Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Cell Rep ; 43(4): 114096, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38607919

RESUMO

Receptors controlling the cross-presentation of tumor antigens by macrophage subsets in cancer tissues are poorly explored. Here, we show that TIM4+ large peritoneal macrophages efficiently capture and cross-present tumor-associated antigens at early stages of peritoneal infiltration by ovarian cancer cells. The phosphatidylserine (PS) receptor TIM4 promotes maximal uptake of dead cells or PS-coated artificial targets and triggers inflammatory and metabolic gene programs in combination with cytoskeletal remodeling and upregulation of transcriptional signatures related to antigen processing. At the cellular level, TIM4-mediated engulfment induces nucleation of F-actin around nascent phagosomes, delaying the recruitment of vacuolar ATPase, acidification, and cargo degradation. In vivo, TIM4 deletion blunts induction of early anti-tumoral effector CD8 T cells and accelerates the progression of ovarian tumors. We conclude that TIM4-mediated uptake drives the formation of specialized phagosomes that prolong the integrity of ingested antigens and facilitate cross-presentation, contributing to immune surveillance of the peritoneum.


Assuntos
Antígenos de Neoplasias , Carcinogênese , Macrófagos Peritoneais , Animais , Macrófagos Peritoneais/metabolismo , Macrófagos Peritoneais/imunologia , Feminino , Camundongos , Carcinogênese/patologia , Carcinogênese/imunologia , Carcinogênese/metabolismo , Humanos , Antígenos de Neoplasias/metabolismo , Antígenos de Neoplasias/imunologia , Neoplasias Ovarianas/imunologia , Neoplasias Ovarianas/patologia , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/genética , Proteínas de Membrana/metabolismo , Camundongos Endogâmicos C57BL , Apresentação Cruzada/imunologia , Linhagem Celular Tumoral , Fagossomos/metabolismo , Apresentação de Antígeno/imunologia , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Actinas/metabolismo
2.
Nat Commun ; 15(1): 2280, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38480738

RESUMO

Cross-presentation by type 1 DCs (cDC1) is critical to induce and sustain antitumoral CD8 T cell responses to model antigens, in various tumor settings. However, the impact of cross-presenting cDC1 and the potential of DC-based therapies in tumors carrying varied levels of bona-fide neoantigens (neoAgs) remain unclear. Here we develop a hypermutated model of non-small cell lung cancer in female mice, encoding genuine MHC-I neoepitopes to study neoAgs-specific CD8 T cell responses in spontaneous settings and upon Flt3L + αCD40 (DC-therapy). We find that cDC1 are required to generate broad CD8 responses against a range of diverse neoAgs. DC-therapy promotes immunogenicity of weaker neoAgs and strongly inhibits the growth of high tumor-mutational burden (TMB) tumors. In contrast, low TMB tumors respond poorly to DC-therapy, generating mild CD8 T cell responses that are not sufficient to block progression. scRNA transcriptional analysis, immune profiling and functional assays unveil the changes induced by DC-therapy in lung tissues, which comprise accumulation of cDC1 with increased immunostimulatory properties and less exhausted effector CD8 T cells. We conclude that boosting cDC1 activity is critical to broaden the diversity of anti-tumoral CD8 T cell responses and to leverage neoAgs content for therapeutic advantage.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Feminino , Camundongos , Animais , Células Dendríticas , Carcinoma Pulmonar de Células não Pequenas/terapia , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Neoplasias Pulmonares/terapia , Neoplasias Pulmonares/metabolismo , Linfócitos T CD8-Positivos , Apresentação Cruzada
3.
J Exp Clin Cancer Res ; 43(1): 15, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38195652

RESUMO

BACKGROUND: New drugs to tackle the next pathway or mutation fueling cancer are constantly proposed, but 97% of them are doomed to fail in clinical trials, largely because they are identified by cellular or in silico screens that cannot predict their in vivo effect. METHODS: We screened an Adeno-Associated Vector secretome library (> 1000 clones) directly in vivo in a mouse model of cancer and validated the therapeutic effect of the first hit, EMID2, in both orthotopic and genetic models of lung and pancreatic cancer. RESULTS: EMID2 overexpression inhibited both tumor growth and metastatic dissemination, consistent with prolonged survival of patients with high levels of EMID2 expression in the most aggressive human cancers. Mechanistically, EMID2 inhibited TGFß maturation and activation of cancer-associated fibroblasts, resulting in more elastic ECM and reduced levels of YAP in the nuclei of cancer cells. CONCLUSION: This is the first in vivo screening, precisely designed to identify proteins able to interfere with cancer cell invasiveness. EMID2 was selected as the most potent protein, in line with the emerging relevance of the tumor extracellular matrix in controlling cancer cell invasiveness and dissemination, which kills most of cancer patients.


Assuntos
Fibroblastos Associados a Câncer , Neoplasias Pancreáticas , Animais , Humanos , Camundongos , Núcleo Celular , Modelos Animais de Doenças , Detecção Precoce de Câncer , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Colágeno/metabolismo
4.
Cancer Immunol Res ; 10(11): 1340-1353, 2022 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-36122412

RESUMO

TIM4 has previously been associated with antitumor immunity, yet the pattern of expression and the function of this receptor across human cancer tissues remain poorly explored. Here we combined extensive immunolabeling of human tissues with in silico analysis of pan-cancer transcriptomic data sets to explore the clinical significance of TIM4 expression. Our results unveil that TIM4 is expressed on a fraction of cavity macrophages (CATIM4+MΦ) of carcinoma patients. Moreover, we uncover a high expression of TIM4 on macrophages of the T-cell zone of the carcinoma-associated tertiary lymphoid structures (TLSTIM4+MΦ). In silico analysis of a pan-cancer data set revealed a positive correlation between TIM4 expression and markers of B cells, effector CD8+ T cells, and a 12-chemokine signature defining tertiary lymphoid structure. In addition, TLSTIM4+MΦ were enriched in cancers displaying microsatellite instability and high CD8+ T-cell infiltration, confirming their association with immune-reactive tumors. Both CATIM4+MΦ and TLSTIM4+MΦ express FOLR2, a marker of tissue-resident MΦ. However, CATIM4+MΦ had a higher expression of the immunosuppressive molecules TREM2, IL10, and TGFß as compared with TLSTIM4+MΦ. By analyzing a scRNA sequence data set of tumor-associated myeloid cells, we identified two TIM4+FOLR2+ clusters coherent with CATIM4+MΦ and TLSTIM4+MΦ. We defined specific gene signatures for each subset and found that the CATIM4+ MΦ signature was associated with worse patient survival. In contrast, TLSTIM4+MΦ gene signature positively correlates with a better prognosis. Together, these data illustrate that TIM4 marks two distinct macrophage populations with distinct phenotypes and tissue localization and that may have opposing roles in tumor immunity.


Assuntos
Carcinoma , Receptor 2 de Folato , Estruturas Linfoides Terciárias , Humanos , Macrófagos , Linfócitos T CD8-Positivos , Quimiocinas/metabolismo , Carcinoma/metabolismo , Receptor 2 de Folato/metabolismo
5.
Eur J Pharmacol ; 928: 175088, 2022 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-35690082

RESUMO

Tobacco use disorder is a worldwide health problem for which available medications show limited efficacy. Nicotine is the psychoactive component of tobacco responsible for its addictive liability. Similar to other addictive drugs, nicotine enhances mesolimbic dopamine transmission. Inhibition of the fatty acid amide hydrolase (FAAH), the enzyme responsible for the degradation of the endocannabinoid anandamide (AEA), palmitoylethanolamide (PEA) and oleoylethanolamide (OEA), reduces nicotine-enhanced dopamine transmission and acquisition of nicotine self-administration in rats. Down-regulation of dopamine transmission by antagonists or partial agonists of the dopamine D3 receptor (DRD3) also reduced nicotine self-administration and conditioned place preference. Based on these premises, we evaluated the effect of ARN15381, a multitarget compound showing FAAH inhibition and DRD3 partial agonist activity in the low nanomolar range, on nicotine self-administration in rats. Pretreatment with ARN15381 dose dependently decreased self-administration of a nicotine dose at the top of the nicotine dose/response (D/R) curve, while it did not affect self-administration of a nicotine dose laying on the descending limb of the D/R curve. Conversely, pretreatment with the selective FAAH inhibitor URB597 and the DRD3 partial agonist CJB090 failed to modify nicotine self-administration independent of the nicotine dose self-administered. Our data indicates that the concomitant FAAH inhibition and DRD3 partial agonism produced by ARN15381 is key to the observed reduction of nicotine self-administration, demonstrating that a multitarget approach may hold clinical importance for the treatment of tobacco use disorder.


Assuntos
Amidoidrolases , Nicotina , Tabagismo , Amidoidrolases/antagonistas & inibidores , Animais , Dopamina/metabolismo , Endocanabinoides , Masculino , Nicotina/administração & dosagem , Nicotina/efeitos adversos , Ratos , Autoadministração , Tabagismo/tratamento farmacológico
6.
Oncoimmunology ; 11(1): 2059876, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35402081

RESUMO

Lung tumor-infiltrating neutrophils are known to support growth and dissemination of cancer cells and to suppress T cell responses. However, the precise impact of tissue neutrophils on programming and differentiation of anticancer CD8 T cells in vivo remains poorly understood. Here, we identified cancer cell-autonomous secretion of CXCL5 as sufficient to drive infiltration of mature, protumorigenic neutrophils in a mouse model of non-small cell lung cancer (NSCLC). Consistently, CXCL5 transcripts correlate with neutrophil density and poor prognosis in a large human lung adenocarcinoma compendium. CXCL5 genetic deletion, unlike antibody-mediated depletion, completely and selectively prevented neutrophils accumulation in lung tissues. Depletion of tumor-infiltrating neutrophils promoted expansion of tumor-specific CD8 T cells, differentiation into effector cells and acquisition of cytolytic functions. Transfer of effector CD8 T cells into neutrophil-rich tumors, inhibited IFN-ϒ production, indicating active suppression of effector functions. Importantly, blocking neutrophils infiltration in the lung, overcame resistance to checkpoint blockade. Hence, this study demonstrates that neutrophils curb acquisition of cytolytic functions in lung tumor tissues and suggests targeting of CXCL5 as a strategy to restore anti-tumoral T cell functions.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Animais , Linfócitos T CD8-Positivos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Pulmão/patologia , Neoplasias Pulmonares/tratamento farmacológico , Camundongos , Neutrófilos
7.
Front Immunol ; 13: 781364, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35296093

RESUMO

Regulatory T cells (Tregs) are capable of inhibiting the proliferation, activation and function of T cells and play an important role in impeding the immune response to cancer. In chronic lymphocytic leukemia (CLL) a dysfunctional immune response and elevated percentage of effector-like phenotype Tregs have been described. In this study, using the Eµ-TCL1 mouse model of CLL, we evaluated the changes in the Tregs phenotype and their expansion at different stages of leukemia progression. Importantly, we show that Tregs depletion in DEREG mice triggered the expansion of new anti-leukemic cytotoxic T cell clones leading to leukemia eradication. In TCL1 leukemia-bearing mice we identified and characterized a specific Tregs subpopulation, the phenotype of which suggests its role in the formation of an immunosuppressive microenvironment, supportive for leukemia survival and proliferation. This observation was also confirmed by the gene expression profile analysis of these TCL1-specific Tregs. The obtained data on Tregs are consistent with those described so far, however, above all show that the changes in the Tregs phenotype described in CLL result from the formation of a specific, described in this study Tregs subpopulation. In addition, functional tests revealed the ability of Tregs to inhibit T cells that recognize model antigens expressed by leukemic cells. Moreover, inhibition of Tregs with a MALT1 inhibitor provided a therapeutic benefit, both as monotherapy and also when combined with an immune checkpoint inhibitor. Altogether, activation of Tregs appears to be crucial for CLL progression.


Assuntos
Leucemia Linfocítica Crônica de Células B , Animais , Modelos Animais de Doenças , Imunidade , Imunossupressores/uso terapêutico , Camundongos , Linfócitos T Reguladores , Microambiente Tumoral
8.
Chemosphere ; 287(Pt 2): 132089, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34509765

RESUMO

Plant essential oil-based insecticides, with special reference to those that may be obtained from largely available biomasses, represent a valuable tool for Integrated Pest Management. However, the sublethal effects and the potential effects on aggressive insect traits of these green insecticides are understudied. Herein, the lethal and sub-lethal effects of the carlina oxide, constituting more than 97% of the whole Carlina acaulis (Asteraceae) root essential oil (EO), were determined against an invasive polyphagous tephritid pest, Ceratitis capitata (medfly). The carlina oxide was formulated in a mucilaginous solution containing carboxymethylcellulose sodium salt, sucrose, and hydrolysed proteins, showing high ingestion toxicity on medfly adults. The behavioural effects of carlina oxide at LC10 and LC30 were evaluated on the medfly aggressive traits, which are crucial for securing reproductive success in both sexes. Insecticide exposure affected the directionality of aggressive actions, but not the aggression escalation intensity and duration. The EO safety to mammals was investigated by studying its acute toxicity on the stomach, liver, and kidney of rats after oral administration. Only the highest dose (1000 mg/kg) of the EO caused modest neurological signs and moderate effects on the stomach, liver, and kidney. The other doses, which are closer to the practical use of the EO when formulated in protein baits, did not cause side effects. Overall, C. acaulis-based products are effective and safe to non-target mammals, deserving further consideration for eco-friendly pesticide formulations.


Assuntos
Asteraceae , Ceratitis capitata , Inseticidas , Óleos Voláteis , Animais , Inseticidas/toxicidade , Mamíferos , Óleos Voláteis/toxicidade , Ratos
9.
Cells ; 10(4)2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33916318

RESUMO

Cytoplasmic nucleic acids sensing through cGAS-STING-TBK1 pathway is crucial for the production of antiviral interferons (IFNs). IFN production can also be induced by lipopolysaccharide (LPS) stimulation through Toll-like receptor 4 (TLR4) in appropriate conditions. Of note, both IFN production and dysregulated LPS-response could play a role in the pathogenesis of Systemic Lupus Erythematosus (SLE). Indeed, LPS can trigger SLE in lupus-prone mice and bacterial infections can induce disease flares in human SLE. However, the interactions between cGAS and TLR4 pathways to IFNs have been poorly investigated. To address this issue, we studied LPS-stimulation in cellular models with a primed cGAS-STING-TBK1 pathway. cGAS-stimulation was naturally sustained by undigested self-nucleic acids in fibroblasts from DNase2-deficiency interferonopathy, whilst it was pharmacologically obtained by cGAMP-stimulation in THP1 cells and murine bone marrow-derived dendritic cells. We showed that cells with a primed cGAS-STING-TBK1 pathway displayed enhanced IFNs production after TLR4-challenge. STING-inhibition did not affect IFN production after LPS alone, but prevented the amplified IFN production in cGAMP-primed cells, suggesting that functional STING is required for priming-dependent enhancement. Furthermore, we speculated that an increased PIK3AP1 expression in DNase2-deficient fibroblasts may link cGAMP-priming with increased LPS-induced IFN production. We showed that both the hyper-expression of PIK3API and the enhanced LPS-induced IFN production can be contrasted by STING inhibitors. Our results may explain how bacterial LPS can synergize with cGAS-pathway in promoting the development of SLE-like autoimmunity.


Assuntos
Interferon Tipo I/metabolismo , Lipopolissacarídeos/farmacologia , Proteínas de Membrana/metabolismo , Nucleotidiltransferases/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Células da Medula Óssea/efeitos dos fármacos , Células da Medula Óssea/metabolismo , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/metabolismo , Desoxirribonucleases/deficiência , Desoxirribonucleases/metabolismo , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Redes Reguladoras de Genes/efeitos dos fármacos , Humanos , Camundongos Endogâmicos C57BL , Monócitos/efeitos dos fármacos , Monócitos/metabolismo , Nucleotídeos Cíclicos/farmacologia , Transdução de Sinais/efeitos dos fármacos , Células THP-1 , Transcriptoma/genética
10.
Nat Commun ; 12(1): 2237, 2021 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-33854047

RESUMO

Acquisition of cell-associated tumor antigens by type 1 dendritic cells (cDC1) is essential to induce and sustain tumor specific CD8+ T cells via cross-presentation. Here we show that capture and engulfment of cell associated antigens by tissue resident lung cDC1 is inhibited during progression of mouse lung tumors. Mechanistically, loss of phagocytosis is linked to tumor-mediated downregulation of the phosphatidylserine receptor TIM4, that is highly expressed in normal lung resident cDC1. TIM4 receptor blockade and conditional cDC1 deletion impair activation of tumor specific CD8+ T cells and promote tumor progression. In human lung adenocarcinomas, TIM4 transcripts increase the prognostic value of a cDC1 signature and predict responses to PD-1 treatment. Thus, TIM4 on lung resident cDC1 contributes to immune surveillance and its expression is suppressed in advanced tumors.


Assuntos
Antígenos de Neoplasias/imunologia , Células Dendríticas/imunologia , Neoplasias Pulmonares/imunologia , Proteínas de Membrana/imunologia , Adenocarcinoma/genética , Adenocarcinoma/imunologia , Animais , Antígenos de Neoplasias/genética , Linfócitos T CD8-Positivos/imunologia , Apresentação Cruzada , Humanos , Vigilância Imunológica , Pulmão/imunologia , Neoplasias Pulmonares/genética , Proteínas de Membrana/genética , Camundongos
11.
Cardiovasc Res ; 117(1): 256-270, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31999325

RESUMO

AIMS: Cardiac ischaemia does not elicit an efficient angiogenic response. Indeed, lack of surgical revascularization upon myocardial infarction results in cardiomyocyte death, scarring, and loss of contractile function. Clinical trials aimed at inducing therapeutic revascularization through the delivery of pro-angiogenic molecules after cardiac ischaemia have invariably failed, suggesting that endothelial cells in the heart cannot mount an efficient angiogenic response. To understand why the heart is a poorly angiogenic environment, here we compare the angiogenic response of the cardiac and skeletal muscle using a lineage tracing approach to genetically label sprouting endothelial cells. METHODS AND RESULTS: We observed that overexpression of the vascular endothelial growth factor in the skeletal muscle potently stimulated angiogenesis, resulting in the formation of a massive number of new capillaries and arterioles. In contrast, response to the same dose of the same factor in the heart was blunted and consisted in a modest increase in the number of new arterioles. By using Apelin-CreER mice to genetically label sprouting endothelial cells we observed that different pro-angiogenic stimuli activated Apelin expression in both muscle types to a similar extent, however, only in the skeletal muscle, these cells were able to sprout, form elongated vascular tubes activating Notch signalling, and became incorporated into arteries. In the heart, Apelin-positive cells transiently persisted and failed to give rise to new vessels. When we implanted cancer cells in different organs, the abortive angiogenic response in the heart resulted in a reduced expansion of the tumour mass. CONCLUSION: Our genetic lineage tracing indicates that cardiac endothelial cells activate Apelin expression in response to pro-angiogenic stimuli but, different from those of the skeletal muscle, fail to proliferate and form mature and structured vessels. The poor angiogenic potential of the heart is associated with reduced tumour angiogenesis and growth of cancer cells.


Assuntos
Apelina/metabolismo , Linhagem da Célula , Vasos Coronários/metabolismo , Células Endoteliais/metabolismo , Músculo Esquelético/irrigação sanguínea , Neoplasias/irrigação sanguínea , Neovascularização Patológica , Neovascularização Fisiológica , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Apelina/genética , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ligação ao Cálcio/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Microambiente Celular , Vasos Coronários/citologia , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neoplasias/metabolismo , Neoplasias/patologia , Fenótipo , Receptor Notch1/genética , Receptor Notch1/metabolismo , Carga Tumoral , Microambiente Tumoral , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/genética , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/metabolismo
12.
Cancer Immunol Res ; 7(11): 1775-1788, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31484658

RESUMO

CCRL2 is a nonsignaling seven-transmembrane domain receptor. CCRL2 binds chemerin, a protein that promotes chemotaxis of leukocytes, including macrophages and natural killer (NK) cells. In addition, CCRL2 controls the inflammatory response in different pathologic settings, such as hypersensitivity, inflammatory arthritis, and experimental autoimmune encephalitis. Here, we investigated the role of CCRL2 in the regulation of lung cancer-related inflammation. The genetic deletion of Ccrl2 promoted tumor progression in urethane-induced and in Kras G12D/+/p53 LoxP lung tumor mouse models. Similarly, a Kras-mutant lung tumor displayed enhanced growth in Ccrl2-deficient mice. This phenotype was associated with a reduced inflammatory infiltrate characterized by the impaired recruitment of several leukocyte populations including NK cells. Bone marrow chimeras showed that CCRL2 expression by the nonhematopoietic cell compartment was responsible for the increased tumor formation observed in Kras-mutant Ccrl2-deficient mice. In human and mouse lungs, CCRL2 was expressed by a fraction of CD31+ endothelial cells, where it could control NK infiltration. Elevated CCRL2 expression in biopsies from human lung adenocarcinoma positively correlated with clinical outcome. These results provide evidence for a crucial role of CCRL2 in shaping an anti-lung tumor immune response.


Assuntos
Vigilância Imunológica , Neoplasias Pulmonares/imunologia , Receptores CCR/imunologia , Animais , Linhagem Celular Tumoral , Quimiotaxia de Leucócito , Modelos Animais de Doenças , Progressão da Doença , Células Endoteliais/imunologia , Células Endoteliais/metabolismo , Humanos , Células Matadoras Naturais/imunologia , Neoplasias Pulmonares/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores CCR/genética , Receptores CCR/metabolismo , Análise de Sobrevida , Carga Tumoral
13.
J Allergy Clin Immunol ; 142(5): 1605-1617.e4, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-29447842

RESUMO

BACKGROUND: Wiskott-Aldrich syndrome (WAS) is a rare primary immunodeficiency caused by mutations in Wiskott-Aldrich syndrome protein (WASp), a key regulator of cytoskeletal dynamics in hematopoietic cells. A high proportion of patients experience autoimmunity caused by a breakdown in T- and B-cell tolerance. Moreover, excessive production of type I interferon (IFN-I) by plasmacytoid dendritic cells (pDCs) contributes to autoimmune signs; however, the factors that trigger excessive innate activation have not been defined. OBJECTIVE: Neutrophil extracellular traps (NETs) emerged as major initiating factors in patients with diseases such as systemic lupus erythematosus and rheumatoid arthritis. In this study we explored the possible involvement of aberrant neutrophil functions in patients with WAS. METHODS: We evaluated the expression of a set of granulocyte genes associated with NETs in a cohort of patients with WAS and the presence of NET inducers in sera. Using a mouse model of WAS, we analyzed NET release by WASp-null neutrophils and evaluated the composition and homeostasis of neutrophils in vivo. By using depletion experiments, we assessed the effect of neutrophils in promoting inflammation and reactivity against autoantigens. RESULTS: Transcripts of genes encoding neutrophil enzymes and antimicrobial peptides were increased in granulocytes of patients with WAS, and serum-soluble factors triggered NET release. WASp-null neutrophils showed increased spontaneous NETosis, induced IFN-I production by pDCs, and activated B cells through B-cell activating factor. Consistently, their depletion abolished constitutive pDC activation, normalized circulating IFN-I levels, and, importantly, abolished production of autoantibodies directed against double-stranded DNA, nucleosomes, and myeloperoxidase. CONCLUSIONS: These findings reveal that neutrophils are involved in the pathogenic loop that causes excessive activation of innate cells and autoreactive B cells, thus identifying novel mechanisms that contribute to the autoimmunity of WAS.


Assuntos
Interferon Tipo I/imunologia , Neutrófilos/imunologia , Síndrome de Wiskott-Aldrich/imunologia , Adolescente , Adulto , Animais , Autoanticorpos/imunologia , Linfócitos B/imunologia , Pré-Escolar , Células Dendríticas/imunologia , Armadilhas Extracelulares , Feminino , Expressão Gênica , Humanos , Lactente , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Síndrome de Wiskott-Aldrich/genética , Adulto Jovem
14.
Cancer Res ; 78(7): 1685-1699, 2018 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-29363545

RESUMO

Restoring antigen presentation for efficient and durable activation of tumor-specific CD8+ T-cell responses is pivotal to immunotherapy, yet the mechanisms that cause subversion of dendritic cell (DC) functions are not entirely understood, limiting the development of targeted approaches. In this study, we show that bona fide DCs resident in lung tumor tissues or DCs exposed to factors derived from whole lung tumors become refractory to endosomal and cytosolic sensor stimulation and fail to secrete IL12 and IFNI. Tumor-conditioned DC exhibited downregulation of the SNARE VAMP3, a regulator of endosomes trafficking critical for cross-presentation of tumor antigens and DC-mediated tumor rejection. Dissection of cell-extrinsic suppressive pathways identified lactic acid in the tumor microenvironment as sufficient to inhibit type-I IFN downstream of TLR3 and STING. DC conditioning by lactate also impacted adaptive function, accelerating antigen degradation and impairing cross-presentation. Importantly, DCs conditioned by lactate failed to prime antitumor responses in vivo These findings provide a new mechanistic viewpoint to the concept of DC suppression and hold potential for future therapeutic approaches.Significance: These findings provide insight into the cell-intrinsic and cell-extrinsic mechanisms that cause loss of presentation of tumor-specific antigens in lung cancer tissues. Cancer Res; 78(7); 1685-99. ©2018 AACR.


Assuntos
Apresentação de Antígeno/imunologia , Antígenos de Neoplasias/imunologia , Linfócitos T CD8-Positivos/imunologia , Células Dendríticas/imunologia , Neoplasias Pulmonares/imunologia , Proteínas de Membrana Transportadoras/biossíntese , Animais , Linhagem Celular Tumoral , Meios de Cultivo Condicionados/metabolismo , Regulação para Baixo , Endossomos/metabolismo , Imunoterapia , Interferon Tipo I/antagonistas & inibidores , Ácido Láctico/metabolismo , Neoplasias Pulmonares/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas SNARE/biossíntese , Microambiente Tumoral/imunologia , Proteína 3 Associada à Membrana da Vesícula/biossíntese
15.
Nat Commun ; 8: 15772, 2017 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-28598431

RESUMO

The prolyl isomerase PIN1, a critical modifier of multiple signalling pathways, is overexpressed in the majority of cancers and its activity strongly contributes to tumour initiation and progression. Inactivation of PIN1 function conversely curbs tumour growth and cancer stem cell expansion, restores chemosensitivity and blocks metastatic spread, thus providing the rationale for a therapeutic strategy based on PIN1 inhibition. Notwithstanding, potent PIN1 inhibitors are still missing from the arsenal of anti-cancer drugs. By a mechanism-based screening, we have identified a novel covalent PIN1 inhibitor, KPT-6566, able to selectively inhibit PIN1 and target it for degradation. We demonstrate that KPT-6566 covalently binds to the catalytic site of PIN1. This interaction results in the release of a quinone-mimicking drug that generates reactive oxygen species and DNA damage, inducing cell death specifically in cancer cells. Accordingly, KPT-6566 treatment impairs PIN1-dependent cancer phenotypes in vitro and growth of lung metastasis in vivo.


Assuntos
Antineoplásicos/administração & dosagem , Inibidores Enzimáticos/administração & dosagem , Neoplasias Pulmonares/tratamento farmacológico , Peptidilprolil Isomerase de Interação com NIMA/antagonistas & inibidores , Animais , Antineoplásicos/química , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Dano ao DNA/efeitos dos fármacos , Inibidores Enzimáticos/química , Feminino , Humanos , Neoplasias Pulmonares/enzimologia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/fisiopatologia , Camundongos Nus , Peptidilprolil Isomerase de Interação com NIMA/química , Peptidilprolil Isomerase de Interação com NIMA/genética , Peptidilprolil Isomerase de Interação com NIMA/metabolismo , Espécies Reativas de Oxigênio/metabolismo
16.
Front Immunol ; 8: 490, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28512459

RESUMO

Wiskott-Aldrich syndrome (WAS) is a primary immunodeficiency caused by mutations in the gene encoding the hematopoietic-specific WAS protein (WASp). WAS is frequently associated with autoimmunity, indicating a critical role of WASp in maintenance of tolerance. The role of B cells in the induction of autoreactive immune responses in WAS has been investigated in several settings, but the mechanisms leading to the development of autoimmune manifestations have been difficult to evaluate in the mouse models of the disease that do not spontaneously develop autoimmunity. We performed an extensive characterization of Was-/- mice that provided evidence of the potential alteration in B cell selection, because of the presence of autoantibodies against double-stranded DNA, platelets, and tissue antigens. To uncover the mechanisms leading to the activation of the potentially autoreactive B cells in Was-/- mice, we performed in vivo chronic stimulations with toll-like receptors agonists (LPS and CpG) and apoptotic cells or infection with lymphocytic choriomeningitis virus. All treatments led to increased production of autoantibodies, increased proteinuria, and kidney tissue damage in Was-/- mice. These findings demonstrate that a lower clearance of pathogens and/or self-antigens and the resulting chronic inflammatory state could cause B cell tolerance breakdown leading to autoimmunity in WAS.

17.
EBioMedicine ; 11: 165-172, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27475897

RESUMO

Laser therapy, recently renamed as photobiomodulation, stands as a promising supportive treatment for oral mucositis induced by oncological therapies. However, its mechanisms of action and, more importantly, its safety in cancer patients, are still unclear. Here we explored the anti-cancer effect of 3 laser protocols, set at the most commonly used wavelengths, in B16F10 melanoma and oral carcinogenesis mouse models. While laser light increased cell metabolism in cultured cells, the in vivo outcome was reduced tumor progression. This striking, unexpected result, was paralleled by the recruitment of immune cells, in particular T lymphocytes and dendritic cells, which secreted type I interferons. Laser light also reduced the number of highly angiogenic macrophages within the tumor mass and promoted vessel normalization, an emerging strategy to control tumor progression. Collectively, these results set photobiomodulation as a safety procedure in oncological patients and open the way to its innovative use for cancer therapy.


Assuntos
Vigilância Imunológica/efeitos da radiação , Terapia a Laser , Neoplasias/imunologia , Neoplasias/patologia , Neovascularização Patológica , Animais , Linhagem Celular Tumoral , Proliferação de Células/efeitos da radiação , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/imunologia , Transformação Celular Neoplásica/efeitos da radiação , Modelos Animais de Doenças , Feminino , Humanos , Interferons/biossíntese , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/metabolismo , Linfócitos do Interstício Tumoral/patologia , Melanoma Experimental , Camundongos , Camundongos Knockout , Invasividade Neoplásica , Neoplasias/genética , Neoplasias/terapia , Neovascularização Patológica/terapia , Carga Tumoral/efeitos da radiação
18.
Cell Rep ; 14(11): 2624-36, 2016 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-26972013

RESUMO

Interleukin-12 (IL-12), produced by dendritic cells in response to activation, is central to pathogen eradication and tumor rejection. The trafficking pathways controlling spatial distribution and intracellular transport of IL-12 vesicles to the cell surface are still unknown. Here, we show that intracellular IL-12 localizes in late endocytic vesicles marked by the SNARE VAMP7. Dendritic cells (DCs) from VAMP7-deficient mice are partially impaired in the multidirectional release of IL-12. Upon encounter with antigen-specific T cells, IL-12-containing vesicles rapidly redistribute at the immune synapse and release IL-12 in a process entirely dependent on VAMP7 expression. Consistently, acquisition of effector functions is reduced in T cells stimulated by VAMP7-null DCs. These results provide insights into IL-12 intracellular trafficking pathways and show that VAMP7-mediated release of IL-12 at the immune synapse is a mechanism to transmit innate signals to T cells.


Assuntos
Interleucina-12/metabolismo , Proteínas R-SNARE/metabolismo , Animais , Células da Medula Óssea/citologia , Diferenciação Celular , Células Cultivadas , Células Dendríticas/citologia , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Exocitose , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microscopia Confocal , Microscopia de Vídeo , Fosfotransferases/metabolismo , Proteínas R-SNARE/antagonistas & inibidores , Proteínas R-SNARE/genética , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Sinapses/metabolismo , Linfócitos T/citologia , Linfócitos T/imunologia , Linfócitos T/metabolismo , Imagem com Lapso de Tempo , Proteínas rab de Ligação ao GTP/metabolismo , proteínas de unión al GTP Rab7
19.
Front Immunol ; 6: 433, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26379669

RESUMO

The primary event for initiating adaptive immune responses is the encounter between T lymphocytes and antigen presenting cells (APCs) in the T cell area of secondary lymphoid organs and the formation of highly organized intercellular junctions referred to as immune synapses (IS). In vivo live-cell imaging of APC-T cell interactions combined to functional studies unveiled that T cell fate is dictated, in large part, by the stability of the initial contact. Immune cell interaction is equally important during delivery of T cell help to B cells and for the killing of target cells by cytotoxic T cells and NK cells. The critical role of contact dynamics and synapse stability on the immune response is well illustrated by human immune deficiencies in which disease pathogenesis is linked to altered adhesion or defective cross-talk between the synaptic partners. The Wiskott-Aldrich syndrome (WAS) is a severe primary immunodeficiency caused by mutations in the Wiskott-Aldrich syndrome protein (WASp), a scaffold that promotes actin polymerization and links TCR stimulation to T cell activation. Absence or mutations in WASp affects intercellular APC-T cell communications by interfering with multiple mechanisms on both sides of the IS. The warts, hypogammaglobulinemia, infections, and myelokathexis (WHIM) syndrome is caused by mutations in CXCR4, a chemokine receptor that in mutant form leads to impairment of APC-T cell interactions. Present evidences suggest that other recently characterized primary immune deficiencies caused by mutation in genes linked to actin cytoskeletal reorganization, such as WIP and DOCK8, may also depend on altered synapse stability. Here, we will discuss in details the mechanisms of disturbed APC-T cell interactions in WAS and WHIM. Moreover, we will summarize the evidence pointing to a compromised conjugate formation in WIP, DOCK8, and X-linked lymphoproliferative syndrome.

20.
Hum Vaccin Immunother ; 10(8): 2312-20, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25424937

RESUMO

While the NGcGM3/VSSP vaccine, a preparation consisting in very small sized proteoliposomes (VSSP) obtained by the incorporation of the NGcGM3 ganglioside into the outer membrane protein (OMP) complex of Neisseria meningitides, is currently studied in late stage clinical trials in breast cancer and melanoma patients, mechanisms involved in the vaccine's antitumor effect are insufficiently understood. Here we have addressed the role of adaptive and innate immune cells in mediating the protective effect of the vaccine. To this aim we selected the 3LL-D122 Lewis lung spontaneous metastasis model. Unexpectedly, inoculation of the vaccine in tumor bearing C57BL/6 mice, either by subcutaneous (sc) or intraperitoneal (ip) routes, induced similar anti-metastatic effect. Regardless the T-independent nature of NGcGM3 ganglioside as antigen, the antimetastatic effect of NGcGM3/VSSP is dependent on CD4(+) T cells. In a further step we found that the vaccine was able to promote the increase, maturation, and cytokine secretion of conventional DCs and the maturation of Bone Marrow-derived plasmacytoid DCs. In line with this result the in vivo IFNα serum level in ip vaccinated mice increased as soon as 2h after treatment. On the other hand the infiltration of NK1.1(+)CD3(-) and NK1.1(+)CD3(+) cells in lungs of vaccinated mice was significantly increased, compared with the presence of these cells in control animal lungs. In the same way NGcGM3/VSSP mobilized acquired immunity effector cells into the lungs of vaccinated tumor bearing mice. Finally and not less noteworthy, leukocyte infiltration in lungs of tumor bearing mice correlates with vaccine induced inhibition of lung metastization.


Assuntos
Vacinas Anticâncer/imunologia , Movimento Celular , Leucócitos/imunologia , Neoplasias Pulmonares/secundário , Neoplasias Pulmonares/terapia , Metástase Neoplásica/terapia , Animais , Vacinas Anticâncer/administração & dosagem , Feminino , Injeções Intraperitoneais , Injeções Subcutâneas , Interferon-alfa/sangue , Pulmão/patologia , Camundongos Endogâmicos C57BL
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA