Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Dermatol Ther (Heidelb) ; 14(5): 1359-1366, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38722558

RESUMO

Basal cell carcinoma (BCC) is the most common skin cancer. Skin cancers may present either as a non-invasive tumor or an invasive malignancy. The terminology of carcinoma in situ is used when the tumor is either just limited to epidermis or not present as single cells or nests in the dermis. However, currently the terminology superficial BCC is inappropriately used instead of BCC in situ when the skin cancer is limited to epidermis. In this study we compare the pathologic changes of superficial, nodular, and infiltrative BCCs using electron microscopy to identify the ultrastructural characteristics and validate the previously proposed terminology. Three cases of BCC (superficial BCC, nodular BCC, and infiltrative BCC) diagnosed by dermatopathologists at our institute were selected for review. Paraffin block tissues from these cases were sent for electron microscopy studies which demonstrated disruption of basal lamina in both nodular and infiltrative type of BCC, while it remains intact in BCC superficial type after extensive examination. Therefore, similar to other in situ skin cancers, there is no invasion of the neoplasm in superficial BCC into the dermis. Hence, the older term superficial BCC should be appropriately replaced with the newer terminology BCC in situ.

2.
J Orthop Res ; 42(3): 518-530, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38102985

RESUMO

Musculoskeletal infections (MSKI), which are a major problem in orthopedics, occur when the pathogen eludes or overwhelms the host immune system. While effective vaccines and immunotherapies to prevent and treat MSKI should be possible, fundamental knowledge gaps in our understanding of protective, nonprotective, and pathogenic host immunity are prohibitive. We also lack critical knowledge of how host immunity is affected by the microbiome, implants, prior infection, nutrition, antibiotics, and concomitant therapies, autoimmunity, and other comorbidities. To define our current knowledge of these critical topics, a Host Immunity Section of the 2023 Orthopaedic Research Society MSKI International Consensus Meeting (ICM) proposed 78 questions. Systematic reviews were performed on 15 of these questions, upon which recommendations with level of evidence were voted on by the 72 ICM delegates, and another 12 questions were voted on with a recommendation of "Unknown" without systematic reviews. Two questions were transferred to another ICM Section, and the other 45 were tabled for future consideration due to limitations of available human resources. Here we report the results of the voting with internet access to the questions, recommendations, and rationale from the systematic reviews. Eighteen questions received a consensus vote of ≥90%, while nine recommendations failed to achieve this threshold. Commentary on why consensus was not achieved on these questions and potential ways forward are provided to stimulate specific funding mechanisms and research on these critical MSKI host defense questions.


Assuntos
Procedimentos Ortopédicos , Ortopedia , Humanos , Consenso , Antibacterianos/uso terapêutico , Imunoterapia
3.
Front Immunol ; 14: 1275871, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38155962

RESUMO

Objective: Inflammatory-erosive arthritis is exacerbated by dysfunction of joint-draining popliteal lymphatic vessels (PLVs). Synovial mast cells are known to be pro-inflammatory in rheumatoid arthritis (RA). In other settings they have anti-inflammatory and tissue reparative effects. Herein, we elucidate the role of mast cells on PLV function and inflammatory-erosive arthritis in tumor necrosis factor transgenic (TNF-tg) mice that exhibit defects in PLVs commensurate with disease progression. Methods: Whole mount immunofluorescent microscopy, toluidine blue stained histology, scanning electron microscopy, and in silico bioinformatics were performed to phenotype and quantify PLV mast cells. Ankle bone volumes were assessed by µCT, while corresponding histology quantified synovitis and osteoclasts. Near-infrared indocyanine green imaging measured lymphatic clearance as an outcome of PLV draining function. Effects of genetic MC depletion were assessed via comparison of 4.5-month-old WT, TNF-tg, MC deficient KitW-sh/W-sh (cKit-/-), and TNF-tg x cKit-/- mice. Pharmacological inhibition of mast cells was assessed by treating TNF-tg mice with placebo or cromolyn sodium (3.15mg/kg/day) for 3-weeks. Results: PLVs are surrounded by MCT+/MCPT1+/MCPT4+ mast cells whose numbers are increased 2.8-fold in TNF-tg mice. The percentage of peri-vascular degranulating mast cells was inversely correlated with ICG clearance. A population of MCT+/MCPT1-/MCPT4- mast cells were embedded within the PLV structure. In silico single-cell RNA-seq (scRNAseq) analyses identified a population of PLV-associated mast cells (marker genes: Mcpt4, Cma1, Cpa3, Tpsb2, Kit, Fcer1a & Gata2) with enhanced TGFß-related signaling that are phenotypically distinct from known MC subsets in the Mouse Cell Atlas. cKit-/- mice have greater lymphatic defects than TNF-tg mice with exacerbation of lymphatic dysfunction and inflammatory-erosive arthritis in TNF-tg x cKit-/- vs. TNF-Tg mice. Cromolyn sodium therapy stabilized PLV mast cells, increased TNF-induced bone loss, synovitis, and osteoclasts, and decreased ICG clearance. Conclusions: Mast cells are required for normal lymphatic function. Genetic ablation and pharmacological inhibition of mast cells exacerbates TNF-induced inflammatory-erosive arthritis with decreased lymphatic clearance. Together, these findings support an inflammatory role of activated/degranulated peri-PLV mast cells during arthritic progression, and a homeostatic role of intra-PLV mast cells, in which loss of the latter dominantly exacerbates arthritis secondary to defects in joint-draining lymphatics, warranting investigation into specific cellular mechanisms.


Assuntos
Artrite Experimental , Vasos Linfáticos , Sinovite , Camundongos , Animais , Camundongos Transgênicos , Mastócitos/patologia , Cromolina Sódica , Artrite Experimental/patologia , Vasos Linfáticos/patologia , Sinovite/patologia
4.
Bone Res ; 11(1): 51, 2023 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-37848449

RESUMO

Eradication of MRSA osteomyelitis requires elimination of distinct biofilms. To overcome this, we developed bisphosphonate-conjugated sitafloxacin (BCS, BV600072) and hydroxybisphosphonate-conjugate sitafloxacin (HBCS, BV63072), which achieve "target-and-release" drug delivery proximal to the bone infection and have prophylactic efficacy against MRSA static biofilm in vitro and in vivo. Here we evaluated their therapeutic efficacy in a murine 1-stage exchange femoral plate model with bioluminescent MRSA (USA300LAC::lux). Osteomyelitis was confirmed by CFU on the explants and longitudinal bioluminescent imaging (BLI) after debridement and implant exchange surgery on day 7, and mice were randomized into seven groups: 1) Baseline (harvested at day 7, no treatment); 2) HPBP (bisphosphonate control for BCS) + vancomycin; 3) HPHBP (hydroxybisphosphonate control for HBCS) + vancomycin; 4) vancomycin; 5) sitafloxacin; 6) BCS + vancomycin; and 7) HBCS + vancomycin. BLI confirmed infection persisted in all groups except for mice treated with BCS or HBCS + vancomycin. Radiology revealed catastrophic femur fractures in all groups except mice treated with BCS or HBCS + vancomycin, which also displayed decreases in peri-implant bone loss, osteoclast numbers, and biofilm. To confirm this, we assessed the efficacy of vancomycin, sitafloxacin, and HBCS monotherapy in a transtibial implant model. The results showed complete lack of vancomycin efficacy while all mice treated with HBCS had evidence of infection control, and some had evidence of osseous integrated septic implants, suggestive of biofilm eradication. Taken together these studies demonstrate that HBCS adjuvant with standard of care debridement and vancomycin therapy has the potential to eradicate MRSA osteomyelitis.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Osteomielite , Infecções Estafilocócicas , Camundongos , Animais , Vancomicina/uso terapêutico , Meticilina/uso terapêutico , Antibacterianos/farmacologia , Resistência a Meticilina , Infecções Estafilocócicas/tratamento farmacológico , Osseointegração , Modelos Animais de Doenças , Osteomielite/tratamento farmacológico
5.
Res Sq ; 2023 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-37214929

RESUMO

Eradication of MRSA osteomyelitis requires elimination of distinct biofilms. To overcome this, we developed bisphosphonate-conjugated sitafloxacin (BCS, BV600072) and hydroxybisphosphonate-conjugate sitafloxacin (HBCS, BV63072), which achieve "target-and-release" drug delivery proximal to the bone infection and have prophylactic efficacy against MRSA static biofilm in vitro and in vivo. Here we evaluated their therapeutic efficacy in a murine 1-stage exchange femoral plate model with bioluminescent MRSA (USA300LAC::lux). Osteomyelitis was confirmed by CFU on the explants and longitudinal bioluminescent imaging (BLI) after debridement and implant exchange surgery on day 7, and mice were randomized into seven groups: 1) Baseline (harvested at day 7, no treatment); 2) HPBP (bisphosphonate control for BCS) + vancomycin; 3) HPHBP (bisphosphonate control for HBCS) + vancomycin; 4) vancomycin; 5) sitafloxacin; 6) BCS + vancomycin; and 7) HBCS + vancomycin. BLI confirmed infection persisted in all groups except for mice treated with BCS or HBCS + vancomycin. Radiology revealed catastrophic femur fractures in all groups except mice treated with BCS or HBCS + vancomycin, which also displayed decreases in peri-implant bone loss, osteoclast numbers, and biofilm. To confirm this, we assessed the efficacy of vancomycin, sitafloxacin, and HBCS monotherapy in a transtibial implant model. The results showed complete lack of vancomycin efficacy, while all mice treated with HBCS had evidence of infection control, and some had evidence of osseous integrated septic implants, suggestive of biofilm eradication. Taken together these studies demonstrate that HBCS adjuvant with standard of care debridement and vancomycin therapy has the potential to eradicate MRSA osteomyelitis.

6.
J Exp Med ; 220(2)2023 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-36469302

RESUMO

Arachnoid granulations (AG) are poorly investigated. Historical reports suggest that they regulate brain volume by passively transporting cerebrospinal fluid (CSF) into dural venous sinuses. Here, we studied the microstructure of cerebral AG in humans with the aim of understanding their roles in physiology. We discovered marked variations in AG size, lobation, location, content, and degree of surface encapsulation. High-resolution microscopy shows that AG consist of outer capsule and inner stromal core regions. The fine and porous framework suggests uncharacterized functions of AG in mechanical CSF filtration. Moreover, internal cytokine and immune cell enrichment imply unexplored neuroimmune properties of these structures that localize to the brain-meningeal lymphatic interface. Dramatic age-associated changes in AG structure are additionally identified. This study depicts for the first time microscopic networks of internal channels that communicate with perisinus spaces, suggesting that AG subserve important functions as transarachnoidal flow passageways. These data raise new theories regarding glymphatic-lymphatic coupling and mechanisms of CSF antigen clearance, homeostasis, and diseases.


Assuntos
Medula Óssea , Vasos Linfáticos , Humanos , Aracnoide-Máter/ultraestrutura , Dura-Máter , Sistema Linfático
7.
Nat Rev Microbiol ; 20(7): 385-400, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35169289

RESUMO

Osteomyelitis remains one of the greatest risks in orthopaedic surgery. Although many organisms are linked to skeletal infections, Staphylococcus aureus remains the most prevalent and devastating causative pathogen. Important discoveries have uncovered novel mechanisms of S. aureus pathogenesis and persistence within bone tissue, including implant-associated biofilms, abscesses and invasion of the osteocyte lacuno-canalicular network. However, little clinical progress has been made in the prevention and eradication of skeletal infection as treatment algorithms and outcomes have only incrementally changed over the past half century. In this Review, we discuss the mechanisms of persistence and immune evasion in S. aureus infection of the skeletal system as well as features of other osteomyelitis-causing pathogens in implant-associated and native bone infections. We also describe how the host fails to eradicate bacterial bone infections, and how this new information may lead to the development of novel interventions. Finally, we discuss the clinical management of skeletal infection, including osteomyelitis classification and strategies to treat skeletal infections with emerging technologies that could translate to the clinic in the future.


Assuntos
Osteomielite , Infecções Estafilocócicas , Biofilmes , Humanos , Evasão da Resposta Imune , Osteomielite/tratamento farmacológico , Osteomielite/microbiologia , Infecções Estafilocócicas/terapia , Staphylococcus aureus
8.
Front Immunol ; 12: 651515, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33815412

RESUMO

Staphylococcus aureus is the predominant pathogen causing osteomyelitis. Unfortunately, no immunotherapy exists to treat these very challenging and costly infections despite decades of research, and numerous vaccine failures in clinical trials. This lack of success can partially be attributed to an overreliance on murine models where the immune correlates of protection often diverge from that of humans. Moreover, S. aureus secretes numerous immunotoxins with unique tropism to human leukocytes, which compromises the targeting of immune cells in murine models. To study the response of human immune cells during chronic S. aureus bone infections, we engrafted non-obese diabetic (NOD)-scid IL2Rγnull (NSG) mice with human hematopoietic stem cells (huNSG) and analyzed protection in an established model of implant-associated osteomyelitis. The results showed that huNSG mice have increases in weight loss, osteolysis, bacterial dissemination to internal organs, and numbers of Staphylococcal abscess communities (SACs), during the establishment of implant-associated MRSA osteomyelitis compared to NSG controls (p < 0.05). Flow cytometry and immunohistochemistry demonstrated greater human T cell numbers in infected versus uninfected huNSG mice (p < 0.05), and that T-bet+ human T cells clustered around the SACs, suggesting S. aureus-mediated activation and proliferation of human T cells in the infected bone. Collectively, these proof-of-concept studies underscore the utility of huNSG mice for studying an aggressive form of S. aureus osteomyelitis, which is more akin to that seen in humans. We have also established an experimental system to investigate the contribution of specific human T cells in controlling S. aureus infection and dissemination.


Assuntos
Abscesso/imunologia , Osteólise/imunologia , Osteomielite/imunologia , Infecções Relacionadas à Prótese/imunologia , Infecções Estafilocócicas/imunologia , Abscesso/microbiologia , Abscesso/patologia , Animais , Modelos Animais de Doenças , Feminino , Transplante de Células-Tronco Hematopoéticas , Humanos , Camundongos , Osteólise/microbiologia , Osteólise/patologia , Osteomielite/microbiologia , Osteomielite/patologia , Infecções Relacionadas à Prótese/microbiologia , Infecções Relacionadas à Prótese/patologia , Infecções Estafilocócicas/microbiologia , Infecções Estafilocócicas/patologia , Staphylococcus aureus/imunologia , Quimeras de Transplante/imunologia
9.
J Orthop Res ; 39(2): 389-401, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33336806

RESUMO

Osteomyelitis is a devastating complication of orthopaedic surgery and commonly caused by Staphylococcus aureus (S. aureus) and Group B Streptococcus (GBS, S. agalactiae). Clinically, S. aureus osteomyelitis is associated with local inflammation, abscesses, aggressive osteolysis, and septic implant loosening. In contrast, S. agalactiae orthopaedic infections generally involve soft tissue, with acute life-threatening vascular spread. While preclinical models that recapitulate the clinical features of S. aureus bone infection have proven useful for research, no animal models of S. agalactiae osteomyelitis exist. Here, we compared the pathology caused by these bacteria in an established murine model of implant-associated osteomyelitis. In vitro scanning electron microscopy and CFU quantification confirmed similar implant inocula for both pathogens (~105 CFU/pin). Assessment of mice at 14 days post-infection demonstrated increased S. aureus virulence, as S. agalactiae infected mice had significantly greater body weight, and fewer CFU on the implant and in bone and adjacent soft tissue (p < 0.05). X-ray, µCT, and histologic analyses showed that S. agalactiae induced significantly less osteolysis and implant loosening, and fewer large TRAP+ osteoclasts than S. aureus without inducing intraosseous abscess formation. Most notably, transmission electron microscopy revealed that although both bacteria are capable of digesting cortical bone, S. agalactiae have a predilection for colonizing blood vessels embedded within cortical bone while S. aureus primarily colonizes the osteocyte lacuno-canalicular network. This study establishes the first quantitative animal model of S. agalactiae osteomyelitis, and demonstrates a vasculotropic mode of S. agalactiae infection, in contrast to the osteotropic behavior of S. aureus osteomyelitis.


Assuntos
Osso e Ossos/ultraestrutura , Interações Hospedeiro-Patógeno , Osteomielite/microbiologia , Staphylococcus aureus/fisiologia , Streptococcus agalactiae/fisiologia , Animais , Osso e Ossos/microbiologia , Camundongos , Osteomielite/patologia , Infecções Relacionadas à Prótese/microbiologia , Infecções Relacionadas à Prótese/patologia , Infecções Estafilocócicas/patologia , Infecções Estreptocócicas/patologia
10.
Bone Res ; 7: 20, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31646012

RESUMO

Osteomyelitis is a devastating disease caused by microbial infection of bone. While the frequency of infection following elective orthopedic surgery is low, rates of reinfection are disturbingly high. Staphylococcus aureus is responsible for the majority of chronic osteomyelitis cases and is often considered to be incurable due to bacterial persistence deep within bone. Unfortunately, there is no consensus on clinical classifications of osteomyelitis and the ensuing treatment algorithm. Given the high patient morbidity, mortality, and economic burden caused by osteomyelitis, it is important to elucidate mechanisms of bone infection to inform novel strategies for prevention and curative treatment. Recent discoveries in this field have identified three distinct reservoirs of bacterial biofilm including: Staphylococcal abscess communities in the local soft tissue and bone marrow, glycocalyx formation on implant hardware and necrotic tissue, and colonization of the osteocyte-lacuno canalicular network (OLCN) of cortical bone. In contrast, S. aureus intracellular persistence in bone cells has not been substantiated in vivo, which challenges this mode of chronic osteomyelitis. There have also been major advances in our understanding of the immune proteome against S. aureus, from clinical studies of serum antibodies and media enriched for newly synthesized antibodies (MENSA), which may provide new opportunities for osteomyelitis diagnosis, prognosis, and vaccine development. Finally, novel therapies such as antimicrobial implant coatings and antibiotic impregnated 3D-printed scaffolds represent promising strategies for preventing and managing this devastating disease. Here, we review these recent advances and highlight translational opportunities towards a cure.

11.
Am J Surg Pathol ; 43(4): 573-579, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30664032

RESUMO

Epithelioid hemangioendothelioma (EHE) is an angiocentric tumor that, when arising in liver, is centered around hepatic/portal veins. However, EHE cells can also track along sinusoids, which is not well recognized or studied. We identified 18 cases of hepatic EHE and 6 nonhepatic EHEs. For all cases, we recorded EHE multifocality and maximum size. When tumor cells were identified apart from the main mass, we recorded their location, maximum distance from the main tumor, density per high-power field, and cytomorphology. Immunohistochemical staining for CAMTA1, ERG, and CAM5.2 was performed on all cases. Lesional cells were present apart from the main mass in 17 of 18 (94%) liver cases, always within sinusoids and occasionally (4/17, 24%) in central veins. They appeared intensely hyperchromatic with vaguely cerebriform nuclei and multinucleation in 6 (35%) of cases. CAMTA1 and ERG positivity was seen in all 17 cases. Two cases (12%) demonstrated focal CAM5.2 positivity. Sinusoidal EHE cells ranged from 0.1 to 0.8 cm away from the main tumor. There were no statistically significant associations between histologic findings and patient outcome. In the 6 nonhepatic cases, tumor cells did not extend beyond the main EHE. Lesional cells in hepatic EHE often extend beyond the main lesion into sinusoids, where they demonstrate an unusual, somewhat distinctive morphology. Care should be taken to identify such cells in limited biopsies; immunohistochemistry for CAMTA1, a specific and sensitive marker for EHE, can be confirmatory.


Assuntos
Hemangioendotelioma Epitelioide/diagnóstico , Hemangioendotelioma Epitelioide/patologia , Neoplasias Hepáticas/diagnóstico , Neoplasias Hepáticas/patologia , Adolescente , Adulto , Idoso , Capilares/patologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem
12.
J Bone Joint Surg Am ; 100(11): e76, 2018 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-29870449

RESUMO

BACKGROUND: Periprosthetic joint infection (PJI) remains a devastating complication following total joint arthroplasty. Current animal models of PJI do not effectively recreate the clinical condition and thus provide limited help in understanding why treatments fail. We developed a mouse model of the first-stage surgery of a 2-stage revision for PJI involving a 3-dimensionally printed Ti-6Al-4V implant and a mouse-sized cement spacer that elutes vancomycin. METHODS: Vancomycin was mixed with polymethylmethacrylate (PMMA) cement and inserted into custom-made mouse-sized spacer molds. Twenty C57BL/6 mice received a proximal tibial implant and an intra-articular injection of 3 × 10 colony-forming units of Staphylococcus aureus Xen36. At 2 weeks, 9 mice underwent irrigation and debridement of the leg with revision of the implant to an articulating vancomycin-loaded PMMA spacer. Postoperatively, mice underwent radiography and serum inflammatory-marker measurements. Following euthanasia of the mice at 6 weeks, bone and soft tissues were homogenized to quantify bacteria within periprosthetic tissues. Implants and articulating spacers were either sonicated to quantify adherent bacteria or examined under scanning electron microscopy (SEM) to characterize the biofilm. RESULTS: Vancomycin-loaded PMMA spacers eluted vancomycin for ≤144 hours and retained antimicrobial activity. Control mice had elevated levels of inflammatory markers, radiographic evidence of septic loosening of the implant, and osseous destruction. Mice treated with a vancomycin-loaded PMMA spacer had significantly lower levels of inflammatory markers (p < 0.01), preserved tibial bone, and no intra-articular purulence. Retrieved vancomycin-loaded spacers exhibited significantly lower bacterial counts compared with implants (p < 0.001). However, bacterial counts in periprosthetic tissue did not significantly differ between the groups. SEM identified S. aureus encased within biofilm on control implants, while vancomycin-loaded spacers contained no bacteria. CONCLUSIONS: This animal model is a clinically representative model of PJI treatment. The results suggest that the antimicrobial effects of PMMA spacers are tightly confined to the articular space and must be utilized in conjunction with thorough tissue debridement and systemic antibiotics. CLINICAL RELEVANCE: These data provide what we believe to be the first insight into the effect of antibiotic-loaded cement spacers in a clinically relevant animal model and justify the adjunctive use of intravenous antibiotics when performing a 2-stage revision for PJI.


Assuntos
Antibacterianos/uso terapêutico , Infecções Relacionadas à Prótese/tratamento farmacológico , Infecções Estafilocócicas/tratamento farmacológico , Staphylococcus aureus , Vancomicina/uso terapêutico , Animais , Antibacterianos/administração & dosagem , Cimentos Ósseos , Camundongos , Modelos Animais , Polimetil Metacrilato/uso terapêutico , Infecções Relacionadas à Prótese/microbiologia , Infecções Estafilocócicas/microbiologia , Vancomicina/administração & dosagem
13.
J Bone Joint Surg Am ; 99(6): e25, 2017 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-28291188

RESUMO

BACKGROUND: Periprosthetic joint infection (PJI) is a devastating complication following total joint arthroplasty. Current animal models of PJI are limited because of a lack of quantitative methods and failure to effectively recreate the periprosthetic space. We therefore developed a murine PJI model involving a 3-dimensionally printed Ti-6Al-4V implant capable of bearing weight and permitting quantitative analysis of periprosthetic bacterial load and evaluation of biofilm. METHODS: Twenty-five 12-week-old C57BL/6 mice received a unilateral proximal tibial implant and intra-articular injection of either 3 × 10 colony forming units (CFUs) of Staphylococcus aureus Xen 36 or saline solution. Postoperatively, mice underwent gait analysis, knee radiographs, and serum inflammatory marker measurements. Following euthanasia at 2 or 6 weeks, bone and soft tissues were homogenized to quantify bacteria within periprosthetic tissues. Implants were either sonicated to quantify adherent bacteria or examined under scanning electron microscopy (SEM) to characterize biofilm. RESULTS: All mice survived surgery and were not systemically septic. The control mice immediately tolerated weight-bearing and had normal inflammatory markers and radiographic signs of osseointegration. Infected mice had difficulty walking over time, exhibited radiographic findings of septic implant loosening, and had significantly elevated inflammatory markers. Periprosthetic tissues of the infected animals displayed a mean of 4.46 × 10 CFUs of S. aureus at 2 weeks and 2.53 × 10 CFUs at 6 weeks. Viable S. aureus was quantified on retrieved implant surfaces. SEM demonstrated S. aureus cocci in clusters encased within biofilm. CONCLUSIONS: This animal model is, to our knowledge, the most clinically representative PJI replication to date. It is the first that we know of to produce infection through the same method hypothesized to occur clinically, utilize a weight-bearing implant that can osseointegrate, and provide quantitative data on 8 aspects of PJI, including radiographic features, inflammatory markers, and bacterial loads. CLINICAL RELEVANCE: This novel animal model is, to our knowledge, the first to provide a load-bearing translational representation of clinical PJI that effectively recreates the periprosthetic space.


Assuntos
Biofilmes , Articulação do Joelho/microbiologia , Próteses e Implantes/microbiologia , Infecções Relacionadas à Prótese/microbiologia , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/isolamento & purificação , Animais , Carga Bacteriana , Modelos Animais de Doenças , Articulação do Joelho/diagnóstico por imagem , Camundongos , Infecções Relacionadas à Prótese/diagnóstico por imagem , Radiografia
14.
Arthritis Rheumatol ; 69(6): 1187-1193, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28118521

RESUMO

OBJECTIVE: Recent studies have demonstrated that there is an inverse relationship between lymphatic egress and inflammatory arthritis in affected joints. As a model, tumor necrosis factor (TNF)-transgenic mice develop advanced arthritis following draining lymph node (LN) collapse, and loss of lymphatic contractions downstream of inflamed joints. It is unknown if these lymphatic deficits are reversible. This study was undertaken to test the hypothesis that anti-TNF therapy reduces advanced erosive inflammatory arthritis, associated with restoration of lymphatic contractions, repair of damaged lymphatic vessels, and evidence of increased monocyte egress. METHODS: TNF-transgenic mice with advanced arthritis and collapsed popliteal LNs were treated with anti-TNF monoclonal antibody (10 mg/kg weekly) or placebo for 6 weeks, and effects on knee synovitis, lymphatic vessel ultrastructure and function, and popliteal LN cellularity were assessed by ultrasound, histology, transmission electron microscopy (TEM), near-infrared indocyanine green imaging, and flow cytometry. RESULTS: Anti-TNF therapy significantly decreased synovitis (∼5-fold; P < 0.05 versus placebo), restored lymphatic contractions, and significantly increased the number of popliteal LN monocyte/macrophages (∼2-fold; P < 0.05 versus placebo). TEM demonstrated large activated macrophages attached to damaged lymphatic endothelium in mice with early arthritis, extensively damaged lymphatic vessels in placebo-treated mice with advanced arthritis, and rolling leukocytes in repaired lymphatic vessels in mice responsive to anti-TNF therapy. CONCLUSION: These findings support the concept that anti-TNF therapy ameliorates erosive inflammatory arthritis, in part via restoration of lymphatic vessel contractions and potential enhancement of inflammatory cell egress.


Assuntos
Anticorpos Monoclonais/farmacologia , Artrite Experimental/tratamento farmacológico , Artrite Reumatoide/tratamento farmacológico , Vasos Linfáticos/efeitos dos fármacos , Fator de Necrose Tumoral alfa/antagonistas & inibidores , Animais , Artrite Experimental/etiologia , Artrite Experimental/fisiopatologia , Artrite Reumatoide/etiologia , Artrite Reumatoide/fisiopatologia , Citometria de Fluxo , Linfonodos/efeitos dos fármacos , Linfonodos/fisiopatologia , Vasos Linfáticos/fisiopatologia , Macrófagos/efeitos dos fármacos , Masculino , Camundongos , Camundongos Transgênicos , Monócitos/efeitos dos fármacos , Sinovite/tratamento farmacológico , Sinovite/etiologia , Resultado do Tratamento
15.
J Biomed Nanotechnol ; 13(2): 155-66, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29377103

RESUMO

We report on the effect of surface charge and the ligand coating composition of CdSe/ZnS core/shell quantum dot (QD) nanoparticles on human keratinocyte toxicity using fluorescent microscopy, flow cytometry, transmission electron microscopy. Two commonly reported positive charged (cysteamine, polyethylenimine) and two negative charged (glutathione, dihydrolipoic acid) ligands were studied. The QDs were fully characterized by UV-vis absorption spectroscopy, fluorescence emission spectroscopy, dynamic light scattering and zeta potential. Differences in surface coatings and charges were evaluated against cellular uptake, ROS generation, cytotoxicity, and mitochondrial targeting. Results show that the negative charged QDs coated with GSH exhibit excellent water solubility, high quantum yield and low cytotoxicity. Ligand composition is more important in ROS generation than surface charge whereas surface charge is an important driver of cytotoxicity. Most importantly we observe the selective accumulation of glutathione coated QDs in vesicles in the mitochondria matrix. This observation suggests a new strategy for developing mitochondria-targeted nanomaterials for drug/gene delivery.


Assuntos
Membrana Celular/metabolismo , Mitocôndrias/metabolismo , Pontos Quânticos , Compostos de Cádmio/química , Compostos de Cádmio/farmacocinética , Compostos de Cádmio/toxicidade , Linhagem Celular Transformada , Sobrevivência Celular/efeitos dos fármacos , Glutationa , Humanos , Pontos Quânticos/química , Pontos Quânticos/metabolismo , Pontos Quânticos/toxicidade , Compostos de Selênio/química , Compostos de Selênio/farmacocinética , Compostos de Selênio/toxicidade , Solubilidade , Sulfetos/química , Sulfetos/farmacocinética , Sulfetos/toxicidade , Propriedades de Superfície , Compostos de Zinco/química , Compostos de Zinco/farmacocinética , Compostos de Zinco/toxicidade
16.
Am J Respir Cell Mol Biol ; 56(4): 453-464, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-27967234

RESUMO

An aberrant oxygen environment at birth increases the severity of respiratory viral infections later in life through poorly understood mechanisms. Here, we show that alveolar epithelial cell (AEC) 2 cells (AEC2s), progenitors for AEC1 cells, are depleted in adult mice exposed to neonatal hypoxia or hyperoxia. Airway cells expressing surfactant protein (SP)-C and ATP binding cassette subfamily A member 3, alveolar pod cells expressing keratin (KRT) 5, and pulmonary fibrosis were observed when these mice were infected with a sublethal dose of HKx31, H3N2 influenza A virus. This was not seen in infected siblings birthed into room air. Genetic lineage tracing studies in mice exposed to neonatal hypoxia or hyperoxia revealed pre-existing secretoglobin 1a1+ cells produced airway cells expressing SP-C and ATP binding cassette subfamily A member 3. Pre-existing Kr5+ progenitor cells produced squamous alveolar cells expressing receptor for advanced glycation endproducts, aquaporin 5, and T1α in alveoli devoid of AEC2s. They were not the source of KRT5+ alveolar pod cells. These oxygen-dependent changes in epithelial cell regeneration and fibrosis could be recapitulated by conditionally depleting AEC2s in mice using diphtheria A toxin and then infecting with influenza A virus. Likewise, airway cells expressing SP-C and alveolar cells expressing KRT5 were observed in human idiopathic pulmonary fibrosis. These findings suggest that alternative progenitor lineages are mobilized to regenerate the alveolar epithelium when AEC2s are severely injured or depleted by previous insults, such as an adverse oxygen environment at birth. Because these lineages regenerate AECs in spatially distinct compartments of a lung undergoing fibrosis, they may not be sufficient to prevent disease.


Assuntos
Envelhecimento/metabolismo , Células Epiteliais Alveolares/citologia , Linhagem da Célula , Células-Tronco/citologia , Células Epiteliais Alveolares/efeitos dos fármacos , Células Epiteliais Alveolares/metabolismo , Animais , Animais Recém-Nascidos , Linhagem da Célula/efeitos dos fármacos , Humanos , Fibrose Pulmonar Idiopática/metabolismo , Fibrose Pulmonar Idiopática/patologia , Queratina-5/metabolismo , Camundongos , Modelos Biológicos , Oxigênio/farmacologia , Proteína C Associada a Surfactante Pulmonar/metabolismo , Regeneração/efeitos dos fármacos , Células-Tronco/efeitos dos fármacos , Células-Tronco/metabolismo , Uteroglobina/metabolismo
17.
J Cell Physiol ; 232(9): 2538-2549, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27723141

RESUMO

DC-STAMP is a multi-pass transmembrane protein essential for cell-cell fusion between osteoclast precursors during osteoclast (OC) development. DC-STAMP-/- mice have mild osteopetrosis and form mononuclear cells with limited resorption capacity. The identification of an Immunoreceptor Tyrosine-based Inhibitory Motif (ITIM) on the cytoplasmic tail of DC-STAMP suggested a potential signaling function. The absence of a known DC-STAMP ligand, however, has hindered the elucidation of downstream signaling pathways. To address this problem, we engineered a light-activatable DC-STAMP chimeric molecule in which light exposure mimics ligand engagement that can be traced by downstream Ca2+ signaling. Deletion of the cytoplasmic ITIM resulted in a significant elevation in the amplitude and duration of intracellular Ca2+ flux. Decreased NFATc1 expression in DC-STAMP-/- cells was restored by DC-STAMP over-expression. Multiple biological phenotypes including cell-cell fusion, bone erosion, cell mobility, DC-STAMP cell surface distribution, and NFATc1 nuclear translocation were altered by deletion of the ITIM and adjacent amino acids. In contrast, mutations on each of the tyrosine residues surrounding the ITIM showed no effect on DC-STAMP function. Collectively, our results suggest that the ITIM on DC-STAMP is a functional motif that regulates osteoclast differentiation through the NFATc1/Ca2+ axis. J. Cell. Physiol. 232: 2538-2549, 2017. © 2016 Wiley Periodicals, Inc.


Assuntos
Células da Medula Óssea/metabolismo , Sinalização do Cálcio , Diferenciação Celular , Proteínas de Membrana/metabolismo , Fatores de Transcrição NFATC/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Osteoclastos/metabolismo , Osteogênese , Osteopetrose/metabolismo , Transporte Ativo do Núcleo Celular , Animais , Células da Medula Óssea/patologia , Fusão Celular , Movimento Celular , Forma Celular , Células Cultivadas , Predisposição Genética para Doença , Proteínas de Membrana/deficiência , Proteínas de Membrana/genética , Camundongos Knockout , Mutação , Proteínas do Tecido Nervoso/deficiência , Proteínas do Tecido Nervoso/genética , Osteoclastos/patologia , Osteólise/metabolismo , Osteólise/patologia , Osteólise/fisiopatologia , Osteopetrose/genética , Osteopetrose/patologia , Osteopetrose/fisiopatologia , Fenótipo , Domínios e Motivos de Interação entre Proteínas , Fatores de Tempo , Transfecção
18.
Stem Cells Dev ; 25(2): 114-22, 2016 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-26487485

RESUMO

There is emerging interest in stem cell energy metabolism and its effect on differentiation. Bioenergetic changes in differentiating bone marrow mesenchymal stem cells (MSCs) are poorly understood and were the focus of our study. Using bioenergetic profiling and transcriptomics, we have established that MSCs activate the mitochondrial process of oxidative phosphorylation (OxPhos) during osteogenic differentiation, but they maintain levels of glycolysis similar to undifferentiated cells. Consistent with their glycolytic phenotype, undifferentiated MSCs have high levels of hypoxia-inducible factor 1 (HIF-1). Osteogenically induced MSCs downregulate HIF-1 and this downregulation is required for activation of OxPhos. In summary, our work provides important insights on MSC bioenergetics and proposes a HIF-based mechanism of regulation of mitochondrial OxPhos in MSCs.


Assuntos
Células da Medula Óssea/citologia , Diferenciação Celular/fisiologia , Metabolismo Energético/fisiologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Células-Tronco Mesenquimais/metabolismo , Osteogênese/fisiologia , Proliferação de Células/fisiologia , Células Cultivadas , Humanos , Mitocôndrias/metabolismo
19.
Development ; 142(1): 21-30, 2015 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-25516967

RESUMO

An important pool of cardiovascular progenitor cells arises from the epicardium, a single layer of mesothelium lining the heart. Epicardium-derived progenitor cell (EPDC) formation requires epithelial-to-mesenchymal transition (EMT) and the subsequent migration of these cells into the sub-epicardial space. Although some of the physiological signals that promote EMT are understood, the functional mediators of EPDC motility and differentiation are not known. Here, we identify a novel regulatory mechanism of EPDC mobilization. Myocardin-related transcription factor (MRTF)-A and MRTF-B (MKL1 and MKL2, respectively) are enriched in the perinuclear space of epicardial cells during development. Transforming growth factor (TGF)-ß signaling and disassembly of cell contacts leads to nuclear accumulation of MRTFs and the activation of the motile gene expression program. Conditional ablation of Mrtfa and Mrtfb specifically in the epicardium disrupts cell migration and leads to sub-epicardial hemorrhage, partially stemming from the depletion of coronary pericytes. Using lineage-tracing analyses, we demonstrate that sub-epicardial pericytes arise from EPDCs in a process that requires the MRTF-dependent motile gene expression program. These findings provide novel mechanisms linking EPDC motility and differentiation, shed light on the transcriptional control of coronary microvascular maturation and suggest novel therapeutic strategies to manipulate epicardium-derived progenitor cells for cardiac repair.


Assuntos
Movimento Celular , Vasos Coronários/crescimento & desenvolvimento , Pericárdio/citologia , Transativadores/metabolismo , Fatores de Transcrição/metabolismo , Animais , Células COS , Diferenciação Celular/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Chlorocebus aethiops , Vasos Coronários/efeitos dos fármacos , Vasos Coronários/metabolismo , Embrião de Mamíferos/efeitos dos fármacos , Embrião de Mamíferos/metabolismo , Embrião de Mamíferos/patologia , Camundongos Endogâmicos C57BL , Neovascularização Fisiológica/efeitos dos fármacos , Pericárdio/metabolismo , Pericárdio/ultraestrutura , Pericitos/citologia , Pericitos/efeitos dos fármacos , Fator de Resposta Sérica/metabolismo , Transativadores/genética , Fatores de Transcrição/genética , Fator de Crescimento Transformador beta1/farmacologia
20.
J Biol Chem ; 288(46): 33303-11, 2013 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-24100035

RESUMO

Metabolic reprogramming in cancer is manifested by persistent aerobic glycolysis and suppression of mitochondrial function and is known as the Warburg effect. The Warburg effect contributes to cancer progression and is considered to be a promising therapeutic target. Understanding the mechanisms used by cancer cells to suppress their mitochondria may lead to development of new approaches to reverse metabolic reprogramming. We have evaluated mitochondrial function and morphology in poorly respiring LM7 and 143B osteosarcoma (OS) cell lines showing the Warburg effect in comparison with actively respiring Saos2 and HOS OS cells and noncancerous osteoblastic hFOB cells. In LM7 and 143B cells, we detected markers of the mitochondrial permeability transition (MPT), such as mitochondrial swelling, depolarization, and membrane permeabilization. In addition, we detected mitochondrial swelling in human OS xenografts in mice and archival human OS specimens using electron microscopy. The MPT inhibitor sanglifehrin A reversed MPT markers and increased respiration in LM7 and 143B cells. Our data suggest that the MPT may play a role in suppression of mitochondrial function, contributing to the Warburg effect in cancer.


Assuntos
Glicólise , Potencial da Membrana Mitocondrial , Mitocôndrias/metabolismo , Membranas Mitocondriais/metabolismo , Osteossarcoma/metabolismo , Consumo de Oxigênio , Animais , Linhagem Celular Tumoral , Humanos , Camundongos , Mitocôndrias/ultraestrutura , Membranas Mitocondriais/ultraestrutura , Osteossarcoma/ultraestrutura , Permeabilidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA