Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Plant Cell ; 35(10): 3809-3827, 2023 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-37486356

RESUMO

Engineering the plant immune system offers genetic solutions to mitigate crop diseases caused by diverse agriculturally significant pathogens and pests. Modification of intracellular plant immune receptors of the nucleotide-binding leucine-rich repeat (NLR) receptor superfamily for expanded recognition of pathogen virulence proteins (effectors) is a promising approach for engineering disease resistance. However, engineering can cause NLR autoactivation, resulting in constitutive defense responses that are deleterious to the plant. This may be due to plant NLRs associating in highly complex signaling networks that coevolve together, and changes through breeding or genetic modification can generate incompatible combinations, resulting in autoimmune phenotypes. The sensor and helper NLRs of the rice (Oryza sativa) NLR pair Pik have coevolved, and mismatching between noncoevolved alleles triggers constitutive activation and cell death. This limits the extent to which protein modifications can be used to engineer pathogen recognition and enhance disease resistance mediated by these NLRs. Here, we dissected incompatibility determinants in the Pik pair in Nicotiana benthamiana and found that heavy metal-associated (HMA) domains integrated in Pik-1 not only evolved to bind pathogen effectors but also likely coevolved with other NLR domains to maintain immune homeostasis. This explains why changes in integrated domains can lead to autoactivation. We then used this knowledge to facilitate engineering of new effector recognition specificities, overcoming initial autoimmune penalties. We show that by mismatching alleles of the rice sensor and helper NLRs Pik-1 and Pik-2, we can enable the integration of synthetic domains with novel and enhanced recognition specificities. Taken together, our results reveal a strategy for engineering NLRs, which has the potential to allow an expanded set of integrations and therefore new disease resistance specificities in plants.


Assuntos
Resistência à Doença , Proteínas de Plantas , Resistência à Doença/genética , Proteínas de Plantas/metabolismo , Alelos , Plantas/genética , Imunidade Vegetal/genética , Doenças das Plantas/genética
2.
Proc Natl Acad Sci U S A ; 118(50)2021 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-34880132

RESUMO

Plants use intracellular nucleotide-binding domain (NBD) and leucine-rich repeat (LRR)-containing immune receptors (NLRs) to detect pathogen-derived effector proteins. The Arabidopsis NLR pair RRS1-R/RPS4 confers disease resistance to different bacterial pathogens by perceiving the structurally distinct effectors AvrRps4 from Pseudomonas syringae pv. pisi and PopP2 from Ralstonia solanacearum via an integrated WRKY domain in RRS1-R. How the WRKY domain of RRS1 (RRS1WRKY) perceives distinct classes of effector to initiate an immune response is unknown. Here, we report the crystal structure of the in planta processed C-terminal domain of AvrRps4 (AvrRps4C) in complex with RRS1WRKY Perception of AvrRps4C by RRS1WRKY is mediated by the ß2-ß3 segment of RRS1WRKY that binds an electronegative patch on the surface of AvrRps4C Structure-based mutations that disrupt AvrRps4C-RRS1WRKY interactions in vitro compromise RRS1/RPS4-dependent immune responses. We also show that AvrRps4C can associate with the WRKY domain of the related but distinct RRS1B/RPS4B NLR pair, and the DNA-binding domain of AtWRKY41, with similar binding affinities and how effector binding interferes with WRKY-W-box DNA interactions. This work demonstrates how integrated domains in plant NLRs can directly bind structurally distinct effectors to initiate immunity.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/microbiologia , Proteínas de Bactérias/metabolismo , Proteínas de Plantas/metabolismo , Pseudomonas syringae/metabolismo , Arabidopsis/imunologia , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Bactérias/genética , Morte Celular , Clonagem Molecular , DNA de Plantas , Regulação da Expressão Gênica de Plantas/imunologia , Modelos Moleculares , Mutação , Proteínas de Plantas/genética , Conformação Proteica , Pseudomonas syringae/imunologia , Nicotiana
3.
Cell Host Microbe ; 26(2): 193-201, 2019 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-31415752

RESUMO

Plant innate immunity is triggered via direct or indirect recognition of pathogen effectors by the NLR family immune receptors. Mechanistic understanding of plant NLR function has relied on structural information from individual NLR domains and inferences from studies on animal NLRs. Recent reports of the cryo-EM structures of the Arabidopsis plant immune receptor ZAR1 in monomeric inactive and transition states, as well as the active oligomeric state or the "resistosome," have afforded a quantum leap in our understanding of how plant NLRs function. In this Review, we outline the recent structural findings and examine their implications for the activation of plant immune receptors more broadly. We also discuss how NLR signaling in plants, as illustrated by the ZAR1 structure, is analogous to innate immune receptor signaling mechanisms across kingdoms, drawing particular attention to the concept of signaling by cooperative assembly formation.


Assuntos
Proteínas de Arabidopsis , Proteínas de Transporte , Imunidade Vegetal/imunologia , Receptores Imunológicos , Transdução de Sinais , Difosfato de Adenosina , Trifosfato de Adenosina/metabolismo , Arabidopsis/imunologia , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/imunologia , Proteínas de Arabidopsis/metabolismo , Proteínas de Transporte/química , Proteínas de Transporte/imunologia , Proteínas de Transporte/metabolismo , Imunidade Inata , Proteínas NLR/química , Proteínas NLR/metabolismo , Imunidade Vegetal/fisiologia , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Domínios Proteicos , Receptores Imunológicos/química , Receptores Imunológicos/imunologia , Receptores Imunológicos/metabolismo
4.
Proc Natl Acad Sci U S A ; 114(10): E2046-E2052, 2017 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-28159890

RESUMO

The self-association of Toll/interleukin-1 receptor/resistance protein (TIR) domains has been implicated in signaling in plant and animal immunity receptors. Structure-based studies identified different TIR-domain dimerization interfaces required for signaling of the plant nucleotide-binding oligomerization domain-like receptors (NLRs) L6 from flax and disease resistance protein RPS4 from Arabidopsis Here we show that the crystal structure of the TIR domain from the Arabidopsis NLR suppressor of npr1-1, constitutive 1 (SNC1) contains both an L6-like interface involving helices αD and αE (DE interface) and an RPS4-like interface involving helices αA and αE (AE interface). Mutations in either the AE- or DE-interface region disrupt cell-death signaling activity of SNC1, L6, and RPS4 TIR domains and full-length L6 and RPS4. Self-association of L6 and RPS4 TIR domains is affected by mutations in either region, whereas only AE-interface mutations affect SNC1 TIR-domain self-association. We further show two similar interfaces in the crystal structure of the TIR domain from the Arabidopsis NLR recognition of Peronospora parasitica 1 (RPP1). These data demonstrate that both the AE and DE self-association interfaces are simultaneously required for self-association and cell-death signaling in diverse plant NLRs.


Assuntos
Proteínas de Arabidopsis/química , Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Doenças das Plantas/genética , Proteínas de Plantas/química , Sequência de Aminoácidos , Arabidopsis/imunologia , Arabidopsis/microbiologia , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/imunologia , Sítios de Ligação , Morte Celular/genética , Morte Celular/imunologia , Linho/genética , Linho/imunologia , Linho/microbiologia , Interações Hospedeiro-Patógeno , Modelos Moleculares , Mutação , Peronospora/patogenicidade , Peronospora/fisiologia , Doenças das Plantas/imunologia , Doenças das Plantas/microbiologia , Imunidade Vegetal/genética , Proteínas de Plantas/genética , Proteínas de Plantas/imunologia , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Estrutura Secundária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Transdução de Sinais , Nicotiana/genética , Nicotiana/imunologia , Nicotiana/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA