RESUMO
Most genetically distinct inherited retinal degenerations are primary photoreceptor degenerations. We selected a severe early onset form of Leber congenital amaurosis (LCA), caused by mutations in the gene LCA5, in order to test the efficacy of gene augmentation therapy for a ciliopathy. The LCA5-encoded protein, Lebercilin, is essential for the trafficking of proteins and vesicles to the photoreceptor outer segment. Using the AAV serotype AAV7m8 to deliver a human LCA5 cDNA into an Lca5 null mouse model of LCA5, we show partial rescue of retinal structure and visual function. Specifically, we observed restoration of rod-and-cone-driven electroretinograms in about 25% of injected eyes, restoration of pupillary light responses in the majority of treated eyes, an â¼20-fold decrease in target luminance necessary for visually guided behavior, and improved retinal architecture following gene transfer. Using LCA5 patient-derived iPSC-RPEs, we show that delivery of the LCA5 cDNA restores lebercilin protein and rescues cilia quantity. The results presented in this study support a path forward aiming to develop safety and efficacy trials for gene augmentation therapy in human subjects with LCA5 mutations. They also provide the framework for measuring the effects of intervention in ciliopathies and other severe, early-onset blinding conditions.
Assuntos
Cegueira/metabolismo , Cegueira/terapia , Dependovirus/genética , Terapia Genética/métodos , Animais , Eletrorretinografia , Proteínas do Olho/genética , Proteínas do Olho/metabolismo , Feminino , Humanos , Amaurose Congênita de Leber/metabolismo , Amaurose Congênita de Leber/terapia , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismoRESUMO
BACKGROUND: Safety and efficacy have been shown in a phase 1 dose-escalation study involving a unilateral subretinal injection of a recombinant adeno-associated virus (AAV) vector containing the RPE65 gene (AAV2-hRPE65v2) in individuals with inherited retinal dystrophy caused by RPE65 mutations. This finding, along with the bilateral nature of the disease and intended use in treatment, prompted us to determine the safety of administration of AAV2-hRPE65v2 to the contralateral eye in patients enrolled in the phase 1 study. METHODS: In this follow-on phase 1 trial, one dose of AAV2-hRPE65v2 (1.5â×â10(11) vector genomes) in a total volume of 300 µL was subretinally injected into the contralateral, previously uninjected, eyes of 11 children and adults (aged 11-46 years at second administration) with inherited retinal dystrophy caused by RPE65 mutations, 1.71-4.58 years after the initial subretinal injection. We assessed safety, immune response, retinal and visual function, functional vision, and activation of the visual cortex from baseline until 3 year follow-up, with observations ongoing. This study is registered with ClinicalTrials.gov, number NCT01208389. FINDINGS: No adverse events related to the AAV were reported, and those related to the procedure were mostly mild (dellen formation in three patients and cataracts in two). One patient developed bacterial endophthalmitis and was excluded from analyses. We noted improvements in efficacy outcomes in most patients without significant immunogenicity. Compared with baseline, pooled analysis of ten participants showed improvements in mean mobility and full-field light sensitivity in the injected eye by day 30 that persisted to year 3 (mobility p=0.0003, white light full-field sensitivity p<0.0001), but no significant change was seen in the previously injected eyes over the same time period (mobility p=0.7398, white light full-field sensitivity p=0.6709). Changes in visual acuity from baseline to year 3 were not significant in pooled analysis in the second eyes or the previously injected eyes (p>0.49 for all time-points compared with baseline). INTERPRETATION: To our knowledge, AAV2-hRPE65v2 is the first successful gene therapy administered to the contralateral eye. The results highlight the use of several outcome measures and help to delineate the variables that contribute to maximal benefit from gene augmentation therapy in this disease. FUNDING: Center for Cellular and Molecular Therapeutics at The Children's Hospital of Philadelphia, Spark Therapeutics, US National Institutes of Health, Foundation Fighting Blindness, Institute for Translational Medicine and Therapeutics, Research to Prevent Blindness, Center for Advanced Retinal and Ocular Therapeutics, Mackall Foundation Trust, F M Kirby Foundation, and The Research Foundation-Flanders.
Assuntos
Cegueira/genética , Cegueira/terapia , Dependovirus , Terapia Genética/métodos , Mutação , Lobo Occipital/fisiopatologia , Visão Ocular , cis-trans-Isomerases/genética , Administração Oftálmica , Adolescente , Adulto , Idade de Início , Cegueira/patologia , Cegueira/fisiopatologia , Criança , Medicina Baseada em Evidências , Feminino , Seguimentos , Terapia Genética/efeitos adversos , Vetores Genéticos , Humanos , Injeções Intraoculares , Modelos Lineares , Masculino , Pessoa de Meia-Idade , Segurança do Paciente , Células Fotorreceptoras Retinianas Cones/patologia , Células Fotorreceptoras Retinianas Bastonetes/patologia , RetratamentoRESUMO
The future of treating inherited and acquired genetic diseases will be defined by our ability to introduce transgenes into cells and restore normal physiology. Here we describe an autogenous transgene regulatory system (ARES), based on the bacterial lac repressor, and demonstrate its utility for controlling the expression of a transgene in bacteria, eukaryotic cells, and in the retina of mice. This ARES system is inducible by the small non-pharmacologic molecule, Isopropyl ß-D-1-thiogalactopyranoside (IPTG) that has no off-target effects in mammals. Following subretinal injection of an adeno-associated virus (AAV) vector encoding ARES, luciferase expression can be reversibly controlled in the murine retina by oral delivery of IPTG over three induction-repression cycles. The ability to induce transgene expression repeatedly via administration of an oral inducer in vivo, suggests that this type of regulatory system holds great promise for applications in human gene therapy.
Assuntos
Expressão Gênica , Terapia Genética , Ativação Transcricional/efeitos dos fármacos , Administração Oral , Animais , Dependovirus/genética , Genes Reporter , Células HEK293 , Humanos , Isopropiltiogalactosídeo/administração & dosagem , Luciferases/biossíntese , Luciferases/genética , Camundongos , Retina/metabolismo , TransgenesRESUMO
Skin cells from a patient with a form of inherited blindness have been reprogrammed into retinal cells and successfully transplanted into mice.
Assuntos
Células-Tronco Pluripotentes Induzidas/citologia , Células Fotorreceptoras de Vertebrados/patologia , Retinose Pigmentar/patologia , Animais , HumanosRESUMO
Choroideremia (CHM) is an X- linked retinal degeneration that is symptomatic in the 1(st) or 2(nd) decade of life causing nyctalopia and loss of peripheral vision. The disease progresses through mid-life, when most patients become blind. CHM is a favorable target for gene augmentation therapy, as the disease is due to loss of function of a protein necessary for retinal cell health, Rab Escort Protein 1 (REP1).The CHM cDNA can be packaged in recombinant adeno-associated virus (rAAV), which has an established track record in human gene therapy studies, and, in addition, there are sensitive and quantitative assays to document REP1 activity. An animal model that accurately reflects the human condition is not available. In this study, we tested the ability to restore REP1 function in personalized in vitro models of CHM: lymphoblasts and induced pluripotent stems cells (iPSCs) from human patients. The initial step of evaluating safety of the treatment was carried out by evaluating for acute retinal histopathologic effects in normal-sighted mice and no obvious toxicity was identified. Delivery of the CHM cDNA to affected cells restores REP1 enzymatic activity and also restores proper protein trafficking. The gene transfer is efficient and the preliminary safety data are encouraging. These studies pave the way for a human clinical trial of gene therapy for CHM.
Assuntos
Coroideremia/genética , Coroideremia/terapia , Dependovirus/genética , Terapia Genética/métodos , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Linhagem Celular , Feminino , Terapia Genética/efeitos adversos , Humanos , Masculino , Camundongos , Plasmídeos/genética , Medicina de Precisão , Transporte Proteico/genética , Segurança , Proteínas rab de Ligação ao GTP/metabolismoRESUMO
Demonstration of safe and stable reversal of blindness after a single unilateral subretinal injection of a recombinant adeno-associated virus (AAV) carrying the RPE65 gene (AAV2-hRPE65v2) prompted us to determine whether it was possible to obtain additional benefit through a second administration of the AAV vector to the contralateral eye. Readministration of vector to the second eye was carried out in three adults with Leber congenital amaurosis due to mutations in the RPE65 gene 1.7 to 3.3 years after they had received their initial subretinal injection of AAV2-hRPE65v2. Results (through 6 months) including evaluations of immune response, retinal and visual function testing, and functional magnetic resonance imaging indicate that readministration is both safe and efficacious after previous exposure to AAV2-hRPE65v2.
Assuntos
Cegueira/terapia , Dependovirus/genética , Terapia Genética/métodos , Vetores Genéticos/genética , Adulto , Cegueira/genética , Cegueira/metabolismo , Humanos , cis-trans-Isomerases/genética , cis-trans-Isomerases/metabolismoRESUMO
Leber's congenital amaurosis (LCA) is a group of severe inherited retinal degenerations that are symptomatic in infancy and lead to total blindness in adulthood. Recent clinical trials using recombinant adeno-associated virus serotype 2 (rAAV2) successfully reversed blindness in patients with LCA caused by RPE65 mutations after one subretinal injection. However, it was unclear whether treatment of the second eye in the same manner would be safe and efficacious, given the potential for a complicating immune response after the first injection. Here, we evaluated the immunological and functional consequences of readministration of rAAV2-hRPE65v2 to the contralateral eye using large animal models. Neither RPE65-mutant (affected; RPE65(-/-)) nor unaffected animals developed antibodies against the transgene product, but all developed neutralizing antibodies against the AAV2 capsid in sera and intraocular fluid after subretinal injection. Cell-mediated immune responses were benign, with only 1 of 10 animals in the study developing a persistent T cell immune response to AAV2, a response that was mediated by CD4(+) T cells. Sequential bilateral injection caused minimal inflammation and improved visual function in affected animals. Thus, subretinal readministration of rAAV2 in animals is safe and effective, even in the setting of preexisting immunity to the vector, a parameter that has been used to exclude patients from gene therapy trials.
Assuntos
Cegueira/congênito , Cegueira/terapia , Dependovirus/genética , Terapia Genética , Vetores Genéticos/administração & dosagem , Vetores Genéticos/efeitos adversos , Retina/patologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Câmara Anterior/imunologia , Anticorpos Neutralizantes/imunologia , Cegueira/genética , Capsídeo/imunologia , Proteínas de Transporte/genética , Proteínas de Transporte/uso terapêutico , Cães , Vias de Administração de Medicamentos , Proteínas do Olho/genética , Proteínas do Olho/uso terapêutico , Humanos , Imunidade/imunologia , Imuno-Histoquímica , Pessoa de Meia-Idade , Mudanças Depois da Morte , Primatas , Titulometria , Resultado do Tratamento , cis-trans-IsomerasesRESUMO
The safety and efficacy of gene therapy for inherited retinal diseases is being tested in humans affected with Leber's congenital amaurosis (LCA), an autosomal recessive blinding disease. Three independent studies have provided evidence that the subretinal administration of adeno-associated viral (AAV) vectors encoding RPE65 in patients affected with LCA2 due to mutations in the RPE65 gene, is safe and, in some cases, results in efficacy. We evaluated the long-term safety and efficacy (global effects on retinal/visual function) resulting from subretinal administration of AAV2-hRPE65v2. Both the safety and the efficacy noted at early timepoints persist through at least 1.5 years after injection in the three LCA2 patients enrolled in the low dose cohort of our trial. A transient rise in neutralizing antibodies to AAV capsid was observed but there was no humoral response to RPE65 protein. The persistence of functional amelioration suggests that AAV-mediated gene transfer to the human retina does not elicit immunological responses which cause significant loss of transduced cells. The persistence of physiologic effect supports the possibility that gene therapy may influence LCA2 disease progression. The safety of the intervention and the stability of the improvement in visual and retinal function in these subjects support the use of AAV-mediated gene augmentation therapy for treatment of inherited retinal diseases.
Assuntos
Proteínas de Transporte/genética , Proteínas do Olho/genética , Terapia Genética/métodos , Amaurose Congênita de Leber/genética , Amaurose Congênita de Leber/terapia , Adulto , Dependovirus/genética , Progressão da Doença , Seguimentos , Vetores Genéticos , Humanos , Modelos Genéticos , Retina/metabolismo , Fatores de Tempo , Transgenes , Resultado do Tratamento , Visão Ocular , cis-trans-IsomerasesRESUMO
BACKGROUND: Gene therapy has the potential to reverse disease or prevent further deterioration of vision in patients with incurable inherited retinal degeneration. We therefore did a phase 1 trial to assess the effect of gene therapy on retinal and visual function in children and adults with Leber's congenital amaurosis. METHODS: We assessed the retinal and visual function in 12 patients (aged 8-44 years) with RPE65-associated Leber's congenital amaurosis given one subretinal injection of adeno-associated virus (AAV) containing a gene encoding a protein needed for the isomerohydrolase activity of the retinal pigment epithelium (AAV2-hRPE65v2) in the worst eye at low (1.5 x 10(10) vector genomes), medium (4.8 x 10(10) vector genomes), or high dose (1.5 x 10(11) vector genomes) for up to 2 years. FINDINGS: AAV2-hRPE65v2 was well tolerated and all patients showed sustained improvement in subjective and objective measurements of vision (ie, dark adaptometry, pupillometry, electroretinography, nystagmus, and ambulatory behaviour). Patients had at least a 2 log unit increase in pupillary light responses, and an 8-year-old child had nearly the same level of light sensitivity as that in age-matched normal-sighted individuals. The greatest improvement was noted in children, all of whom gained ambulatory vision. The study is registered with ClinicalTrials.gov, number NCT00516477. INTERPRETATION: The safety, extent, and stability of improvement in vision in all patients support the use of AAV-mediated gene therapy for treatment of inherited retinal diseases, with early intervention resulting in the best potential gain. FUNDING: Center for Cellular and Molecular Therapeutics at the Children's Hospital of Philadelphia, Foundation Fighting Blindness, Telethon, Research to Prevent Blindness, F M Kirby Foundation, Mackall Foundation Trust, Regione Campania Convenzione, European Union, Associazione Italiana Amaurosi Congenita di Leber, Fund for Scientific Research, Fund for Research in Ophthalmology, and National Center for Research Resources.
Assuntos
Proteínas de Transporte/genética , Proteínas do Olho/genética , Terapia Genética/métodos , Atrofia Óptica Hereditária de Leber/terapia , Adolescente , Adulto , Fatores Etários , Cegueira/congênito , Cegueira/genética , Criança , Adaptação à Escuridão , Dependovirus/genética , Progressão da Doença , Relação Dose-Resposta a Droga , Eletrorretinografia , Feminino , Vetores Genéticos/genética , Vetores Genéticos/uso terapêutico , Humanos , Injeções , Masculino , Mutação/genética , Nistagmo Fisiológico , Atrofia Óptica Hereditária de Leber/diagnóstico , Atrofia Óptica Hereditária de Leber/genética , Segurança , Resultado do Tratamento , Acuidade Visual , Adulto Jovem , cis-trans-IsomerasesRESUMO
Leber's congenital amaurosis (LCA) is a group of inherited blinding diseases with onset during childhood. One form of the disease, LCA2, is caused by mutations in the retinal pigment epithelium-specific 65-kDa protein gene (RPE65). We investigated the safety of subretinal delivery of a recombinant adeno-associated virus (AAV) carrying RPE65 complementary DNA (cDNA) (ClinicalTrials.gov number, NCT00516477 [ClinicalTrials.gov]). Three patients with LCA2 had an acceptable local and systemic adverse-event profile after delivery of AAV2.hRPE65v2. Each patient had a modest improvement in measures of retinal function on subjective tests of visual acuity. In one patient, an asymptomatic macular hole developed, and although the occurrence was considered to be an adverse event, the patient had some return of retinal function. Although the follow-up was very short and normal vision was not achieved, this study provides the basis for further gene therapy studies in patients with LCA.
Assuntos
Cegueira/terapia , Proteínas de Transporte/genética , Proteínas do Olho/genética , Terapia Genética , Vetores Genéticos , Degeneração Retiniana/terapia , Adulto , Cegueira/congênito , Cegueira/genética , Cegueira/patologia , DNA Complementar , Dependovirus/genética , Técnicas de Transferência de Genes , Humanos , Injeções , Mutação , Regiões Promotoras Genéticas , Reflexo Pupilar , Retina/patologia , Degeneração Retiniana/congênito , Degeneração Retiniana/genética , Degeneração Retiniana/patologia , Acuidade Visual , cis-trans-IsomerasesRESUMO
We evaluated the safety and efficacy of an optimized adeno-associated virus (AAV; AAV2.RPE65) in animal models of the RPE65 form of Leber congenital amaurosis (LCA). Protein expression was optimized by addition of a modified Kozak sequence at the translational start site of hRPE65. Modifications in AAV production and delivery included use of a long stuffer sequence to prevent reverse packaging from the AAV inverted-terminal repeats, and co-injection with a surfactant. The latter allows consistent and predictable delivery of a given dose of vector. We observed improved electroretinograms (ERGs) and visual acuity in Rpe65 mutant mice. This has not been reported previously using AAV2 vectors. Subretinal delivery of 8.25 x 10(10) vector genomes in affected dogs was well tolerated both locally and systemically, and treated animals showed improved visual behavior and pupillary responses, and reduced nystagmus within 2 weeks of injection. ERG responses confirmed the reversal of visual deficit. Immunohistochemistry confirmed transduction of retinal pigment epithelium cells and there was minimal toxicity to the retina as judged by histopathologic analysis. The data demonstrate that AAV2.RPE65 delivers the RPE65 transgene efficiently and quickly to the appropriate target cells in vivo in animal models. This vector holds great promise for treatment of LCA due to RPE65 mutations.
Assuntos
Cegueira/terapia , Dependovirus/genética , Animais , Cegueira/genética , Proteínas de Transporte/genética , Proteínas de Transporte/fisiologia , Cães , Eletrorretinografia , Proteínas do Olho/genética , Proteínas do Olho/fisiologia , Vetores Genéticos/genética , Imuno-Histoquímica , Camundongos , Camundongos Knockout , Atrofia Óptica Hereditária de Leber/genética , Atrofia Óptica Hereditária de Leber/terapia , cis-trans-IsomerasesRESUMO
The short- and long-term effects of gene therapy using AAV-mediated RPE65 transfer to canine retinal pigment epithelium were investigated in dogs affected with disease caused by RPE65 deficiency. Results with AAV 2/2, 2/1, and 2/5 vector pseudotypes, human or canine RPE65 cDNA, and constitutive or tissue-specific promoters were similar. Subretinally administered vectors restored retinal function in 23 of 26 eyes, but intravitreal injections consistently did not. Photoreceptoral and postreceptoral function in both rod and cone systems improved with therapy. In dogs followed electroretinographically for 3 years, responses remained stable. Biochemical analysis of retinal retinoids indicates that mutant dogs have no detectable 11-cis-retinal, but markedly elevated retinyl esters. Subretinal AAV-RPE65 treatment resulted in detectable 11-cis-retinal expression, limited to treated areas. RPE65 protein expression was limited to retinal pigment epithelium of treated areas. Subretinal AAV-RPE65 vector is well tolerated and does not elicit high antibody levels to the vector or the protein in ocular fluids or serum. In long-term studies, wild-type cDNA is expressed only in target cells. Successful, stable restoration of rod and cone photoreceptor function in these dogs has important implications for treatment of human patients affected with Leber congenital amaurosis caused by RPE65 mutations.
Assuntos
Cegueira/genética , Cegueira/terapia , Dependovirus/genética , Terapia Genética/métodos , Células Fotorreceptoras Retinianas Cones/patologia , Células Fotorreceptoras Retinianas Bastonetes/patologia , Animais , Animais Geneticamente Modificados , Western Blotting , Proteínas de Transporte , Cromatografia , DNA Complementar/metabolismo , Modelos Animais de Doenças , Cães , Eletrorretinografia , Ensaio de Imunoadsorção Enzimática , Proteínas do Olho/genética , Deleção de Genes , Técnicas de Transferência de Genes , Vetores Genéticos , Homozigoto , Humanos , Imuno-Histoquímica , Mutação , Regiões Promotoras Genéticas , Degeneração Retiniana/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fatores de Tempo , Transgenes , cis-trans-IsomerasesRESUMO
In the pediatric cancer alveolar rhabdomyosarcoma (ARMS), the 2;13 chromosomal translocation juxtaposes the PAX3 and FKHR genes to generate a chimeric transcription factor. To explore molecular pathways altered by this oncoprotein, we generated an inducible form by fusing PAX3-FKHR to a modified estrogen receptor ligand-binding domain and expressed this construct in the RD embryonal rhabdomyosarcoma cell line. This inducible system permits short-term evaluation of downstream expression targets of PAX3-FKHR and complements a panel of stable long-term RD subclones constitutively expressing PAX3-FKHR. Using these two sets of resources, we investigated several candidate PAX3-FKHR target genes. First, we demonstrated in both short-term and long-term systems that PAX3-FKHR upregulates expression of the gene encoding the chemokine receptor CXCR4. In addition, we found that expression of wild-type PAX3 is upregulated, whereas expression of wild-type PAX7 is downregulated by PAX3-FKHR. In the presence of cycloheximide, CXCR4 and PAX3 are still inducible, supporting the hypothesis that these genes are direct transcriptional targets of PAX3-FKHR. Finally, studies of ARMS tumors revealed CXCR4, PAX3, and PAX7 expression levels consistent with our cell culture results. These findings of genes regulated by PAX3-FKHR will direct future biological and clinical investigation to important pathways contributing to ARMS tumorigenesis and progression.
Assuntos
Proteínas de Ligação a DNA/metabolismo , Proteínas de Homeodomínio/metabolismo , Proteínas de Fusão Oncogênica/metabolismo , Receptores CXCR4/metabolismo , Fatores de Transcrição/metabolismo , Sequência de Bases , Sítios de Ligação/genética , Divisão Celular , Linhagem Celular Tumoral , Primers do DNA/genética , DNA de Neoplasias/genética , Proteínas de Ligação a DNA/genética , Proteína Forkhead Box O1 , Fatores de Transcrição Forkhead , Regulação Neoplásica da Expressão Gênica , Proteínas de Homeodomínio/genética , Humanos , Proteínas de Fusão Oncogênica/genética , Fator de Transcrição PAX3 , Fator de Transcrição PAX7 , Fatores de Transcrição Box Pareados , Receptores CXCR4/genética , Receptores de Estrogênio/genética , Receptores de Estrogênio/metabolismo , Rabdomiossarcoma Embrionário/genética , Rabdomiossarcoma Embrionário/metabolismo , Rabdomiossarcoma Embrionário/patologia , Fatores de Transcrição/genéticaRESUMO
This review examines how the identification of tumor-specific translocations and fusion proteins has advanced the basic scientific and clinical understanding of sarcomas. Recent genetic advances, including the ASPL-TFE3 fusion of alveolar soft part sarcoma, the JAZF1-JJAZ1 fusion of endometrial stromal sarcoma, and HMGIC fusions in liposarcoma, are discussed. Next, the review addresses the ways in which molecular genetic data have influenced diagnostic and prognostic paradigms. For example, recent studies describe the detection of occult tumor cells and the identification of primary renal neoplasms that are genetically related to alveolar soft part sarcoma. In addition, the review discusses potential therapies based on the targeting of sarcoma-specific fusion proteins. These reports describe the potential use of Gleevec (STI571) for dermatofibrosarcoma protuberans and the use of tumor-specific fusion proteins as potential targets for immunotherapy. Finally, basic scientific findings are reviewed that elucidate, for example, the aberrant functions of SYT-SSX in chromatin remodeling and of EWS-FLI1 in transcription and mRNA splicing. These and other emerging models of tumorigenesis will help identify new therapeutic targets.