fator de Transcrição STAT3/química , Fator de Transcrição STAT3/genética
13.
J Cell Physiol ; 236(1): 41-48, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32572962

RESUMO

Microfibrillar-associated proteins (MFAPs) are extracellular matrix glycoproteins, which play a role in microfibril assembly, elastinogenesis, and tissue homeostasis. MFAPs consist of five subfamily members, including MFAP1, MFAP2, MFAP3, MFAP4, and MFAP5. Among these, MFAP2 and MFAP5 are most closely related, and exhibit very limited amino acid sequence homology with MFAP1, MFAP3, and MFAP4. Gene expression profiling analysis reveals that MFAP2, MFAP5, and MFAP4 are specifically expressed in osteoblastic like cells, whereas MFAP1 and MFAP3 are more ubiquitously expressed, indicative of their diverse role in the tropism of tissues. Molecular structural analysis shows that each MFAP family member has distinct features, and functional evidence reveals discrete purposes of individual MFAPs. Animal studies indicate that MFAP2-deficient mice exhibit progressive osteopenia with elevated receptor activator of NF-κB ligand (RANKL) expression, whereas MFAP5-deficient mice are neutropenic, and MFAP4-deficient mice displayed emphysema-like pathology and the impaired formation of neointimal hyperplasia. Emerging data also suggest that MFAPs are involved in cancer progression and fat metabolism. Further understanding of tissue-specific pathophysiology of MFAPs might offer potential novel therapeutic targets for related diseases, such as skeletal and metabolic disorders, and cancers.


Assuntos
Doenças Metabólicas/genética , Neoplasias/genética , Fatores de Processamento de RNA/genética , Sequência de Aminoácidos , Animais , Expressão Gênica/genética , Perfilação da Expressão Gênica/métodos , Humanos , Hiperplasia/genética , Neointima/genética
14.
Cell Rep ; 33(5): 108329, 2020 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-33147468

RESUMO

The regulation of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) trafficking affects multiple brain functions, such as learning and memory. We have previously shown that Thorase plays an important role in the internalization of AMPARs from the synaptic membrane. Here, we show that N-methyl-d-aspartate receptor (NMDAR) activation leads to increased S-nitrosylation of Thorase and N-ethylmaleimide-sensitive factor (NSF). S-nitrosylation of Thorase stabilizes Thorase-AMPAR complexes and enhances the internalization of AMPAR and interaction with protein-interacting C kinase 1 (PICK1). S-nitrosylated NSF is dependent on the S-nitrosylation of Thorase via trans-nitrosylation, which modulates the surface insertion of AMPARs. In the presence of the S-nitrosylation-deficient C137L Thorase mutant, AMPAR trafficking, long-term potentiation, and long-term depression are impaired. Overall, our data suggest that both S-nitrosylation and interactions of Thorase and NSF/PICK1 are required to modulate AMPAR-mediated synaptic plasticity. This study provides critical information that elucidates the mechanism underlying Thorase and NSF-mediated trafficking of AMPAR complexes.


Assuntos
ATPases Associadas a Diversas Atividades Celulares/metabolismo , Membrana Celular/metabolismo , Proteínas Sensíveis a N-Etilmaleimida/metabolismo , Receptores de AMPA/metabolismo , Adenosina Trifosfatases/metabolismo , Sequência de Aminoácidos , Animais , Proteínas de Ciclo Celular/metabolismo , Cisteína/metabolismo , Endocitose/efeitos dos fármacos , Glutationa/metabolismo , Células HEK293 , Humanos , Camundongos Endogâmicos C57BL , Camundongos Knockout , N-Metilaspartato/farmacologia , Plasticidade Neuronal , Óxido Nítrico/metabolismo , Nitrosação , Ligação Proteica , Multimerização Proteica , Transporte Proteico , S-Nitrosoglutationa/metabolismo
15.
Theranostics ; 10(13): 5957-5965, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32483430

RESUMO

Blood vessels are conduits distributed throughout the body, supporting tissue growth and homeostasis by the transport of cells, oxygen and nutrients. Endothelial cells (ECs) form the linings of the blood vessels, and together with pericytes, are essential for organ development and tissue homeostasis through producing paracrine signalling molecules, called angiocrine factors. In the skeletal system, ECs - derived angiocrine factors, combined with bone cells-released angiogenic factors, orchestrate intercellular crosstalk of the bone microenvironment, and the coupling of angiogenesis-to-osteogenesis. Whilst the involvement of angiogenic factors and the blood vessels of the skeleton is relatively well established, the impact of ECs -derived angiocrine factors on bone and cartilage homeostasis is gradually emerging. In this review, we survey ECs - derived angiocrine factors, which are released by endothelial cells of the local microenvironment and by distal organs, and act specifically as regulators of skeletal growth and homeostasis. These may potentially include angiocrine factors with osteogenic property, such as Hedgehog, Notch, WNT, bone morphogenetic protein (BMP), fibroblast growth factor (FGF), insulin-like growth factor (IGF), and platelet-derived growth factor (PDGF). Understanding the versatile mechanisms by which ECs-derived angiocrine factors orchestrate bone and cartilage homeostasis, and pathogenesis, is an important step towards the development of therapeutic potential for skeletal diseases.


Assuntos
Indutores da Angiogênese/metabolismo , Cartilagem/metabolismo , Células Endoteliais/metabolismo , Animais , Osso e Ossos/metabolismo , Humanos , Neovascularização Fisiológica/fisiologia , Osteogênese/fisiologia , Comunicação Parácrina/fisiologia , Transdução de Sinais/fisiologia
16.
Cell Prolif ; 53(7): e12860, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32573073

RESUMO

Artemin (ARTN) is a member of the glial cell line-derived neurotrophic factor (GDNF) family ligands (GFLs), which encompasses family members, GDNF, neurturin (NRTN) and persephin (PSPN). ARTN is also referred to as Enovin or Neublastin, and bears structural characteristics of the TGF-ß superfamily. ARTN contains a dibasic cleavage site (RXXR) that is predicted to be cleaved by furin to yield a carboxy-terminal 113 amino acid mature form. ARTN binds preferentially to receptor GFRα3, coupled to a receptor tyrosine kinase RET, forming a signalling complex for the regulation of intracellular pathways that affect diverse outcomes of nervous system development and homoeostasis. Standard signalling cascades activated by GFLs via RET include the phosphorylation of mitogen-activated protein kinase or MAPK (p-ERK, p-p38 and p-JNK), PI3K-AKT and Src. Neural cell adhesion molecule (NCAM) is an alternative signalling receptor for ARTN in the presence of GFRα1, leading to activation of Fyn and FAK. Further, ARTN also interacts with heparan sulphate proteoglycan syndecan-3 and mediates non-RET signalling via activation of Src kinases. This review discusses the role of ARTN in spinal cord injury, neuropathic pain and other neurological disorders. Additionally, ARTN plays a role in non-neuron tissues, such as the formation of Peyer's patch-like structures in the lymphoid tissue of the gut. The emerging role of ARTN in cancers and therapeutic resistance to cancers is also explored. Further research is necessary to determine the function of ARTN in a tissue-specific manner, including its signalling mechanisms, in order to improve the therapeutic potential of ARTN in human diseases.


Assuntos
Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Neoplasias/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Doenças do Sistema Nervoso/metabolismo , Animais , Humanos , Neurônios/metabolismo , Transdução de Sinais/fisiologia
17.
Pharmacol Res Perspect ; 7(6): e00526, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31624634

RESUMO

Dichloroacetate (DCA) is an investigational drug targeting the glycolytic hallmark of cancer by inhibiting pyruvate dehydrogenase kinases (PDK). It is metabolized by GSTZ1, which has common polymorphisms altering enzyme or promoter activity. GSTZ1 is also irreversibly inactivated by DCA. In the first clinical trial of DCA in a hematological malignancy, DiCAM (DiChloroAcetate in Myeloma), we have examined the relationship between DCA concentrations, GSTZ1 genotype, side effects, and patient response. DiCAM recruited seven myeloma patients in partial remission. DCA was administered orally for 3 months with a loading dose. Pharmacokinetics were performed on day 1 and 8. Trough and peak concentrations of DCA were measured monthly. GSTZ1 genotypes were correlated with drug concentrations, tolerability, and disease outcomes. One patient responded and two patients showed a partial response after one month of DCA treatment, which included the loading dose. The initial half-life of DCA was shorter in two patients, correlating with heterozygosity for GSTZ1*A genotype, a high enzyme activity variant. Over 3 months, one patient maintained DCA trough concentrations approximately threefold higher than other patients, which correlated with a low activity promoter genotype (-1002A, rs7160195) for GSTZ1. This patient displayed the strongest response, but also the strongest neuropathy. Overall, serum concentrations of DCA were sufficient to inhibit the constitutive target PDK2, but unlikely to inhibit targets induced in cancer. Promoter GSTZ1 polymorphisms may be important determinants of DCA concentrations and neuropathy during chronic treatment. Novel dosing regimens may be necessary to achieve effective DCA concentrations in most cancer patients while avoiding neuropathy.


Assuntos
Ácido Dicloroacético/farmacocinética , Resistencia a Medicamentos Antineoplásicos/genética , Glutationa Transferase/genética , Mieloma Múltiplo/tratamento farmacológico , Doenças do Sistema Nervoso Periférico/genética , Administração Oral , Idoso , Ácido Dicloroacético/administração & dosagem , Ácido Dicloroacético/efeitos adversos , Drogas em Investigação/administração & dosagem , Drogas em Investigação/efeitos adversos , Drogas em Investigação/farmacocinética , Feminino , Genótipo , Glutationa Transferase/metabolismo , Meia-Vida , Humanos , Masculino , Pessoa de Meia-Idade , Mieloma Múltiplo/sangue , Mieloma Múltiplo/genética , Doenças do Sistema Nervoso Periférico/induzido quimicamente , Polimorfismo de Nucleotídeo Único , Regiões Promotoras Genéticas/genética , Estudos Prospectivos , Inibidores de Proteínas Quinases/administração & dosagem , Inibidores de Proteínas Quinases/efeitos adversos , Inibidores de Proteínas Quinases/farmacocinética , Piruvato Desidrogenase Quinase de Transferência de Acetil/antagonistas & inibidores , Piruvato Desidrogenase Quinase de Transferência de Acetil/metabolismo
18.
Cell Mol Life Sci ; 76(22): 4493-4502, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31317206

RESUMO

The human chondromodulin-1 (Chm-1, Chm-I, CNMD, or Lect1) gene encodes a 334 amino acid type II transmembrane glycoprotein protein with characteristics of a furin cleavage site and a putative glycosylation site. Chm-1 is expressed most predominantly in healthy and developing avascular cartilage, and healthy cardiac valves. Chm-1 plays a vital role during endochondral ossification by the regulation of angiogenesis. The anti-angiogenic and chondrogenic properties of Chm-1 are attributed to its role in tissue development, homeostasis, repair and regeneration, and disease prevention. Chm-1 promotes chondrocyte differentiation, and is regulated by versatile transcription factors, such as Sox9, Sp3, YY1, p300, Pax1, and Nkx3.2. Decreased expression of Chm-1 is implicated in the onset and progression of osteoarthritis and infective endocarditis. Chm-1 appears to attenuate osteoarthritis progression by inhibiting catabolic activity, and to mediate anti-inflammatory effects. In this review, we present the molecular structure and expression profiling of Chm-1. In addition, we bring a summary to the potential role of Chm-1 in cartilage development and homeostasis, osteoarthritis onset and progression, and to the pathogenic role of Chm-1 in infective endocarditis and cancers. To date, knowledge of the Chm-1 receptor, cellular signalling, and the molecular mechanisms of Chm-1 is rudimentary. Advancing our understanding the role of Chm-1 and its mechanisms of action will pave the way for the development of Chm-1 as a therapeutic target for the treatment of diseases, such as osteoarthritis, infective endocarditis, and cancer, and for potential tissue regenerative bioengineering applications.


Assuntos
Cardiopatias/metabolismo , Proteínas de Membrana/metabolismo , Neoplasias/metabolismo , Osteoartrite/metabolismo , Animais , Cartilagem/metabolismo , Homeostase/fisiologia , Humanos
19.
Ther Adv Hematol ; 10: 2040620719844697, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31205643

RESUMO

For the treatment of mature B cell malignancies including chronic lymphocytic leukemia (CLL), the last 5 years has brought major advances in the application of targeted therapies. Whilst monoclonal anti-CD20 agents such as rituximab have a central role in combination with traditional cytotoxic therapy, their combination with novel agents that target the B cell receptor signaling pathway and other intracellular mechanisms of B cell proliferation is a new approach to treatment. Venetoclax is a highly specific novel agent inhibiting the bcl-2 anti-apoptotic pathway and has potent activity in CLL. Its combination with rituximab results in deeper and more durable responses and this regimen is a valuable option in the treatment of relapsed or refractory CLL including adverse prognostic variants such as cases that are fludarabine refractory or harbor the 17p chromosomal deletion. This review centers on the use of venetoclax and rituximab in relapsed or refractory CLL.

20.
Cell Mol Life Sci ; 76(18): 3515-3523, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31089746

RESUMO

Cytokine-like protein 1 (Cytl1), also named Protein C17 or C4orf4 is located on human chromosome 4p15-p16 and encodes a polypeptide of 126 amino acid residues that displays characteristics of a secretory protein. Cytl1 is expressed by a sub-population of CD34+ human mononuclear cells from bone marrow and cord blood, and by chondrocytes (cartilage-forming cells). In this review, we explore evidence suggesting that Cytl1 may be involved in the regulation of chondrogenesis, cartilage homeostasis and osteoarthritis progression, accompanied by the modulation of Sox9 and insulin-like growth factor 1 expression. In addition, Cytl1 exhibits chemotactic and pro-angiogenic biological effects. Interestingly, CCR2 (C-C chemokine receptor type 2) has been identified as a likely receptor for Cytl1, which mediates the ERK signalling pathway. Cytl1 also appears to mediate the TGF-beta-Smad signalling pathway, which is hypothetically independent of the CCR2 receptor. More recently, studies have also potentially linked Cytl1 with a variety of conditions including cardiac fibrosis, smoking, alcohol dependence risk, and tumours such as benign prostatic hypertrophy, lung squamous cell carcinoma, neuroblastoma and familial colorectal cancer. Defining the molecular structure of Cytl1 and its role in disease pathogenesis will help us to design therapeutic approaches for Cytl1-associated pathological conditions.


Assuntos
Proteínas Sanguíneas/metabolismo , Cartilagem/metabolismo , Citocinas/metabolismo , Proteínas Sanguíneas/química , Proteínas Sanguíneas/genética , Condrócitos/citologia , Condrócitos/metabolismo , Condrogênese , Citocinas/química , Citocinas/genética , Humanos , Osteoartrite/metabolismo , Osteoartrite/patologia , Receptores CCR2/metabolismo , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA