Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
JAMA Netw Open ; 5(3): e222735, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35294537

RESUMO

Importance: SARS-CoV-2 viral entry may disrupt angiotensin II (AII) homeostasis, contributing to COVID-19 induced lung injury. AII type 1 receptor blockade mitigates lung injury in preclinical models, although data in humans with COVID-19 remain mixed. Objective: To test the efficacy of losartan to reduce lung injury in hospitalized patients with COVID-19. Design, Setting, and Participants: This blinded, placebo-controlled randomized clinical trial was conducted in 13 hospitals in the United States from April 2020 to February 2021. Hospitalized patients with COVID-19 and a respiratory sequential organ failure assessment score of at least 1 and not already using a renin-angiotensin-aldosterone system (RAAS) inhibitor were eligible for participation. Data were analyzed from April 19 to August 24, 2021. Interventions: Losartan 50 mg orally twice daily vs equivalent placebo for 10 days or until hospital discharge. Main Outcomes and Measures: The primary outcome was the imputed arterial partial pressure of oxygen to fraction of inspired oxygen (Pao2:Fio2) ratio at 7 days. Secondary outcomes included ordinal COVID-19 severity; days without supplemental o2, ventilation, or vasopressors; and mortality. Losartan pharmacokinetics and RAAS components (AII, angiotensin-[1-7] and angiotensin-converting enzymes 1 and 2)] were measured in a subgroup of participants. Results: A total of 205 participants (mean [SD] age, 55.2 [15.7] years; 123 [60.0%] men) were randomized, with 101 participants assigned to losartan and 104 participants assigned to placebo. Compared with placebo, losartan did not significantly affect Pao2:Fio2 ratio at 7 days (difference, -24.8 [95%, -55.6 to 6.1]; P = .12). Compared with placebo, losartan did not improve any secondary clinical outcomes and led to fewer vasopressor-free days than placebo (median [IQR], 9.4 [9.1-9.8] vasopressor-free days vs 8.7 [8.2-9.3] vasopressor-free days). Conclusions and Relevance: This randomized clinical trial found that initiation of orally administered losartan to hospitalized patients with COVID-19 and acute lung injury did not improve Pao2:Fio2 ratio at 7 days. These data may have implications for ongoing clinical trials. Trial Registration: ClinicalTrials.gov Identifier: NCT04312009.


Assuntos
Bloqueadores do Receptor Tipo 1 de Angiotensina II/uso terapêutico , Tratamento Farmacológico da COVID-19 , COVID-19/complicações , Losartan/uso terapêutico , Lesão Pulmonar/prevenção & controle , Lesão Pulmonar/virologia , Adulto , Idoso , COVID-19/diagnóstico , Método Duplo-Cego , Feminino , Hospitalização , Humanos , Lesão Pulmonar/diagnóstico , Masculino , Pessoa de Meia-Idade , Escores de Disfunção Orgânica , Testes de Função Respiratória , Estados Unidos
2.
Prehosp Emerg Care ; 26(sup1): 129-136, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35001820

RESUMO

Novel technologies and techniques can influence airway management execution as well as procedural and clinical outcomes. While conventional wisdom underscores the need for rigorous scientific data as a foundation before implementation, high-quality supporting evidence is frequently not available for the prehospital setting. Therefore, implementation decisions are often based upon preliminary or evolving data, or pragmatic information from clinical use. When considering novel technologies and techniques. NAEMSP recommends:Prior to implementing a novel technology or technique, a thorough assessment using the best available scientific data should be conducted on the technical details of the novel approach, as well as the potential effects on operations and outcomes.The decision and degree of effort to adopt, implement, and monitor a novel technology or technique in the prehospital setting will vary by the quality of the best available scientific and clinical information:• Routine use - Technologies and techniques with ample observational but limited or no interventional clinical trial data, or with strong supporting in-hospital data. These techniques may be reasonably adopted in the prehospital setting. This includes video laryngoscopy and bougie-assisted intubation. • Limited use - Technologies and techniques with ample pragmatic clinical use information but limited supporting scientific data. These techniques may be considered in the prehospital setting. This includes suction-assisted laryngoscopy and airway decontamination and cognitive aids. • Rare use - Technologies and techniques with minimal clinical use information. Use of these techniques should be limited in the prehospital setting until evidence exists from more stable clinical environments. This includes intubation boxes.The use of novel technologies and techniques must be accompanied by systematic collection and assessment of data for the purposes of quality improvement, including linkages to patient clinical outcomes.EMS leaders should clearly identify the pathways needed to generate high-quality supporting scientific evidence for novel technologies and techniques.


Assuntos
Serviços Médicos de Emergência , Laringoscópios , Manuseio das Vias Aéreas/métodos , Humanos , Intubação Intratraqueal/métodos , Laringoscopia/métodos , Tecnologia
3.
Clin Biochem ; 102: 1-8, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35093314

RESUMO

BACKGROUND: Coronavirus disease-2019 (COVID-19) is associated with a high risk of acute kidney injury (AKI), often requiring renal replacement therapy (RRT). Serum Cystatin C (sCysC) and serum Neutrophil Gelatinase-Associated Lipocalin (sNGAL) are emerging biomarkers for kidney injury, and were suggested to be superior to serum creatinine (sCr) in several clinical settings. Moreover, elevated sCysC is associated with disease severity and mortality in COVID-19. We aimed to assess the utility of sCysC and sNGAL for predicting COVID-19-associated AKI, need for RRT, and need for intensive care unit (ICU) admission, when measured at presentation to the emergency department (ED). METHODS: Patients presenting to the ED with laboratory-confirmed COVID-19 were included. The primary outcome was development of COVID-19-associated AKI, while the secondary outcomes were need for RRT and ICU admission. RESULTS: Among 52 COVID-19 patients, 22 (42.3%) developed AKI with 8/22 (36.4%) requiring RRT. Both sCr and sCysC demonstrated excellent performance for predicting AKI (AUC, 0.86 and 0.87, respectively) and need for RRT (AUC, 0.94 and 0.95, respectively). sNGAL displayed acceptable performance for predicting AKI (AUC, 0.81) and need for RRT (AUC, 0.87). CONCLUSIONS: SCr and sCysC measured at ED presentation are both highly accurate predictors of AKI and need for RRT, whereas sNGAL demonstrated adequate diagnostic performance. While sCyC was previously shown to be superior to sCr as a diagnostic biomarker of kidney injury in certain etiologies, our findings demonstrate that sCr is comparable to sCyC in the context of predicting COVID-19-associated AKI. Given the high sensitivity of these biomarkers for predicting the need for RRT, and as sCysC is associated with mortality in COVID-19 patients, we recommend their measurement for enabling risk stratification and early intervention.


Assuntos
Injúria Renal Aguda , COVID-19 , Injúria Renal Aguda/diagnóstico , Injúria Renal Aguda/etiologia , Injúria Renal Aguda/terapia , Biomarcadores , COVID-19/complicações , Creatinina , Cistatina C , Humanos , Lipocalina-2 , Estudos Prospectivos , SARS-CoV-2
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA