Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Neurosci Lett ; 819: 137578, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38048875

RESUMO

Persistent post-ischemic alterations to the hypothalamic-pituitary-adrenal (HPA) axis occur following global cerebral ischemia (GCI) in rodents. However, similar effects on hypothalamic-pituitary-gonadal (HPG) axis activation remain to be determined. Therefore, this study evaluated the effects of GCI in adult female rats (via four-vessel occlusion) on the regularity of the estrous cycle for 24-days post ischemia. A second objective aimed to assess persistent alterations of HPG axis activation through determination of the expression of estrogen receptor alpha (ERα), kisspeptin (Kiss1), and gonadotropin-inhibitory hormone (GnIH/RFamide-related peptide; RFRP3) in the medial preoptic area (POA), arcuate nucleus (ARC), dorsomedial nucleus (DMH) of the hypothalamus, and CA1 of the hippocampus 25 days post ischemia. Expression of glucocorticoid receptors (GR) in the paraventricular nucleus of the hypothalamus (PVN) and CA1 served as a proxy of altered HPA axis activation. Our findings demonstrated interruption of the estrous cycle in 87.5 % of ischemic rats, marked by persistent diestrus, lasting on average 11.86 days. Moreover, compared to sham-operated controls, ischemic female rats showed reduced Kiss1 expression in the hypothalamic ARC and POA, concomitant with elevated ERα in the ARC and increased GnIH in the DMH and CA1. Reduced GR expression in the CA1 was associated with increased GR-immunoreactivity in the PVN, indicative of lasting dysregulation of HPA axis activation. Together, these findings demonstrate GCI disruption of female rats' estrous cycle over multiple days, with a lasting impact on HPG axis regulators within the reproductive axis.


Assuntos
Isquemia Encefálica , Sistema Hipotálamo-Hipofisário , Ratos , Feminino , Animais , Sistema Hipotálamo-Hipofisário/metabolismo , Kisspeptinas/metabolismo , Eixo Hipotalâmico-Hipofisário-Gonadal , Receptor alfa de Estrogênio/metabolismo , Sistema Hipófise-Suprarrenal/metabolismo , Hipotálamo/metabolismo , Ciclo Estral/metabolismo , Isquemia Encefálica/metabolismo , Infarto Cerebral/metabolismo , Periodicidade
2.
J Comp Neurol ; 530(9): 1459-1469, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-34957555

RESUMO

Gonadotropin-inhibitory hormone (GnIH, also known RFRP-3 in mammals) is an important regulator of the hypothalamic-pituitary-gonadal axis and downstream reproductive physiology. Substantial species differences exist in the localization of cell bodies producing RFRP-3 and patterns of fiber immunoreactivity in the brain, raising the question of functional differences. Many temperate bat species exhibit unusual annual reproductive patterns. Male bats upregulate spermatogenesis in late spring which is asynchronous with periods of mating in the fall, while females have the physiological capacity to delay their reproductive investment over winter via sperm storage or delayed ovulation/fertilization. Neuroendocrine mechanisms regulating reproductive timing in male and female bats are not well-studied. We provide the first description of RFRP-precursor peptide of GnIH -expression and localization in the brain of any bat using a widespread temperate species (Eptesicus fuscus, big brown bat) as a model. RFRP mRNA expression was detected in the hypothalamus, testes, and ovaries of big brown bats. Cellular RFRP-immunoreactivity was observed within the periventricular nuclei, dorsomedial nucleus of the hypothalamus, arcuate nucleus (Arc), and median eminence (ME). As in other vertebrates, RFRP fiber immunoreactivity was widespread, with the greatest density observed in the hypothalamus, preoptic area, Arc, ME, midbrain, and thalamic nuclei. Putative interactions between RFRP-ir fibers and gonadotropin-releasing hormone (GnRH) cell bodies were observed in 16% of GnRH-immunoreactive cells, suggesting direct regulation of GnRH via RFRP signaling. This characterization of RFRP distribution contributes to a deeper understanding of bat neuroendocrinology, which serves as foundation for manipulative approaches examining changes in reproductive neuropeptide signaling in response to environmental and physiological challenges within, and among, bat species.


Assuntos
Quirópteros , Neuropeptídeos , Animais , Núcleo Arqueado do Hipotálamo/metabolismo , Quirópteros/metabolismo , Feminino , Hormônio Liberador de Gonadotropina/análise , Gonadotropinas/análise , Gonadotropinas/metabolismo , Masculino , Neuropeptídeos/metabolismo
3.
Neuroendocrinology ; 112(6): 606-620, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34384081

RESUMO

INTRODUCTION: The mechanisms underlying obesity are not fully understood, necessitating the creation of novel animal models for the investigation of metabolic disorders. We have previously found that neurosecretory protein GL (NPGL), a newly identified hypothalamic neuropeptide, is involved in feeding behavior and fat accumulation in rats. However, the impact of NPGL on obesity remains unclear in any animal model. The present investigation sought to elucidate whether NPGL causes obesity in the obesity-prone mouse strain C57BL/6J. METHODS: We overexpressed the NPGL-precursor gene (Npgl) in the hypothalamus using adeno-associated virus in male C57BL/6J mice fed normal chow (NC) or a high-calorie diet (HCD). After 9 weeks of Npgl overexpression, we measured adipose tissues, muscle, and several organ masses in addition to food intake and body mass. To assess the effects of Npgl overexpression on peripheral tissues, we analyzed mRNA expression of lipid metabolism-related genes by quantitative RT-PCR. Whole body energy consumption was assessed using an O2/CO2 metabolism measurement before an apparent increase in body mass. RESULTS: Npgl overexpression increased food intake, body mass, adipose tissues and liver masses, and food efficiency under both NC and HCD, resulting in obesity observable within 8 weeks. Furthermore, we observed fat accumulation in adipose tissues and liver. Additionally, mRNA expression of lipid metabolism-related factors was increased in white adipose tissue and the liver after Npgl overexpression. Npgl overexpression inhibited energy expenditure during a dark period. CONCLUSION: Taken together, the present study suggests that NPGL can act as an obesogenic factor that acts within a short period of time in mice. As a result, this Npgl overexpression-induced obesity can be widely applied to study the etiology of obesity from genes to behavior.


Assuntos
Hipotálamo , Proteínas do Tecido Nervoso , Animais , Dieta Hiperlipídica , Metabolismo Energético/genética , Hipotálamo/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas do Tecido Nervoso/metabolismo , Obesidade/genética , Obesidade/metabolismo , RNA Mensageiro/metabolismo , Ratos
4.
Biol Reprod ; 101(5): 906-915, 2019 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-31359037

RESUMO

Successful implantation requires complex signaling between the uterine endometrium and the blastocyst. Prior to the blastocyst reaching the uterus, the endometrium is remodeled by sex steroids and other signals to render the endometrium receptive. In vitro models have facilitated major advances in our understanding of endometrium preparation and endometrial-blastocyst communication in mice and humans, but these systems have not been widely adapted for use in other models which might generate a deeper understanding of these processes. The objective of our study was to use a recently developed, three-dimensional culture system to identify specific roles of female sex steroids in remodeling the organization and function of feline endometrial cells. We treated endometrial cells with physiologically relevant concentrations of estradiol and progesterone, either in isolation or in combination, for 1 week. We then examined size and density of three-dimensional structures, and quantified expression of candidate genes known to vary in response to sex steroid treatments and that have functional relevance to the decidualization process. Combined sex steroid treatments recapitulated organizational patterns seen in vivo; however, sex steroid manipulations did not induce expected changes to expression of decidualization-related genes. Our results demonstrate that sex steroids may not be sufficient for complete decidualization and preparation of the feline endometrium, thereby highlighting key areas of opportunity for further study and suggesting some unique functions of felid uterine tissues.


Assuntos
Gatos , Técnicas de Cultura de Células/veterinária , Endométrio/citologia , Estradiol/farmacologia , Progesterona/farmacologia , Animais , Decídua/fisiologia , Estrogênios/farmacologia , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/fisiologia , Progestinas/farmacologia
5.
Am J Physiol Endocrinol Metab ; 315(5): E987-E994, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30106623

RESUMO

Although stress-induced glucocorticoid release is thought to be a primary driver by which maternal stress negatively impacts pregnancy outcomes, the downstream neuroendocrine targets mediating these adverse outcomes are less well understood. We hypothesized that stress-induced glucocorticoid secretion inhibits pituitary hormone secretion, resulting in decreased ovarian progesterone synthesis. Using a chronic restraint model of stress in mice, we quantified steroid hormone production, pituitary hormones, and expression of ovarian genes that support progesterone production at both early ( day 5) and midpregnancy ( day 10). Females subjected to daily restraint had elevated baseline glucocorticoids during both early and midpregnancy; however, lower circulating progesterone was observed only during early pregnancy. Lower progesterone production was associated with lower expression of steroidogenic enzymes in the ovary of restrained females during early pregnancy. There were no stress-related changes to luteinizing hormone (LH) or prolactin (PRL). By midpregnancy, circulating LH decreased regardless of treatment, and this was associated with downregulation of ovarian steroidogenic gene expression. Our results are consistent with a role for LH in maintaining steroidogenic enzyme expression in the ovary, but neither circulating PRL nor LH were associated with the stress-induced inhibition of ovarian progesterone production during early pregnancy. We conclude that chronic stress impacts endocrine networks differently in pregnant and nonpregnant mammals. These findings underscore the need for further studies exploring dynamic changes in endocrine networks participating in pregnancy initiation and progression to elucidate the physiological mechanisms that connect stress exposure to adverse pregnancy outcomes.


Assuntos
Glucocorticoides/sangue , Ovário/metabolismo , Progesterona/biossíntese , Estresse Fisiológico/fisiologia , Estresse Psicológico/metabolismo , Animais , Feminino , Hormônio Luteinizante/sangue , Camundongos , Gravidez , Prolactina/sangue , Restrição Física
6.
J Exp Biol ; 220(Pt 24): 4583-4588, 2017 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-29097592

RESUMO

Steroid production by the ovary is primarily stimulated by gonadotropins but can also be affected by biological cues that provide information about energy status and environmental stress. To further understand which metabolic cues the ovary can respond to, we exposed gonadotropin-stimulated mouse ovaries in vitro to glucose metabolism inhibitors and measured steroid accumulation in media. Gonadotropin-stimulated ovaries exposed to 2-deoxy-d-glucose increased progesterone production and steroidogenic acute regulatory protein mRNA levels. However, oocytes and granulosa cells in antral follicles do not independently mediate this response because targeted treatment of these cell types with a different inhibitor of glucose metabolism (bromopyruvic acid) did not affect progesterone production. Elevated progesterone production is consistent with the homeostatic role of progesterone in glucose regulation in mammals. It also may regulate follicle growth and/or atresia within the ovary. These results suggest that ovaries can regulate glucose homeostasis in addition to their primary role in reproductive activity.


Assuntos
Glucose/metabolismo , Ovário/metabolismo , Progesterona/biossíntese , Animais , Feminino , Gonadotropinas/farmacologia , Homeostase , Técnicas In Vitro , Camundongos , Camundongos Endogâmicos C57BL , Ovário/efeitos dos fármacos
7.
Proc Natl Acad Sci U S A ; 114(5): 1207-1212, 2017 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-28096421

RESUMO

Neuroendocrine mechanisms underlying social inhibition of puberty are not well understood. Here, we use a model exhibiting the most profound case of pubertal suppression among mammals to explore a role for RFamide-related peptide-3 [RFRP-3; mammalian ortholog to gonadotropin-inhibitory hormone (GnIH)] in neuroendocrine control of reproductive development. Naked mole rats (NMRs) live in sizable colonies where breeding is monopolized by two to four dominant animals, and no other members exhibit signs of puberty throughout their lives unless they are removed from the colony. Because of its inhibitory action on the reproductive axis in other vertebrates, we investigated the role of RFRP-3 in social reproductive suppression in NMRs. We report that RFRP-3 immunofluorescence expression patterns and RFRP-3/GnRH cross-talk are largely conserved in the NMR brain, with the exception of the unique presence of RFRP-3 cell bodies in the arcuate nucleus (Arc). Immunofluorescence comparisons revealed that central expression of RFRP-3 is altered by reproductive status, with RFRP-3 immunoreactivity enhanced in the paraventricular nucleus, dorsomedial nucleus, and Arc of reproductively quiescent NMRs. We further observed that exogenous RFRP-3 suppresses gonadal steroidogenesis and mating behavior in NMRs given the opportunity to undergo puberty. Together, our findings establish a role for RFRP-3 in preserving reproductive immaturity, and challenge the view that stimulatory peptides are the ultimate gatekeepers of puberty.


Assuntos
Sistema Límbico/metabolismo , Ratos-Toupeira/fisiologia , Neuropeptídeos/fisiologia , Maturidade Sexual/fisiologia , Animais , Núcleo Arqueado do Hipotálamo/metabolismo , Núcleo Hipotalâmico Dorsomedial/metabolismo , Feminino , Hormônio Liberador de Gonadotropina/fisiologia , Injeções Intraventriculares , Kisspeptinas/metabolismo , Masculino , Neuropeptídeos/farmacologia , Ovário/metabolismo , Núcleo Hipotalâmico Paraventricular/metabolismo , Progesterona/biossíntese , Progesterona/sangue , Comportamento Sexual Animal/efeitos dos fármacos , Comportamento Sexual Animal/fisiologia , Maturidade Sexual/efeitos dos fármacos , Isolamento Social , Testículo/metabolismo , Testosterona/biossíntese , Testosterona/sangue
8.
FASEB J ; 30(6): 2198-210, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26929433

RESUMO

Gonadotropin-inhibitory hormone (GnIH) acts as a negative regulator of reproduction by acting on gonadotropes and gonadotropin-releasing hormone (GnRH) neurons. Despite its functional significance, the molecular mechanism of GnIH action in the target cells has not been fully elucidated. To expand our previous study on GnIH actions in gonadotropes, we investigated the potential signal transduction pathway that conveys the inhibitory action of GnIH in GnRH neurons by using the GnRH neuronal cell line, GT1-7. We examined whether GnIH inhibits the action of kisspeptin and vasoactive intestinal polypeptide (VIP), positive regulators of GnRH neurons. Although GnIH significantly suppressed the stimulatory effect of kisspeptin on GnRH release in hypothalamic culture, GnIH had no inhibitory effect on kisspeptin stimulation of serum response element and nuclear factor of activated T-cell response element activities and ERK phosphorylation, indicating that GnIH may not directly inhibit kisspeptin signaling in GnRH neurons. On the contrary, GnIH effectively eliminated the stimulatory effect of VIP on p38 and ERK phosphorylation, c-Fos mRNA expression, and GnRH release. The use of pharmacological modulators strongly demonstrated the specific inhibitory action of GnIH on the adenylate cyclase/cAMP/protein kinase A pathway, suggesting a common inhibitory mechanism of GnIH action in GnRH neurons and gonadotropes.-Son, Y. L., Ubuka, T., Soga, T., Yamamoto, K., Bentley, G. E., Tsutsui, K. Inhibitory action of gonadotropin-inhibitory hormone on the signaling pathways induced by kisspeptin and vasoactive intestinal polypeptide in GnRH neuronal cell line, GT1-7.


Assuntos
Regulação da Expressão Gênica/fisiologia , Hormônio Liberador de Gonadotropina/metabolismo , Kisspeptinas/farmacologia , Neurônios/efeitos dos fármacos , Peptídeo Intestinal Vasoativo/metabolismo , Animais , Linhagem Celular , Proteínas Quinases Dependentes de AMP Cíclico , MAP Quinases Reguladas por Sinal Extracelular/genética , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Genes fos , Hipotálamo/citologia , Camundongos , Neurônios/fisiologia , Fosforilação , Proteína Quinase C , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Kisspeptina-1 , Receptores Tipo II de Peptídeo Intestinal Vasoativo/genética , Receptores Tipo II de Peptídeo Intestinal Vasoativo/metabolismo , Transdução de Sinais , Peptídeo Intestinal Vasoativo/genética , Proteínas Quinases p38 Ativadas por Mitógeno/genética , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
9.
J Exp Biol ; 219(Pt 6): 783-9, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26787482

RESUMO

Recent studies of the onset of breeding in long-day photoperiodic breeders have focused on the roles of type 2 and 3 iodothyronine deiodinases (DIO2 and DIO3) in the conversion of thyroxine (T4) to triiodothyronine (T3) and subsequent activation of the reproductive axis. It has been hypothesized that an increase in DIO2 and a reciprocal decrease in DIO3 causes the release of gonadotropin-releasing hormone (GnRH) from the hypothalamus, setting off a reproductive cascade, and that this DIO mechanism for GnRH release is conserved across vertebrate taxa. We sought to test whether social cues that are known to stimulate reproductive behaviors can activate the DIO system to initiate reproduction in a non-photoperiodic bird, the zebra finch (Taeniopygia guttata). Isolation of males and subsequent presentation of females did not increase DIO2 or GnRH expression in the hypothalamus, nor did it decrease gonadotropin-inhibitory hormone (GnIH) or DIO3. Males receiving a female stimulus showed significantly higher mRNA expression and immunoreactive cell count of the immediate-early gene early growth response protein 1 (EGR-1) than isolated males, indicating hypothalamic activation in response to a female. Cells immunoreactive for EGR-1 were not co-localized with those immunoreactive for GnRH. Reproductive behaviors (singing, copulation attempts and overall activity) were significantly higher in males receiving a female stimulus. This study presents a social effect on behavior and EGR-1 expression in the hypothalamus of males in response to females, but more research is needed to determine whether the DIO2 system and the GnRH system are responsive to social stimulation in this species.


Assuntos
Sinais (Psicologia) , Tentilhões/fisiologia , Reprodução/fisiologia , Comportamento Sexual Animal/fisiologia , Animais , Proteína 1 de Resposta de Crescimento Precoce/metabolismo , Feminino , Regulação da Expressão Gênica , Hormônio Liberador de Gonadotropina/metabolismo , Hipotálamo/metabolismo , Iodeto Peroxidase/metabolismo , Masculino , Vocalização Animal/fisiologia
10.
Gen Comp Endocrinol ; 215: 1-9, 2015 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-25849310

RESUMO

Food abundance is closely associated with reproductive readiness in vertebrates. Food scarcity can activate the hypothalamo-pituitary-adrenal axis, decrease sex steroid secretion, and dampen reproductive behavior. However, the mechanisms underlying these transient effects are unclear. Gonadotropin inhibitory hormone (GnIH), a neuropeptide present in the brain and gonads, is also influenced by glucocorticoids and fasting in some species. We investigated whether fasting stress activated the GnIH system in zebra finches (Taeniopygia guttata), with the potential for downstream effects on reproductive physiology and behavior. We fasted or fed males ad libitum for 10h. Fasting increased corticosterone and decreased testosterone in circulation. To assess whether the decrease in testosterone was mediated by changes in the hypothalamus and/or the gonads, we (1) quantified GnRH- and GnIH-positive neurons in the hypothalamus, (2) assessed hypothalamic gene expression for GnRH and GnIH, and (3) examined gene expression for proteins involved in testosterone synthesis in fasted and control birds. No measure of hypothalamic neuropeptides was related to treatment or circulating steroids. However, birds with higher corticosterone had higher testicular GnIH expression and lower testosterone. StAR and LHR expression were lower in the testes of fasted birds than controls. Thus, the decrease in testosterone was not likely mediated by hypothalamic GnIH, but rather by direct actions of fasting and/or corticosterone on the testes, indicating that the testes can integrate and respond to cues of stress directly. Such local inhibition of testosterone synthesis may allow for rapid and reversible changes in physiology and behavior when conditions are inappropriate for breeding.


Assuntos
Encéfalo/metabolismo , Sinais (Psicologia) , Jejum/fisiologia , Tentilhões/fisiologia , Aves Canoras/fisiologia , Estresse Fisiológico/fisiologia , Testículo/metabolismo , Testosterona/sangue , Animais , Corticosterona/sangue , Hormônio Liberador de Gonadotropina/genética , Hormônio Liberador de Gonadotropina/metabolismo , Hormônios Hipotalâmicos/genética , Hormônios Hipotalâmicos/metabolismo , Hipotálamo/metabolismo , Técnicas Imunoenzimáticas , Masculino , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reprodução/fisiologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa
11.
Endocrinology ; 156(2): 694-706, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25490148

RESUMO

With final maturation of ovarian follicles, birds are committed to a major energetic investment: egg laying. Follicles develop in a 2-step process: 1) initial development of regressed follicles stimulated by long days and 2) yolk incorporation into hierarchical follicles, ovulation, and oviposition. We know little about how females transduce environmental cues into neuroendocrine signals regulating the second step. The present study measures gene expression in tissues within the hypothalamo-pituitary-gonadal axis. Females were housed in seminatural enclosures experiencing natural changes in photoperiod and environmental cues (eg, temperature, rainfall, etc), without males or with constant access to males (January to April). By April, females with males had begun to lay eggs, whereas those without males had not. In a second study, females without males for 3.5 months were then given access to males for 7 days. Restricting male access completely inhibited final follicle maturation, whereas 7-day male access stimulated full vitellogenesis and follicle maturation. Few gene expression changes were attributable to constant male access (January to March), but naïve females given 7-day male access had increased type 2 deiodinase (DIO2) and decreased DIO3 synthesis in the hypothalamus, potentially influencing local thyroid hormone metabolism, increased expression of LH receptor and aromatase in follicles and vitellogenin in liver. Our data suggest that initial follicle development may be more heavily influenced by photoperiod, but the second step (final maturation) is sensitive to other cues such as social interactions. This is the first demonstration of a social effect on the Dio2/Dio3 system, previously thought only responsive to photoperiod cues.


Assuntos
Sistema Hipotálamo-Hipofisário/metabolismo , Iodeto Peroxidase/metabolismo , Ovário/metabolismo , Oviparidade , Comportamento Sexual Animal/fisiologia , Animais , Aromatase/metabolismo , Proteínas Aviárias/metabolismo , Feminino , Subunidade beta do Hormônio Folículoestimulante/metabolismo , Expressão Gênica , Hormônio Liberador de Gonadotropina/metabolismo , Lipoproteínas VLDL/sangue , Masculino , Comportamento de Nidação , Folículo Ovariano/crescimento & desenvolvimento , Folículo Ovariano/metabolismo , Distribuição Aleatória , Receptores do FSH/metabolismo , Receptores do LH/metabolismo , Estorninhos , Vitelogênese , Vitelogeninas/sangue , Iodotironina Desiodinase Tipo II
12.
Front Neuroendocrinol ; 37: 65-75, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25511257

RESUMO

Animals inhabiting temperate and boreal latitudes experience marked seasonal changes in the quality of their environments and maximize reproductive success by phasing breeding activities with the most favorable time of year. Whereas the specific mechanisms driving seasonal changes in reproductive function vary across species, converging lines of evidence suggest gonadotropin-inhibitory hormone (GnIH) serves as a key component of the neuroendocrine circuitry driving seasonal changes in reproduction and sexual motivation in some species. In addition to anticipating environmental change through transduction of photoperiodic information and modifying reproductive state accordingly, GnIH is also positioned to regulate acute changes in reproductive status should unpredictable conditions manifest throughout the year. The present overview summarizes the role of GnIH in avian and mammalian seasonal breeding while considering the similarities and disparities that have emerged from broad investigations across reproductively photoperiodic species.


Assuntos
Aves/fisiologia , Hormônios Hipotalâmicos/fisiologia , Mamíferos/fisiologia , Estações do Ano , Animais , Kisspeptinas/biossíntese , Kisspeptinas/fisiologia , Reprodução/fisiologia
13.
PeerJ ; 1: e139, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24024084

RESUMO

The gonadotropin releasing hormone (GnRH) system in the hypothalamus is often considered the final point in integration of environmental cues as they pertain to the reproductive axis. However, cues such as stress and food availability are detectable in the plasma (as glucocorticoid and metabolic fuel fluctuations). Vertebrate gonads express glucocorticoid receptor, therefore we hypothesized that the gonads can detect and respond directly to cues of stress. We provide evidence here that, in addition to regulation by the brain, the gonads of European starlings (Sturnus vulgaris) respond directly to fluctuations in corticosterone and metabolic fuels by modulating sex steroid secretion. Using a 4-h gonad culture, we show that physiologically-relevant concentrations of corticosterone and metabolic stress (via use of the glucose utilization inhibitor 2-deoxy-D-glucose and the fatty acid oxidation inhibitor ethyl 2-mercaptoacetate (2DG/MA)) can directly decrease testosterone and estradiol secretion from luteinizing hormone and follicle-stimulating hormone (LH/FSH)-stimulated testes and ovaries. This effect is regulated seasonally. Prior to the breeding season, testes and ovaries respond to corticosterone and 2DG/MA by significantly decreasing gonadal steroid release. Within the breeding season, the testes do not respond to these cues of stress, while the ovaries respond only to corticosterone. This seasonal difference in response may be due in part to the influence of these cues of stress on gonadal neuropeptide expression: corticosterone upregulates GnIH expression in the testes while metabolic stress upregulates GnIH in the ovaries. Thus the gonads can directly respond to fluctuations in corticosterone and metabolic fuels during a time of critical importance to the onset of breeding.

14.
Neuroimmunomodulation ; 20(6): 348-60, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24008626

RESUMO

BACKGROUND/AIM: Sickness behaviors are the behavioral alterations animals exhibit during the course of an infection, often accompanied by reduced reproductive activity. Adopting sickness behaviors may aid in overcoming the infection, by diverting energy from routine activities towards enhancement of the immune system. Nonetheless, sickness behaviors are plastic, being influenced by specific environmental and social circumstances. Here, we tested whether the presentation of a novel female to males suffering from a simulated infection could impact the behavioral effects of sickness, the reproductive axis, or both. METHODS: Male zebra finches were housed in isolation and injected intramuscularly with lipopolysaccharide or saline. Behaviors were recorded before (3 h before injection) and after (3.5 h after injection) addition of a novel female to the cage for 30 min. Four hours after injection, we collected the brain and testis for the analysis of important reproductive axis modulators, gonadotropin-releasing hormone, and gonadotropin-inhibitory hormone, and to quantify gene expression of a proinflammatory cytokine involved in the regulation of sickness behaviors [interleukin (IL)-1ß]. Testosterone was quantified in the plasma. RESULTS: The presence of a novel female diminished sickness behaviors and induced alterations in the reproductive axis within 30 min, with no associated changes in brain gene expression of IL-1ß. Social environment itself altered brain gene expression of IL-1ß. CONCLUSIONS: Male zebra finches prioritize the opportunity to mate versus investment in recovery from an infection, as determined by reduced expression of sickness behaviors when a potential mate was present. The behavioral effects of IL-1ß appear to be context dependent in this species.


Assuntos
Encéfalo/imunologia , Comportamento de Doença/fisiologia , Interleucina-1beta/biossíntese , Fenômenos Reprodutivos Fisiológicos/imunologia , Comportamento Sexual Animal/fisiologia , Animais , Encéfalo/metabolismo , Feminino , Tentilhões , Hormônio Liberador de Gonadotropina , Imuno-Histoquímica , Interleucina-1beta/análise , Lipopolissacarídeos/toxicidade , Masculino , Neuroimunomodulação/fisiologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transcriptoma
15.
Peptides ; 46: 64-75, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23727031

RESUMO

Hypothalamic gonadotropin releasing hormone (GnRH) and gonadotropin inhibitory hormone (GnIH) are vital to reproduction in all vertebrates. These neuropeptides are also present outside of the hypothalamus, but the roles of extra-hypothalamic GnRH and GnIH remain enigmatic and widely underappreciated. We used immunohistochemistry and PCR to examine whether multiple forms of GnRH (chicken GnRH-I (GnRH1), chicken GnRH-II (GnRH2) and lamprey GnRH-III (GnRH4)) and GnIH are present in the hippocampus (Hp) of adult zebra finches (Taeniopygia guttata). Using immunohistochemistry, we provide evidence that GnRH1, GnRH2 and GnRH4 are present in hippocampal cell bodies and/or fibers and that GnIH is present in hippocampal fibers only. There are regional differences in hippocampal GnRH immunoreactivity, and these vary across the different forms of GnRH. There are also sex differences in hippocampal GnRH immunoreactivity, with generally more GnRH1 and GnRH2 in the female Hp. In addition, we used PCR to examine the presence of GnRH1 mRNA and GnIH mRNA in micropunches of Hp. PCR and subsequent product sequencing demonstrated the presence of GnRH1 mRNA and the absence of GnIH mRNA in the Hp, consistent with the pattern of immunohistochemical results. To our knowledge, this is the first study in any species to systematically examine multiple forms of GnRH in the Hp or to quantify sex or regional differences in hippocampal GnRH. Moreover, this is the first demonstration of GnIH in the avian Hp. These data shed light on an important issue: the sites of action and possible functions of GnRH and GnIH outside of the HPG axis.


Assuntos
Hormônio Liberador de Gonadotropina/genética , Hormônio Liberador de Gonadotropina/metabolismo , Hipocampo/metabolismo , Hormônios Hipotalâmicos/metabolismo , Animais , Proteínas Aviárias/genética , Proteínas Aviárias/metabolismo , Feminino , Tentilhões , Hormônios Hipotalâmicos/genética , Imuno-Histoquímica , Masculino , RNA Mensageiro/metabolismo , Fatores Sexuais
16.
Endocrinology ; 154(5): 1813-9, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23525217

RESUMO

Timing of seasonal breeding in birds and mammals is regulated by changing the day length and is dependent on the presence of thyroid hormones. A mechanism for thyroid-dependent control of seasonality has been proposed, in which exposure to long day lengths induces rapid local conversion of T4 to its bioactive form, T3, via the up-regulation of the enzyme type 2 iodothyronine deiodinase (Dio2) in the brain, and the down-regulation of Dio3 (which inactivates T3). Such changes were correlated with gonadotropin release and gonadal growth in quail. This mechanism was elucidated in a domesticated species (quail) exposed to unnatural acute changes in day length. Here we investigated the Dio2/Dio3 mechanism in a wild species, the European starling, under naturally changing day length. Although Dio2 expression varied seasonally, Dio3 did not. We found no correlation of Dio2 with photoperiod, seasonal regulation of GnRH, or testicular volume. The observed differences in data from starlings and quail could be a result of phylogeny, genetic drift from founder populations, or differences in reproductive seasonality in addition to or instead of arising from domestication or use of artificially changing photoperiods. Overall, the data indicate that in a wild species exposed to natural changes in day length, the current proposed mechanism for photoperiodic timing is less straightforward than is generally accepted and might not be as universally applicable as previously thought.


Assuntos
Iodeto Peroxidase/genética , Fotoperíodo , Aves Canoras/crescimento & desenvolvimento , Testículo/crescimento & desenvolvimento , Animais , Ritmo Circadiano/genética , Ritmo Circadiano/fisiologia , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Regulação Enzimológica da Expressão Gênica/fisiologia , Hormônio Liberador de Gonadotropina/genética , Hormônio Liberador de Gonadotropina/metabolismo , Iodeto Peroxidase/metabolismo , Masculino , Muda/genética , Muda/fisiologia , Tamanho do Órgão , Estações do Ano , Aves Canoras/genética , Aves Canoras/metabolismo , Aves Canoras/fisiologia , Testículo/metabolismo , Iodotironina Desiodinase Tipo II
17.
Gen Comp Endocrinol ; 190: 10-7, 2013 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-23499786

RESUMO

Gonadotropin-inhibitory hormone (GnIH) is an inhibitor of gonadotropin synthesis and release, which was originally identified in the hypothalamus of the Japanese quail (Coturnix japonica). The GnIH precursor polypeptide encodes one GnIH and two GnIH related peptides (GnIH-RP-1 and GnIH-RP-2) in birds that share the same C-terminal LPXRFamide (X=L or Q) motif. The receptor for GnIH is thought to be the G protein-coupled receptor 147 (GPR147) which has been shown to couple predominantly through the Gαi protein to inhibit cAMP production. The crude membrane fraction of COS-7 cells transfected with GPR147 cDNA specifically bound GnIH and GnIH-RPs in a concentration-dependent manner. Scatchard plot analysis of the binding showed that GPR147 possessed a single class of high-affinity binding sites. GnIH neurons project to the median eminence to control anterior pituitary function and GPR147 is expressed in the gonadotropes. GnIH neurons also project to gonadotropin-releasing hormone (GnRH)-I and GnRH-II neurons, and GnRH-I and GnRH-II neurons express GPR147. Thus, GnIH may inhibit gonadotropin synthesis and release by decreasing the activity of GnRH-I neurons as well as directly inhibiting the effects of GnRH on gonadotropes. GnIH may also partially inhibit reproductive behaviors by inhibiting GnRH-II neurons. GnIH and GPR147 are also expressed in the gonads, possibly acting in an autocrine/paracrine manner. The cell signaling process of GPR147 was extensively studied using LßT2 cells, a mouse gonadotrope cell line. In this cell line, mouse GnIH inhibits GnRH-induced gonadotropin subunit, LHß, FSHß, and common α, gene transcriptions by inhibiting adenylate cyclase/cAMP/PKA dependent ERK pathway. This review summarizes the functions of GnIH, GnIH receptor and its cell signaling processes in birds and discusses related findings in mammals.


Assuntos
Glicoproteínas/metabolismo , Hormônios Peptídicos/metabolismo , Animais , Células COS , Hormônio Liberador de Gonadotropina/metabolismo , Humanos , Receptores de Neuropeptídeos/metabolismo
18.
Endocrinology ; 153(7): 3435-45, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22691551

RESUMO

RFamide-related peptide-3 (RFRP-3), a mammalian ortholog of avian gonadotropin-inhibitory hormone, has pronounced inhibitory effects on reproduction in a number of species. RFRP-3 suppresses gonadotropin release at the hypothalamic and/or pituitary levels; however, increasing evidence also suggests putative functions within the ovary. We have now demonstrated the expression of both RFRP and its receptor (GPR147) in primary cultures of human granulosa-lutein cells. Immunohistochemical analysis of normal human ovaries from premenopausal women showed that RFRPs and GPR147 were primarily localized in the granulosa cell layer of large preovulatory follicles as well as in the corpus luteum. Treatment of human granulosa-lutein cells with RFRP-3 reduced FSH-, LH- and forskolin-stimulated progesterone production and steroidogenic acute regulatory protein expression but did not affect basal or 8-bromoadenosine 3'5'-cyclic monophosphate stimulated levels. In addition, RFRP-3 inhibited gonadotropin- and forskolin-induced intracellular cAMP accumulation, and these effects were abolished by pretreatment with an inhibitor of inhibitory G(i/o) proteins (pertussis toxin). Importantly, the effects of RFRP-3 on FSH-, LH-, and forskolin-induced cAMP and progesterone accumulation were completely eliminated by cotreatment with the bifunctional GPR147/GPR74 antagonist RF9 or by pretreatment with GPR147 small interfering RNA. These results suggest that RFRP-3 is expressed in human granulosa cells in which it acts via its receptor, GPR147, to inhibit gonadotropin signaling at the level of adenylyl cyclase via activation of a pertussis toxin-sensitive Gα(i/o) protein. This leads to reduced gonadotropin-stimulated cAMP accumulation and progesterone synthesis, likely via reduced steroidogenic acute regulatory protein expression. Thus, ovarian RFRP-3/GPR147 signaling could contribute to normal ovarian function.


Assuntos
Glicoproteínas/química , Gonadotropinas/metabolismo , Células da Granulosa/efeitos dos fármacos , Neuropeptídeos/farmacologia , Progesterona/metabolismo , Receptores de Neuropeptídeos/metabolismo , Colforsina/farmacologia , AMP Cíclico/metabolismo , Feminino , Hormônio Foliculoestimulante/metabolismo , Glicoproteínas/farmacologia , Células da Granulosa/citologia , Humanos , Imuno-Histoquímica/métodos , Ovário/metabolismo , Toxina Pertussis/farmacologia , Pré-Menopausa
19.
PLoS One ; 7(4): e34997, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22539953

RESUMO

Measuring day length is critical for timing annual changes in physiology and behavior in many species. Recently, rapid changes in several photoperiodically-controlled genes following exposure to a single long day have been described. Components of this 'first day release' model have so far only been tested in highly domesticated species: quail, sheep, goats and rodents. Because artificial selection accompanying domestication acts on genes related to photoperiodicity, we must also study this phenomenon in wild organisms for it to be accepted as universal. In a songbird, the great tit (Parus major), we tested whether a) these genes are involved in photoperiodic time measurement (PTM) in a wild species, and b) whether predictable species and population differences in expression patterns exist. Using quantitative RT-PCR, we compared gene expression after a single long day in male great tits from Sweden (57°42'N) with that from a German (47°43'N) population. Hypothalamic gene expression key for PTM changed only in the northern population, and occurred earlier after dawn during the single long day than demonstrated in quail; however, gonadotropins (secretion and synthesis) were stimulated in both populations, albeit with different timing. Our data are the first to show acute changes in gene expression in response to photostimulation in any wild species not selected for study of photoperiodism. The pronounced differences in gene expression in response to a single long day between two populations raise exciting new questions about potential environmental selection on photoperiodic cue sensitivity.


Assuntos
Ritmo Circadiano/genética , Aves Canoras/metabolismo , Animais , Hormônio Foliculoestimulante/genética , Hormônio Foliculoestimulante/metabolismo , Expressão Gênica , Hormônio Liberador de Gonadotropina/genética , Hormônio Liberador de Gonadotropina/metabolismo , Hipotálamo/metabolismo , Iodeto Peroxidase/genética , Iodeto Peroxidase/metabolismo , Hormônio Luteinizante/sangue , Masculino , Fotoperíodo , Iodotironina Desiodinase Tipo II
20.
Gen Comp Endocrinol ; 177(3): 305-14, 2012 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-22391238

RESUMO

A hypothalamic neuropeptide, gonadotropin-releasing hormone (GnRH), is the primary factor regulating gonadotropin secretion. An inhibitory hypothalamic neuropeptide for gonadotropin secretion was, until recently, unknown, although gonadal sex steroids and inhibin can modulate gonadotropin secretion. Findings from the last decade, however, indicate that GnRH is not the sole hypothalamic regulatory neuropeptide of vertebrate reproduction, with gonadotropin-inhibitory hormone (GnIH) playing a key role in the inhibition of reproduction. GnIH was originally identified in birds and subsequently in mammals and other vertebrates. GnIH acts on the pituitary and on GnRH neurons in the hypothalamus via a novel G protein-coupled receptor (GPR147). GnIH decreases gonadotropin synthesis and release, inhibiting gonadal development and maintenance. Such a down-regulation of the hypothalamo-pituitary-gonadal (HPG) axis may be conserved across vertebrates. Recent evidence further indicates that GnIH operates at the level of the gonads as an autocrine/paracrine regulator of steroidogenesis and gametogenesis. More recent evidence suggests that GnIH also acts both upstream of the GnRH system and at the level of the gonads to appropriately regulate reproductive activity across the seasons and during times of stress. The discovery of GnIH has fundamentally changed our understanding of hypothalamic control of reproduction. This review summarizes the discovery, progress and prospect of GnIH, a key regulator of vertebrate reproduction.


Assuntos
Hormônios Hipotalâmicos/metabolismo , Animais , Hormônio Liberador de Gonadotropina/metabolismo , Gonadotropinas/metabolismo , Humanos , Hipotálamo/metabolismo , Melatonina/metabolismo , Hipófise/metabolismo , Reprodução/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA