Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Stem Cell Res Ther ; 6: 245, 2015 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-26651832

RESUMO

INTRODUCTION: Systemic delivery of bone marrow-derived mesenchymal stem cells (MSC) seems to be of benefit in the treatment of multiple sclerosis (MS), an autoimmune disease of the central nervous system (CNS) sustained by migration of T cells across the brain blood barrier (BBB) and subsequent induction of inflammatory lesions into CNS. MSC have been found to modulate several effector functions of T cells. In this study, we investigated the effects of MSC on adhesion molecules and receptors on T cell surface that sustain their transendothelial migration. METHODS: We used different co-culture methods combined with real-time PCR and flow cytometry to evaluate the expression both at the mRNA and at the plasma-membrane level of α4 integrin, ß2 integrin, ICAM-1 and CXCR3. In parallel, we assessed if MSC are able to modulate expression of adhesion molecules on the endothelial cells that interact with T cells during their transendothelial migration. RESULTS: Our in vitro analyses revealed that MSC: (i) inhibit proliferation and activation of both peripheral blood mononuclear cells (PBMC) and CD3(+)-selected lymphocytes through the release of soluble factors; (ii) exert suppressive effects on those surface molecules highly expressed by activated lymphocytes and involved in transendothelial migration; (iii) inhibit CXCL10-driven chemotaxis of CD3(+) cells; (iv) down-regulated expression of adhesion molecules on endothelial cells. CONCLUSIONS: Taken together, these data demonstrate that the immunosuppressive effect of MSC does not exclusively depends on their anti-proliferative activity on T cells, but also on the impairment of leukocyte migratory potential through the inhibition of the adhesion molecules and receptors that are responsible for T cell trafficking across BBB. This could suggest a new mechanism through which MSC modulate T cell responses.


Assuntos
Moléculas de Adesão Celular/metabolismo , Células-Tronco Mesenquimais/imunologia , Linfócitos T/imunologia , Moléculas de Adesão Celular/genética , Movimento Celular/imunologia , Proliferação de Células , Quimiocina CXCL10/metabolismo , Quimiotaxia de Leucócito , Técnicas de Cocultura , Células Endoteliais/citologia , Células Endoteliais/imunologia , Expressão Gênica , Humanos , Terapia de Imunossupressão , Ativação Linfocitária , Esclerose Múltipla/genética , Esclerose Múltipla/imunologia , Esclerose Múltipla/terapia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptores CXCR3/genética , Receptores CXCR3/metabolismo , Linfócitos T/citologia
2.
Best Pract Res Clin Haematol ; 24(1): 59-64, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21396593

RESUMO

Bone marrow (BM) derived mesenchymal stem cells (MSC) differentiate into cells of the mesodermal lineage but also, under certain experimental circumstances, into cells of the neuronal and glial lineage. Their therapeutic translation has been significantly boosted by the demonstration that MSC display significant also anti-proliferative, anti-inflammatory and anti-apoptotic features. These properties have been exploited in the effective treatment of experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis where the inhibition of the autoimmune response resulted in a significant neuroprotection. A significant rescue of neural cells has been achieved also when MSC were administered in experimental brain ischemia and in animals undergoing brain or spinal cord injury. In these experimental conditions BM-MSC therapeutic effects are likely to depend on paracrine mechanisms mediated by the release of growth factors, anti-apoptotic molecules and anti-inflammatory cytokines creating a favorable environment for the regeneration of neurons, remyelination and improvement of cerebral flow. For potential clinical application BM-MSC offer significant practical advantages over other types of stem cells since they can be obtained from the adult BM and can be easily cultured and expanded in vitro under GMP conditions displaying a very low risk of malignant transformation. This review discusses the targets and mechanisms of BM-MSC mediated neuroprotection.


Assuntos
Células-Tronco Mesenquimais/fisiologia , Regeneração Nervosa/fisiologia , Neurônios/fisiologia , Animais , Proteínas Reguladoras de Apoptose/metabolismo , Transdiferenciação Celular/fisiologia , Encefalomielite Autoimune Experimental/prevenção & controle , Transplante de Células-Tronco Mesenquimais , Camundongos , Esclerose Múltipla/terapia , Traumatismos da Medula Espinal/terapia
3.
Stem Cells Dev ; 20(7): 1183-98, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20964598

RESUMO

In several cell types, a regulated efflux of NAD(+) across Connexin 43 hemichannels (Cx43 HC) can occur, and extracellular NAD(+) (NAD(+)(e)) affects cell-specific functions. We studied the capability of bone marrow-derived human mesenchymal stem cells (MSC) to release intracellular NAD(+) through Cx43 HC. NAD(+) efflux, quantified by a sensitive enzymatic cycling assay, was significantly upregulated by low extracellular Ca(2+) (5-6-fold), by shear stress (13-fold), and by inflammatory conditions (3.1- and 2.5-fold in cells incubated with lipopolysaccharide (LPS) or at 39°C, respectively), as compared with untreated cells, whereas it was downregulated in Cx43-siRNA-transfected MSC (by 53%) and by cell-to-cell contact (by 45%). Further, we show that NAD(+)(e) activates the purinergic receptor P2Y(11) and a cyclic adenosin monophosphate (cAMP)/cyclic ADP-ribose/[Ca(2+)](i) signaling cascade, involving the opening, unique to MSC, of L-type Ca(2+) channels. Extracellular NAD(+) enhanced nuclear translocation of cAMP/Ca(2+)-dependent transcription factors. Moreover, NAD(+), either extracellularly added or autocrinally released, resulted in stimulation of MSC functions, including proliferation, migration, release of prostaglandin E(2) and cytokines, and downregulation of T lymphocyte proliferation compared with controls. No detectable modifications of MSC markers and of adipocyte or osteocyte differentiation were induced by NAD(+)(e). Controls included Cx43-siRNA transfected and/or NAD(+)-glycohydrolase-treated MSC (autocrine effects), and NAD(+)-untreated or P2Y(11)-siRNA-transfected MSC (exogenous NAD(+)). These findings suggest a potential beneficial role of NAD(+)(e) in modulating MSC functions relevant to MSC-based cell therapies.


Assuntos
Comunicação Autócrina , Junções Comunicantes/metabolismo , Células-Tronco Mesenquimais/metabolismo , NAD/metabolismo , Receptores Purinérgicos P2/metabolismo , Trifosfato de Adenosina/metabolismo , Adipogenia , Cálcio/metabolismo , Canais de Cálcio Tipo L/metabolismo , Células Cultivadas , Conexina 43/metabolismo , AMP Cíclico/metabolismo , Citocinas/metabolismo , Dinoprostona/metabolismo , Citometria de Fluxo , Humanos , Osteogênese , RNA Interferente Pequeno , Sistemas do Segundo Mensageiro
4.
Arthritis Rheum ; 62(12): 3815-25, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20824797

RESUMO

OBJECTIVE: To document the specificity and the mechanism of induction of a novel class II major histocompatibility complex (MHC) antigen by mitogenic growth factors in human mesenchymal stem cells (MSCs) expanded in vitro for translational applications. METHODS: Expression of class II MHC molecules was measured in human MSCs and differentiated cells expanded in the presence of fibroblast growth factor 2 (FGF-2), platelet-derived growth factor BB (PDGF-BB), human platelet lysate, or interferon-γ (IFNγ). The roles of cell proliferation and growth factor-induced signaling pathways were investigated as well as the class II MHC assembly machinery and functional capacity. RESULTS: FGF-2 and, to a lesser extent, PDGF-BB induced in adult human MSCs the expression of HLA-DR (normally induced by inflammatory cytokines), which was able to stimulate CD4+ T cells via superantigen binding. In contrast to IFNγ, FGF induced HLA-DR expression only in human MSCs proliferating under its mitogenic effect and not in mouse MSCs or in differentiated human cells. Although it induced cell proliferation, human platelet lysate did not cause HLA-DR expression in human MSCs. HLA-DR expression occurred following FGF-specific binding to its receptor(s), mainly FGF receptor 1, without inducing IFNγ or tumor necrosis factor α expression. Both MAPK/ERK-1/2 and phosphatidylinositol 3-kinase/Akt controlled cell proliferation and HLA-DR expression, but only MAPK/ERK-1/2 controlled the induction of the class II MHC transcription activator protein CIITA, the major determinant of HLA-DR transcription. CONCLUSION: The induction of functional HLA-DR in proliferating progenitor MSCs is a property of human MSCs that have been expanded with mitogenic growth factors. This has potential biologic significance in the regulation and/or protection of progenitor cell subpopulations under sustained mitogenic proliferation and needs to be taken into account when expanding MSCs for use in in vivo applications.


Assuntos
Proliferação de Células/efeitos dos fármacos , Fator 2 de Crescimento de Fibroblastos/farmacologia , Antígenos de Histocompatibilidade Classe II/metabolismo , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/imunologia , Fator de Crescimento Derivado de Plaquetas/farmacologia , Células Cultivadas , Cromonas/farmacologia , Flavonoides/farmacologia , Antígenos HLA-DR/metabolismo , Humanos , Interferon gama/farmacologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Quinases de Proteína Quinase Ativadas por Mitógeno/antagonistas & inibidores , Morfolinas/farmacologia , Proteínas Nucleares/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Quinoxalinas/farmacologia , Tiazolidinedionas/farmacologia , Transativadores/metabolismo
5.
PLoS One ; 4(11): e7897, 2009 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-19936064

RESUMO

Nicotinamide phosphoribosyltransferase (Nampt) inhibitors such as FK866 are potent inhibitors of NAD(+) synthesis that show promise for the treatment of different forms of cancer. Based on Nampt upregulation in activated T lymphocytes and on preliminary reports of lymphopenia in FK866 treated patients, we have investigated FK866 for its capacity to interfere with T lymphocyte function and survival. Intracellular pyridine nucleotides, ATP, mitochondrial function, viability, proliferation, activation markers and cytokine secretion were assessed in resting and in activated human T lymphocytes. In addition, we used experimental autoimmune encephalomyelitis (EAE) as a model of T-cell mediated autoimmune disease to assess FK866 efficacy in vivo. We show that activated, but not resting, T lymphocytes undergo massive NAD(+) depletion upon FK866-mediated Nampt inhibition. As a consequence, impaired proliferation, reduced IFN-gamma and TNF-alpha production, and finally autophagic cell demise result. We demonstrate that upregulation of the NAD(+)-degrading enzyme poly-(ADP-ribose)-polymerase (PARP) by activated T cells enhances their susceptibility to NAD(+) depletion. In addition, we relate defective IFN-gamma and TNF-alpha production in response to FK866 to impaired Sirt6 activity. Finally, we show that FK866 strikingly reduces the neurological damage and the clinical manifestations of EAE. In conclusion, Nampt inhibitors (and possibly Sirt6 inhibitors) could be used to modulate T cell-mediated immune responses and thereby be beneficial in immune-mediated disorders.


Assuntos
Citocinas/metabolismo , Encefalomielite Autoimune Experimental/metabolismo , Ativação Linfocitária , Bainha de Mielina/química , NAD/química , Nicotinamida Fosforribosiltransferase/metabolismo , Linfócitos T/metabolismo , Acrilamidas/farmacologia , Trifosfato de Adenosina/química , Animais , Autofagia , Proliferação de Células , Feminino , Humanos , Interferon gama/metabolismo , Células Jurkat , Potenciais da Membrana , Camundongos , Camundongos Endogâmicos C57BL , NAD/metabolismo , Piperidinas/farmacologia , Poli(ADP-Ribose) Polimerases/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
6.
Stem Cells ; 27(10): 2469-77, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19593794

RESUMO

Abscisic acid (ABA) is a hormone involved in pivotal physiological functions in higher plants, such as response to abiotic stress and control of seed dormancy and germination. Recently, ABA was demonstrated to be autocrinally produced by human granulocytes, beta pancreatic cells, and mesenchymal stem cells (MSC) and to stimulate cell-specific functions through a signaling pathway involving the second messenger cyclic ADP-ribose (cADPR). Here we show that ABA expands human uncommitted hemopoietic progenitors (HP) in vitro, through a cADPR-mediated increase of the intracellular calcium concentration ([Ca(2+)](i)). Incubation of CD34(+) cells with micromolar ABA also induces transcriptional effects, which include NF-kappaB nuclear translocation and transcription of genes encoding for several cytokines. Human MSC stimulated with a lymphocyte-conditioned medium produce and release ABA at concentrations sufficient to exert growth-stimulatory effects on co-cultured CD34(+) cells, as demonstrated by the inhibition of colony growth in the presence of an anti-ABA monoclonal antibody. These results provide a remarkable example of conservation of a stress hormone and of its second messenger from plants to humans and identify ABA as a new hemopoietic growth factor involved in the cross-talk between HP and MSC.


Assuntos
Ácido Abscísico/farmacologia , Proliferação de Células/efeitos dos fármacos , ADP-Ribose Cíclica/metabolismo , Células-Tronco Hematopoéticas/efeitos dos fármacos , Sistemas do Segundo Mensageiro/fisiologia , Ácido Abscísico/metabolismo , Antígenos CD34/metabolismo , Cálcio/metabolismo , Sinalização do Cálcio/efeitos dos fármacos , Sinalização do Cálcio/fisiologia , Células Cultivadas , Meios de Cultivo Condicionados/farmacologia , Citocinas/efeitos dos fármacos , Citocinas/genética , Células-Tronco Hematopoéticas/metabolismo , Humanos , Células-Tronco Mesenquimais/metabolismo , NF-kappa B/efeitos dos fármacos , NF-kappa B/metabolismo , Neovascularização Fisiológica/fisiologia , Reguladores de Crescimento de Plantas/farmacologia , Sistemas do Segundo Mensageiro/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Ativação Transcricional/efeitos dos fármacos , Ativação Transcricional/fisiologia
7.
Respir Res ; 10: 25, 2009 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-19298665

RESUMO

BACKGROUND: Inhalation of crystalline silica induces a pulmonary fibrotic degeneration called silicosis caused by the inability of alveolar macrophages to dissolve the crystalline structure of phagocytosed quartz particles. Ascorbic acid is capable of partially dissolving quartz crystals, leading to an increase of soluble silica concentration and to the generation of new radical sites on the quartz surface. The reaction is specific for the crystalline forms of silica. It has been already demonstrated an increased cytotoxicity and stronger induction of pro-inflammatory cyclooxygenase-2 (COX-2) by ascorbic acid pre-treated quartz (QA) compared to untreated quartz (Q) in the murine macrophage cell line RAW 264.7. METHODS: Taking advantage of the enhanced macrophage response to QA as compared to Q particles, we investigated the first steps of cell activation and the contribution of early signals generated directly from the plasma membrane to the production of TNF-alpha, a cytokine that activates both inflammatory and fibrogenic pathways. RESULTS: Here we demonstrate that TNF-alpha mRNA synthesis and protein secretion are significantly increased in RAW 264.7 macrophages challenged with QA as compared to Q particles, and that the enhanced response is due to an increase of intracellular ROS. Plasma membrane-particle contact, in the absence of phagocytosis, is sufficient to trigger TNF-alpha production through a mechanism involving membrane lipid peroxidation and this appears to be even more detrimental to macrophage survival than particle phagocytosis itself. CONCLUSION: Taken together these data suggest that an impairment of pulmonary macrophage phagocytosis, i.e. in the case of alcoholic subjects, could potentiate lung disease in silica-exposed individuals.


Assuntos
Ácido Ascórbico/química , Membrana Celular/efeitos dos fármacos , Peroxidação de Lipídeos/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Fagocitose/efeitos dos fármacos , Quartzo/toxicidade , Espécies Reativas de Oxigênio/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Animais , Antioxidantes/farmacologia , Hidroxitolueno Butilado/farmacologia , Linhagem Celular , Membrana Celular/imunologia , Membrana Celular/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Citocalasina B/farmacologia , Sulfato de Dextrana/farmacologia , Relação Dose-Resposta a Droga , Macrófagos/imunologia , Macrófagos/metabolismo , Macrófagos Alveolares/efeitos dos fármacos , Macrófagos Alveolares/imunologia , Macrófagos Alveolares/metabolismo , Masculino , Camundongos , Quartzo/química , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Receptores Depuradores/efeitos dos fármacos , Receptores Depuradores/metabolismo , Solubilidade , Propriedades de Superfície , Fatores de Tempo , Fator de Necrose Tumoral alfa/genética
8.
Stem Cells ; 27(3): 693-702, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19096038

RESUMO

The immunomodulatory activities of human mesenchymal stem cells (MSCs) provide a rational basis for their application in the treatment of immune-mediated diseases, such as graft versus host disease and multiple sclerosis. The effects of MSCs on invariant natural killer T (iNKT) and gammadelta T cells, both involved in the pathogenesis of autoimmune diseases, are unknown. Here, we investigated the effects of MSCs on in vitro expansion of these unconventional T-cell populations. MSCs inhibited iNKT (Valpha24(+)Vbeta11(+)) and gammadelta T (Vdelta2(+)) cell expansion from peripheral blood mononuclear cells in both cell-to-cell contact and transwell systems. Such inhibition was partially counteracted by indomethacin, a prostaglandin E(2) inhibitor. Block of indoleamine 2,3-deoxygenase and transforming growth factor beta1 did not affect Valpha24(+)Vbeta11(+) and Vdelta2(+) cell expansion. MSCs inhibited interferon-gamma production by activated Valpha24(+)Vbeta11(+) and impaired CD3-mediated proliferation of activated Valpha24(+)Vbeta11(+) and Vdelta2(+) T cells, without affecting their cytotoxic potential. MSCs did not inhibit antigen processing/presentation by activated Vdelta2(+) T cells to CD4(+) T cells. In contrast, MSCs were lysed by activated Vdelta2(+) T cells through a T-cell receptor-dependent mechanism. These results are translationally relevant in view of the increasing interest in MSC-based therapy of autoimmune diseases.


Assuntos
Citotoxicidade Imunológica/imunologia , Células-Tronco Mesenquimais/imunologia , Células-Tronco Mesenquimais/metabolismo , Células T Matadoras Naturais/imunologia , Linfócitos T/imunologia , Anti-Inflamatórios não Esteroides/farmacologia , Proliferação de Células , Células Cultivadas , Citotoxicidade Imunológica/efeitos dos fármacos , Citometria de Fluxo , Humanos , Indometacina/farmacologia , Interferon gama/metabolismo , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Prostaglandinas E/antagonistas & inibidores , Prostaglandinas E/metabolismo
9.
Haematologica ; 93(3): 339-46, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18268281

RESUMO

BACKGROUND: Mesenchymal stromal cells are multipotent cells considered to be of great promise for use in regenerative medicine. However, the cell dose may be a critical factor in many clinical conditions and the yield resulting from the ex vivo expansion of mesenchymal stromal cells derived from bone marrow may be insufficient. Thus, alternative sources of mesenchymal stromal cells need to be explored. In this study, mesenchymal stromal cells were successfully isolated from second trimester amniotic fluid and analyzed for chromosomal stability to validate their safety for potential utilization as a cell therapy product. DESIGN AND METHODS: Mesenchymal stromal cells were expanded up to the sixth passage starting from amniotic fluid using different culture conditions to optimize large-scale production. RESULTS: The highest number of mesenchymal stromal cells derived from amniotic fluid was reached at a low plating density; in these conditions the expansion of mesenchymal stromal cells from amniotic fluid was significantly greater than that of adult bone marrow-derived mesenchymal stromal cells. Mesenchymal stromal cells from amniotic fluid represent a relatively homogeneous population of immature cells with immunosuppressive properties and extensive proliferative potential. Despite their high proliferative capacity in culture, we did not observe any karyotypic abnormalities or transformation potential in vitro nor any tumorigenic effect in vivo. CONCLUSIONS: Fetal mesenchymal stromal cells can be extensively expanded from amniotic fluid, showing no karyotypic abnormalities or transformation potential in vitro and no tumorigenic effect in vivo. They represent a relatively homogeneous population of immature mesenchymal stromal cells with long telomeres, immunosuppressive properties and extensive proliferative potential. Our results indicate that amniotic fluid represents a rich source of mesenchymal stromal cells suitable for banking to be used when large amounts of cells are required.


Assuntos
Líquido Amniótico/citologia , Feto/citologia , Células-Tronco Mesenquimais/citologia , Células-Tronco Multipotentes/citologia , Adipócitos/citologia , Adulto , Fatores Etários , Animais , Técnicas de Cultura de Células/métodos , Diferenciação Celular/efeitos dos fármacos , Transformação Celular Neoplásica , Células Cultivadas/citologia , Células Cultivadas/efeitos dos fármacos , Células Cultivadas/transplante , Ensaio de Unidades Formadoras de Colônias , Feminino , Idade Gestacional , Humanos , Cariotipagem , Ativação Linfocitária , Transplante de Células-Tronco Mesenquimais/efeitos adversos , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Células-Tronco Multipotentes/transplante , Osteoblastos/citologia , Gravidez , Células Estromais/citologia , Células Estromais/transplante , Telômero/ultraestrutura
10.
BMC Genomics ; 8: 65, 2007 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-17341312

RESUMO

BACKGROUND: The hematopoietic stem cells (HSCs) niche of the bone marrow is comprised of HSCs, osteoblasts, endothelial cells and a stromal component of non-hematopoietic multipotent cells of mesenchymal origin named "mesenchymal stem cells" (MSCs). RESULTS: Here we studied the global transcriptional profile of murine MSCs with immuno-therapeutic potential and compared it with that of 486 publicly available microarray datasets from 12 other mouse tissues or cell types. Principal component analysis and hierarchical clustering identified a unique pattern of gene expression capable of distinctively classifying MSCs from other tissues and cells. We then performed an analysis aimed to identify absolute and relative abundance of transcripts in all cell types. We found that the set of transcripts uniquely expressed by MSCs is enriched in transcription factors and components of the Wnt signaling pathway. The analysis of differentially expressed genes also identified a set of genes specifically involved in the HSC niche and is complemented by functional studies that confirm the findings. Interestingly, some of these genes play a role in the maintenance of HSCs in a quiescent state supporting their survival and preventing them from proliferating and differentiating. We also show that MSCs modulate T cell functions in vitro and, upon in vivo administration, ameliorate experimental autoimmune encephalomyelitis (EAE). CONCLUSION: Altogether, these findings provide novel and important insights on the mechanisms of T cell function regulation by MSCs and help to cement the rationale for their application in the treatment of autoimmune diseases.


Assuntos
Células-Tronco Hematopoéticas/metabolismo , Células-Tronco Mesenquimais/metabolismo , Sinapses , Animais , Proliferação de Células , Sobrevivência Celular , Ensaio de Imunoadsorção Enzimática , Perfilação da Expressão Gênica , Camundongos , Camundongos Endogâmicos C57BL , RNA Mensageiro/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais , Linfócitos T/citologia
11.
Stem Cells ; 25(7): 1753-60, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17395776

RESUMO

Mesenchymal stem cells (MSC) are part of the bone marrow that provides signals supporting survival and growth of bystander hematopoietic stem cells (HSC). MSC modulate also the immune response, as they inhibit proliferation of lymphocytes. In order to investigate whether MSC can support survival of T cells, we investigated MSC capacity of rescuing T lymphocytes from cell death induced by different mechanisms. We observed that MSC prolong survival of unstimulated T cells and apoptosis-prone thymocytes cultured under starving conditions. MSC rescued T cells from activation induced cell death (AICD) by downregulation of Fas receptor and Fas ligand on T cell surface and inhibition of endogenous proteases involved in cell death. MSC dampened also Fas receptor mediated apoptosis of CD95 expressing Jurkat leukemic T cells. In contrast, rescue from AICD was not associated with a significant change of Bcl-2, an inhibitor of apoptosis induced by cell stress. Accordingly, MSC exhibited a minimal capacity of rescuing Jurkat cells from chemically induced apoptosis, a process disrupting the mitochondrial membrane potential regulated by Bcl-2. These results suggest that MSC interfere with the Fas receptor regulated process of programmed cell death. Overall, MSC can inhibit proliferation of activated T cells while supporting their survival in a quiescent state, providing a model of their activity inside the HSC niche. Disclosure of potential conflicts of interest is found at the end of this article.


Assuntos
Células-Tronco Mesenquimais/citologia , Linfócitos T/citologia , Apoptose , Divisão Celular , Sobrevivência Celular , Criança , Regulação para Baixo/genética , Humanos , Células Jurkat , Ativação Linfocitária , Peptídeo Hidrolases/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/genética , Receptores de Morte Celular/genética , Receptores de Morte Celular/metabolismo , Receptor fas/metabolismo
12.
J Biol Chem ; 281(42): 31419-29, 2006 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-16926152

RESUMO

Micromolar concentrations of extracellular beta-NAD+ (NAD(e)+) activate human granulocytes (superoxide and NO generation and chemotaxis) by triggering: (i) overproduction of cAMP, (ii) activation of protein kinase A, (iii) stimulation of ADP-ribosyl cyclase and overproduction of cyclic ADP-ribose (cADPR), a universal Ca2+ mobilizer, and (iv) influx of extracellular Ca2+. Here we demonstrate that exposure of granulocytes to millimolar rather than to micromolar NAD(e)+ generates both inositol 1,4,5-trisphosphate (IP3) and cAMP, with a two-step elevation of intracellular calcium levels ([Ca2+]i): a rapid, IP3-mediated Ca2+ release, followed by a sustained influx of extracellular Ca2+ mediated by cADPR. Suramin, an inhibitor of P2Y receptors, abrogated NAD(e)+-induced intracellular increases of IP3, cAMP, cADPR, and [Ca2+]i, suggesting a role for a P2Y receptor coupled to both phospholipase C and adenylyl cyclase. The P2Y(11) receptor is the only known member of the P2Y receptor subfamily coupled to both phospholipase C and adenylyl cyclase. Therefore, we performed experiments on hP2Y(11)-transfected 1321N1 astrocytoma cells: micromolar NAD(e)+ promoted a two-step elevation of the [Ca2+]i due to the enhanced intracellular production of IP3, cAMP, and cADPR in 1321N1-hP2Y(11) but not in untransfected 1321N1 cells. In human granulocytes NF157, a selective and potent inhibitor of P2Y(11), and the down-regulation of P2Y(11) expression by short interference RNA prevented NAD(e)+-induced intracellular increases of [Ca2+]i and chemotaxis. These results demonstrate that beta-NAD(e)+ is an agonist of the P2Y(11) purinoceptor and that P2Y(11) is the endogenous receptor in granulocytes mediating the sustained [Ca2+]i increase responsible for their functional activation.


Assuntos
Granulócitos/metabolismo , NAD/química , Agonistas do Receptor Purinérgico P2 , Linhagem Celular Tumoral , Quimiotaxia , ADP-Ribose Cíclica/metabolismo , AMP Cíclico/metabolismo , Regulação para Baixo , Humanos , Inositol 1,4,5-Trifosfato/metabolismo , RNA Interferente Pequeno/metabolismo , Receptores Purinérgicos P2 , Transfecção
13.
Blood ; 107(1): 367-72, 2006 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-16141348

RESUMO

Human mesenchymal stem cells (hMSCs) suppress T-cell and dendritic-cell function and represent a promising strategy for cell therapy of autoimmune diseases. Nevertheless, no information is currently available on the effects of hMSCs on B cells, which may have a large impact on the clinical use of these cells. hMSCs isolated from the bone marrow and B cells purified from the peripheral blood of healthy donors were cocultured with different B-cell tropic stimuli. B-cell proliferation was inhibited by hMSCs through an arrest in the G0/G1 phase of the cell cycle and not through the induction of apoptosis. A major mechanism of B-cell suppression was hMSC production of soluble factors, as indicated by transwell experiments. hMSCs inhibited B-cell differentiation because IgM, IgG, and IgA production was significantly impaired. CXCR4, CXCR5, and CCR7 B-cell expression, as well as chemotaxis to CXCL12, the CXCR4 ligand, and CXCL13, the CXCR5 ligand, were significantly down-regulated by hMSCs, suggesting that these cells affect chemotactic properties of B cells. B-cell costimulatory molecule expression and cytokine production were unaffected by hMSCs. These results further support the potential therapeutic use of hMSCs in immune-mediated disorders, including those in which B cells play a major role.


Assuntos
Linfócitos B/fisiologia , Comunicação Celular/fisiologia , Células-Tronco Mesenquimais/fisiologia , Linfócitos B/citologia , Fatores Biológicos/metabolismo , Fatores Biológicos/fisiologia , Diferenciação Celular , Proliferação de Células , Quimiocinas/genética , Quimiotaxia , Técnicas de Cocultura , Regulação da Expressão Gênica , Humanos , Células-Tronco Mesenquimais/metabolismo , Fase de Repouso do Ciclo Celular
14.
Expert Opin Biol Ther ; 6(1): 17-22, 2006 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-16370911

RESUMO

In recent years much excitement has been generated over the possibility that adult stem cells may attempt repair of the injured central nervous system (CNS), thus setting the stage for their utilisation in the treatment of neurodegenerative disorders. Recent studies have shown that some subsets of stem cells can also modulate the (auto)immune response, thus providing a rationale for their use as therapy for experimental autoimmune encephalomyelitis (EAE), an animal model for multiple sclerosis (MS). This article reviews the scientific evidence supporting the possible use of neural stem cells (NSCs) and mesenchymal stem cells (MSCs) for the treatment of MS. In addition, possible mechanisms sustaining the beneficial mode of action of haematopoietic stem cells (HSCs) following transplantation in MS individuals are discussed. Overall, it is proposed that limited subsets of adult stem cells may have a dual function that may be effective for the treatment of MS, an autoimmune disease of the CNS where degeneration of neural cells follows inflammation.


Assuntos
Doenças Desmielinizantes/terapia , Imunossupressores/uso terapêutico , Esclerose Múltipla/terapia , Fármacos Neuroprotetores/uso terapêutico , Células-Tronco/citologia , Animais , Doenças Autoimunes/terapia , Humanos , Terapia de Imunossupressão , Imunossupressores/metabolismo , Inflamação , Mesoderma/metabolismo , Neurônios/metabolismo , Fármacos Neuroprotetores/metabolismo , Transplante de Células-Tronco
15.
Mol Cell ; 20(6): 881-90, 2005 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-16364913

RESUMO

Ron, the tyrosine kinase receptor for the Macrophage-stimulating protein, is involved in cell dissociation, motility, and matrix invasion. DeltaRon, a constitutively active isoform that confers increased motility to expressing cells, is generated through the skipping of exon 11. We show that abnormal accumulation of DeltaRon mRNA occurs in breast and colon tumors. Skipping of exon 11 is controlled by a silencer and an enhancer of splicing located in the constitutive exon 12. The strength of the enhancer parallels the relative abundance of DeltaRon mRNA and depends on a sequence directly bound by splicing factor SF2/ASF. Overexpression and RNAi experiments demonstrate that SF2/ASF, by controlling the production of DeltaRon, activates epithelial to mesenchymal transition leading to cell locomotion. The effect of SF2/ASF overexpression is reverted by specific knockdown of DeltaRon mRNA. This demonstrates a direct link between SF2/ASF-regulated splicing and cell motility, an activity important for embryogenesis, tissue formation, and tumor metastasis.


Assuntos
Processamento Alternativo , Movimento Celular/fisiologia , Proteínas Nucleares/metabolismo , Isoformas de Proteínas/metabolismo , RNA Mensageiro/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Neoplasias do Colo/genética , Neoplasias do Colo/metabolismo , Elementos Facilitadores Genéticos , Éxons , Feminino , Regulação da Expressão Gênica , Humanos , Proteínas Nucleares/genética , Isoformas de Proteínas/genética , Interferência de RNA , Proteínas de Ligação a RNA , Receptores Proteína Tirosina Quinases/genética , Fatores de Processamento de Serina-Arginina , Distribuição Tecidual
16.
Blood ; 106(5): 1755-61, 2005 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-15905186

RESUMO

We studied the immunoregulatory features of murine mesenchymal stem cells (MSCs) in vitro and in vivo. MSCs inhibited T-cell receptor (TCR)-dependent and -independent proliferation but did not induce apoptosis on T cells. Such inhibition was paired with a decreased interferon (IFN)-gamma and tumor necrosis factor (TNF)-alpha production and was partially reversed by interleukin-2 (IL-2). Thus, we used MSCs to treat myelin oligodendrocyte glycoprotein (MOG)35-55-induced experimental autoimmune encephalomyelitis (EAE) in C57BL/6J mice. We injected intravenously 1 x 10(6) MSCs before disease onset (preventive protocol) and at different time points after disease occurrence (therapeutic protocol). MSC administration before disease onset strikingly ameliorated EAE. The therapeutic scheme was effective when MSCs were administered at disease onset and at the peak of disease but not after disease stabilization. Central nervous system (CNS) pathology showed decreased inflammatory infiltrates and demyelination in mice that received transplants of MSCs. T-cell response to MOG and mitogens from MSC-treated mice was inhibited and restored by IL-2 administration. Upon MSC transfection with the enhanced green fluorescent protein (eGFP), eGFP(+) cells were detected in the lymphoid organs of treated mice. These data suggest that the immunoregulatory properties of MSCs effectively interfere with the autoimmune attack in the course of EAE inducing an in vivo state of T-cell unresponsiveness occurring within secondary lymphoid organs.


Assuntos
Encefalomielite Autoimune Experimental/imunologia , Encefalomielite Autoimune Experimental/prevenção & controle , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/imunologia , Linfócitos T/imunologia , Animais , Proliferação de Células , Células Cultivadas , Anergia Clonal/imunologia , Modelos Animais de Doenças , Encefalomielite Autoimune Experimental/induzido quimicamente , Glicoproteínas , Proteínas de Fluorescência Verde/imunologia , Interferon gama/imunologia , Interferon gama/metabolismo , Interleucina-2/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Glicoproteína Mielina-Oligodendrócito , Fragmentos de Peptídeos , Receptores de Antígenos de Linfócitos T/imunologia , Transdução de Sinais/imunologia , Linfócitos T/efeitos dos fármacos , Fator de Necrose Tumoral alfa/imunologia
17.
J Biol Chem ; 280(7): 5343-9, 2005 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-15574424

RESUMO

Cyclic ADP-ribose (cADPR) is an intracellular calcium mobilizer generated from NAD(+) by the ADP-ribosyl cyclases CD38 and BST-1. cADPR, both exogenously added and paracrinally produced by a CD38(+) feeder layer, has recently been demonstrated to stimulate the in vitro proliferation of human hemopoietic progenitors (HP) and also the in vivo expansion of hemopoietic stem cells. The low density of BST-1 expression on bone marrow (BM) stromal cells and the low specific activity of the enzyme made it unclear whether cADPR generation by a BST-1(+) stroma could stimulate HP proliferation in the BM microenvironment. We developed and characterized two BST-1(+) stromal cell lines, expressing an ectocellular cyclase activity similar to that of BST-1(+) human mesenchymal stem cells, the precursors of BM stromal cells. Long term co-culture of cord blood-derived HP over these BST-1(+) feeders determined their expansion. Influx of paracrinally generated cADPR into clonogenic HP was mediated by a concentrative, nitrobenzylthioinosine- and dipyridamole-inhibitable nucleoside transporter, this providing a possible explanation to the effectiveness of the hormone-like concentrations of the cyclic nucleotide measured in the medium conditioned by BST-1(+) feeders. These results suggest that the BST-1-catalyzed generation of extracellular cADPR, followed by the concentrative uptake of the cyclic nucleotide by HP, may be physiologically relevant in normal hemopoiesis.


Assuntos
ADP-Ribosil Ciclase/metabolismo , Antígenos CD/metabolismo , ADP-Ribose Cíclica/metabolismo , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Células Estromais/metabolismo , Células 3T3 , ADP-Ribosil Ciclase/genética , ADP-Ribosil Ciclase 1 , Animais , Antígenos CD/genética , Antígenos CD34/metabolismo , Transporte Biológico/efeitos dos fármacos , Células COS , Cálcio/metabolismo , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Técnicas de Cocultura , Citometria de Fluxo , Proteínas Ligadas por GPI , Células-Tronco Hematopoéticas/efeitos dos fármacos , Humanos , Leucócitos Mononucleares/citologia , Leucócitos Mononucleares/efeitos dos fármacos , Leucócitos Mononucleares/metabolismo , Glicoproteínas de Membrana , Camundongos , NAD/metabolismo , Proteínas de Transporte de Nucleosídeos/antagonistas & inibidores , Proteínas de Transporte de Nucleosídeos/metabolismo , Células Estromais/citologia , Células Estromais/efeitos dos fármacos
18.
J Invest Dermatol ; 121(2): 308-14, 2003 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-12880423

RESUMO

Vitiligo patients possess high frequencies of circulating CD8+ T lymphocytes specific for the melanocyte differentiation antigen Melan-A/MART-1. These self-specific T cells exhibit intact functional properties and their T cell receptors are selected for a narrow range of high affinities of antigen recognition, suggesting their important role in the pathogenesis of vitiligo. In order to understand the molecular base for this unexpected, optimal T cell receptor recognition of a self-antigen, a tetramer-guided ex vivo analysis of the T cell receptor repertoire specific for the Melan-A antigen in a patient affected by vitiligo is reported. All T cell receptors sequenced corresponded to different clonotypes, excluding extensive clonal expansions and revealing a large repertoire of circulating Melan-A-specific T lymphocytes. A certain degree of T cell receptor structural conservation was noticed, however, as a single AV segment contributed to the alpha chain rearrangement in 100% of clones and a conserved amino acid sequence was found in the beta chain complementarity determining region 3 of various high affinity cells. We suggest that the conserved alpha chain confers self-antigen recognition, necessary for intrathymic selection and peripheral homeostasis, to many synonymous T cell receptors, whereas the beta chain fine tunes the T cell receptor affinity of the specific cells. In addition, we demonstrate that many high avidity T cell clones from this patient were capable of specifically lysing normal, HLA-matched melanocytes. These autoreactive clones persisted for more than 3 y in the patient's peripheral blood. These data, together with the skin-homing potential of the clones, directly point to the in vivo pathogenic role of melanocyte-specific cytotoxic T lymphocytes in vitiligo.


Assuntos
Autoantígenos/imunologia , Linfócitos T CD8-Positivos/imunologia , Melanócitos/imunologia , Vitiligo/imunologia , Antígenos de Neoplasias , Células Clonais , Feminino , Antígenos HLA-A/análise , Antígeno HLA-A2 , Humanos , Antígeno MART-1 , Proteínas de Neoplasias/imunologia , Receptores de Antígenos de Linfócitos T/imunologia
19.
J Immunol ; 169(11): 6253-60, 2002 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-12444131

RESUMO

TCR-alpha and -beta chains are composed of somatically rearranged V, D, and J germline-encoded gene segments that confer Ag specificity. Recent crystallographic analyses revealed that TCR-alpha has more contacts with peptide than TCR-beta, suggesting the possibility that peptide recognition predominantly relies on TCR-alpha. T cells specific for the self Ag Melan-A/MART-1 possess an exceptionally high precursor frequency in human histocompatibility leukocyte Ag-A2 individuals. This provided a unique situation for assessment of the structural relationship between TCR and peptide/MHC ligand at both the pre- and postimmune levels. Molecular and phenotypic analysis of many different Melan-A-specific T cell populations revealed that a structural constraint is imposed on the TCR for engagement with Melan-A peptides presented by HLA-A2, namely the highly preferential use of a particular TCRAV segment, AV2. Examination of CD8 single-positive thymocytes indicated that this preferential use in forming the Melan-A-specific TCR is mainly imposed by intrathymic positive selection. Our data demonstrate a dominant function of TCRAV2 segment in forming the TCR repertoire specific for the human self Ag Melan-A/MART-1 and support the view that Ag recognition is mediated predominantly by TCR-alpha.


Assuntos
Autoantígenos/metabolismo , Receptores de Antígenos de Linfócitos T alfa-beta/metabolismo , Sequência de Aminoácidos , Apresentação de Antígeno , Antígenos de Neoplasias/metabolismo , Sequência de Bases , Linhagem Celular , Sequência Conservada , DNA Complementar/genética , Genes Codificadores da Cadeia alfa de Receptores de Linfócitos T , Antígeno HLA-A2/metabolismo , Humanos , Técnicas In Vitro , Antígeno MART-1 , Melanoma/imunologia , Proteínas de Neoplasias/imunologia , Proteínas de Neoplasias/metabolismo , Linfócitos T/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA