Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Virology ; 565: 13-21, 2022 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-34626907

RESUMO

Eastern equine encephalitis virus (EEEV), western equine encephalitis virus (WEEV) and Venezuelan equine encephalitis virus (VEEV) can cause fatal encephalitis in humans and equids. Some MAbs to the E1 glycoprotein are known to be cross-reactive, weakly neutralizing in vitro but can protect from disease in animal models. We investigated the mechanism of neutralization of VEEV infection by the broadly cross-reactive E1-specific MAb 1A4B-6. 1A4B-6 protected 3-week-old Swiss Webster mice prophylactically from lethal VEEV challenge. Likewise, 1A4B-6 inhibited virus growth in vitro at a pre-attachment step after virions were incubated at 37 °C and inhibited virus-mediated cell fusion. Amino acid residue N100 in the fusion loop of E1 protein was identified as critical for binding. The potential to elicit broadly cross-reactive MAbs with limited virus neutralizing activity in vitro but that can inhibit virus entry and protect animals from infection merits further exploration for vaccine and therapeutic developmental research.


Assuntos
Anticorpos Antivirais/imunologia , Vírus da Encefalite Equina Venezuelana/imunologia , Vírus da Encefalite Equina Venezuelana/metabolismo , Encefalomielite Equina Venezuelana/imunologia , Encefalomielite Equina Venezuelana/virologia , Proteínas do Envelope Viral/imunologia , Replicação Viral/efeitos dos fármacos , Alphavirus/imunologia , Infecções por Alphavirus/imunologia , Sequência de Aminoácidos , Animais , Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/imunologia , Linhagem Celular , Chlorocebus aethiops , Reações Cruzadas , Encefalomielite Equina Venezuelana/terapia , Glicoproteínas/imunologia , Imunoterapia , Camundongos , Ligação Proteica , Células Vero , Proteínas do Envelope Viral/metabolismo , Vírion/imunologia , Vírion/metabolismo
2.
Am J Trop Med Hyg ; 101(1): 233-236, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31115302

RESUMO

Japanese encephalitis virus (JEV) is the most common cause of viral encephalitis in Asia, and it is increasingly a global public health concern because of its recent geographic expansion. Although commercial vaccines are available and used in some endemic countries, JEV continues to cause illness, with more than 60,000 cases reported annually. To develop a reproducible positive control antibody useable in diagnosis of JEV infections, murine hybridomas were developed from mice inoculated with a combination of IXIARO JEV vaccine and JEV domain III of the envelope protein (E-DIII). Monoclonal antibodies (MAbs) were characterized for their ability to neutralize virus in vitro. Monoclonal antibody 17BD3-2 was found to be JEV specific and highly neutralizing, with a plaque reduction neutralization test (PRNT)90 endpoint titer of 1.25 µg/mL. The functional epitopes were mapped using virus neutralization escape variants to amino acid residues S309, K312, and G333 in E-DIII. This MAb may be substituted for human immune sera used as a positive control in PRNT for distribution to public health laboratories worldwide in potential future outbreaks of JEV.


Assuntos
Anticorpos Monoclonais/imunologia , Vírus da Encefalite Japonesa (Espécie)/imunologia , Encefalite Japonesa/diagnóstico , Encefalite Japonesa/virologia , Testes de Neutralização/métodos , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Modelos Moleculares , Conformação Proteica , Proteínas do Envelope Viral/química , Vacinas Virais/imunologia
3.
Antiviral Res ; 131: 92-9, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27126613

RESUMO

The yellow fever virus (YFV) vaccine 17D-204 is considered safe and effective, yet rare severe adverse events (SAEs), some resulting in death, have been documented following vaccination. Individuals exhibiting post-vaccinal SAEs are ideal candidates for antiviral monoclonal antibody (MAb) therapy; the time until appearance of clinical signs post-exposure is usually short and patients are quickly hospitalized. We previously developed a murine-human chimeric monoclonal antibody (cMAb), 2C9-cIgG, reactive with both virulent YFV and 17D-204, and demonstrated its ability to prevent and treat YF disease in both AG129 mouse and hamster models of infection. To counteract possible selection of 17D-204 variants that escape neutralization by treatment with a single MAb (2C9-cIgG), we developed a second cMAb, 864-cIgG, for use in combination with 2C9-cIgG in post-vaccinal therapy. MAb 864-cIgG recognizes/neutralizes only YFV 17D-204 vaccine substrain and binds to domain III (DIII) of the viral envelope protein, which is different from the YFV type-specific binding site of 2C9-cIgG in DII. Although it neutralized 17D-204 in vitro, administration of 864-cIgG had no protective capacity in the interferon receptor-deficient AG129 mouse model of 17D-204 infection. The data presented here show that although DIII-specific 864-cIgG neutralizes virus infectivity in vitro, it does not have the ability to abrogate disease in vivo. Therefore, combination of 864-cIgG with 2C9-cIgG for treatment of YF vaccination SAEs does not appear to provide an improvement on 2C9-cIgG therapy alone.


Assuntos
Anticorpos Monoclonais Humanizados/imunologia , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Vacina contra Febre Amarela/imunologia , Febre Amarela/imunologia , Febre Amarela/prevenção & controle , Vírus da Febre Amarela/imunologia , Animais , Anticorpos Monoclonais Humanizados/uso terapêutico , Anticorpos Neutralizantes/uso terapêutico , Anticorpos Antivirais/uso terapêutico , Modelos Animais de Doenças , Humanos , Imunização Passiva , Camundongos , Testes de Neutralização , Receptores de Interferon/deficiência , Receptores de Interferon/genética , Proteínas do Envelope Viral/imunologia , Proteínas do Envelope Viral/metabolismo , Febre Amarela/terapia , Vacina contra Febre Amarela/efeitos adversos
4.
JFMS Open Rep ; 1(1): 2055116915585024, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-28491357

RESUMO

CASE SUMMARY: A 15-year-old neutered female domestic shorthair cat presented with lethargy and acute-onset dyspnoea. Thoracic computed tomography (CT) revealed a large, cranial mediastinal mass with an estimated volume of 180.7 cm3. Chemotherapy consisting of dexamethasone followed by L-asparaginase, prednisolone, vincristine and doxorubicin was commenced owing to the severity of disease and initial possibility of lymphoma. A diagnosis of lymphocyte-rich thymoma was made based upon histological examination, positive pancytokeratin staining, variable lymphocyte CD3 expression and T cell receptor gamma polyclonality. Thoracic CT performed 35 days after the commencement of chemotherapy showed a marked reduction in the size of the mass, with an estimated volume of 9.4 cm3. A median sternotomy and thymectomy were performed. No clinical signs have recurred 34 months after surgery. CONCLUSIONS AND RELEVANCE: The response to chemotherapy in this case was unusual, and is likely associated with the high non-neoplastic lymphoid component of the mass. The case demonstrates that preoperative chemotherapy can be used to reduce thymoma volume prior to surgery, potentially decreasing anaesthetic risk.

5.
Virology ; 441(2): 114-25, 2013 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-23571092

RESUMO

Using an infectious cDNA clone we engineered seven mutations in the putative heparan sulfate- and receptor-binding motifs of the envelope protein of dengue virus serotype 2, strain 16681. Four mutant viruses, KK122/123EE, E202K, G304K, and KKK305/307/310EEE, were recovered following transfection of C6/36 cells. A fifth mutant, KK291/295EE, was recovered from C6/36 cells with a compensatory E295V mutation. All mutants grew in and mediated fusion of virus-infected C6/36 cells, but three of the mutants, KK122/123EE, E202K, G304K, did not grow in Vero cells without further modification. Two Vero cell lethal mutants, KK291/295EV and KKK307/307/310EEE, failed to replicate in DC-SIGN-transformed Raji cells and did not react with monoclonal antibodies known to block DENV attachment to Vero cells. Additionally, both mutants were unable to initiate negative-strand vRNA synthesis in Vero cells by 72h post-infection, suggesting that the replication block occurred prior to virus-mediated membrane fusion.


Assuntos
Vírus da Dengue/fisiologia , Heparitina Sulfato/metabolismo , Proteínas do Envelope Viral/metabolismo , Internalização do Vírus , Animais , Sítios de Ligação , Linhagem Celular , Chlorocebus aethiops , Culicidae , Análise Mutacional de DNA , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Ligação Proteica , Proteínas do Envelope Viral/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA