Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Transl Med ; 11(482)2019 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-30842314

RESUMO

The failure of anti-CD20 antibody (Rituximab) as therapy for lupus may be attributed to the transient and incomplete B cell depletion achieved in clinical trials. Here, using an alternative approach, we report that complete and sustained CD19+ B cell depletion is a highly effective therapy in lupus models. CD8+ T cells expressing CD19-targeted chimeric antigen receptors (CARs) persistently depleted CD19+ B cells, eliminated autoantibody production, reversed disease manifestations in target organs, and extended life spans well beyond normal in the (NZB × NZW) F1 and MRL fas/fas mouse models of lupus. CAR T cells were active for 1 year in vivo and were enriched in the CD44+CD62L+ T cell subset. Adoptively transferred splenic T cells from CAR T cell-treated mice depleted CD19+ B cells and reduced disease in naive autoimmune mice, indicating that disease control was cell-mediated. Sustained B cell depletion with CD19-targeted CAR T cell immunotherapy is a stable and effective strategy to treat murine lupus, and its effectiveness should be explored in clinical trials for lupus.


Assuntos
Antígenos CD19/metabolismo , Linfócitos B/imunologia , Imunoterapia Adotiva , Lúpus Eritematoso Sistêmico/imunologia , Lúpus Eritematoso Sistêmico/terapia , Depleção Linfocítica , Linfócitos T/metabolismo , Animais , Feminino , Lúpus Eritematoso Sistêmico/sangue , Camundongos , Fenótipo , Proteoma/metabolismo , Análise de Sobrevida
2.
Exp Eye Res ; 155: 64-74, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27989757

RESUMO

We report on a novel autoantigen expressed in human macular tissues, identified following an initial Western blot (WB)-based screening of sera from subjects with age-related macular degeneration (AMD) for circulating auto-antibodies (AAbs) recognizing macular antigens. Immunoprecipitation, 2D-gel electrophoresis (2D-GE) and liquid chromatography-tandem mass spectrometry (LC-MS/MS), direct enzyme-linked immunosorbent assays (ELISA), WBs, immunohistochemistry (IHC), human primary and ARPE-19 immortalized cell cultures were used to characterize this novel antigen. An approximately 40-kDa autoantigen in AMD was identified as the scavenger receptor CD5 antigen-like protein (CD5L), also known as apoptosis inhibitor of macrophage (AIM). CD5L/AIM was localized to human RPE by IHC and WB methods and to retinal microglial cells by IHC. ELISAs with recombinant CD5L/AIM on a subset of AMD sera showed a nearly 2-fold higher anti-CD5L/AIM reactivity in AMD vs. Control sera (p = 0.000007). Reactivity ≥0.4 was associated with 18-fold higher odds of having AMD (χ2 = 21.42, p = 0.00063). Circulating CD5L/AIM levels were also nearly 2-fold higher in AMD sera compared to controls (p = 0.0052). The discovery of CD5L/AIM expression in the RPE and in retinal microglial cells adds to the known immunomodulatory roles of these cells in the retina. The discovery of AAbs recognizing CD5L/AIM identifies a possible novel disease biomarker and suggest a potential role for CD5L/AIM in the pathogenesis of AMD in situ. The possible mechanisms via which anti-CD5L/AIM AAbs may contribute to AMD pathogenesis are discussed. In particular, since CD5L is known to stimulate autophagy and to participate in oxidized LDL uptake in macrophages, we propose that anti-CD5L/AIM auto-antibodies may play a role in drusen biogenesis and inflammatory RPE damage in AMD.


Assuntos
Autoimunidade , Antígenos CD5/biossíntese , Degeneração Macular/metabolismo , Microglia/metabolismo , Retina/metabolismo , Epitélio Pigmentado da Retina/metabolismo , Idoso , Idoso de 80 Anos ou mais , Autoantígenos , Western Blotting , Linhagem Celular , Eletroforese em Gel Bidimensional , Ensaio de Imunoadsorção Enzimática , Feminino , Humanos , Imuno-Histoquímica , Macrófagos/imunologia , Macrófagos/metabolismo , Degeneração Macular/patologia , Masculino , Microglia/patologia , Microscopia Confocal , Pessoa de Meia-Idade , Retina/patologia , Epitélio Pigmentado da Retina/patologia , Espectrometria de Massas em Tandem
3.
Biosci Rep ; 36(1): e00284, 2015 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-26589965

RESUMO

Sterol regulatory element binding protein-1c (SREBP-1c) is a key transcription factor that regulates genes involved in the de novo lipid synthesis and glycolysis pathways. The structure, turnover and transactivation potential of SREBP-1c are regulated by macronutrients and hormones via a cascade of signalling kinases. Using MS, we have identified serine 73 as a novel glycogen synthase kinase-3 (GSK-3) phosphorylation site in the rat SREBP-1c purified from McA-RH7777 hepatoma cells. Our site-specific mutagenesis strategy revealed that the turnover of SREBP-1c, containing wild type, phospho-null (serine to alanine) or phospho-mimetic (serine to aspartic acid) substitutions, was differentially regulated. We show that the S73D mutant of pSREBP-1c, that mimicked a state of constitutive phosphorylation, dissociated from the SREBP-1c-SCAP complex more readily and underwent GSK-3-dependent proteasomal degradation via SCF(Fbw7) ubiquitin ligase pathway. Pharmacologic inhibition of GSK-3 or knockdown of GSK-3 by siRNA prevented accelerated degradation of SREBP-1c. As demonstrated by MS, SREBP-1c was phosphorylated in vitro by GSK-3ß at serine 73. Phosphorylation of serine 73 also occurs in the intact liver. We propose that GSK-3-mediated phosphorylation of serine 73 in the rat SREBP-1c and its concomitant destabilization represents a novel mechanism involved in the inhibition of de novo lipid synthesis in the liver.


Assuntos
Quinase 3 da Glicogênio Sintase/metabolismo , Lipídeos/biossíntese , Fígado/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteólise , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Substituição de Aminoácidos , Animais , Linhagem Celular Tumoral , Quinase 3 da Glicogênio Sintase/genética , Células HEK293 , Humanos , Lipídeos/genética , Mutação de Sentido Incorreto , Fosforilação/fisiologia , Complexo de Endopeptidases do Proteassoma/genética , Estabilidade Proteica , Ratos , Proteína de Ligação a Elemento Regulador de Esterol 1/genética
4.
Biochem Biophys Res Commun ; 449(4): 449-54, 2014 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-24853806

RESUMO

The counter-regulatory hormone glucagon inhibits lipogenesis via downregulation of sterol regulatory element binding protein 1 (SREBP-1). The effect of glucagon is mediated via protein kinase A (PKA). To determine if SREBP-1 is a direct phosphorylation target of PKA, we conducted mass spectrometry analysis of recombinant n-terminal SREBP-1a following PKA treatment in vitro. This analysis identified serines 331/332 as bona-fide phosphorylation targets of PKA. To determine the functional consequences of phosphorylation at these sites, we constructed mammalian expression vector for both nSREBP-1a and 1c isoforms in which the candidate PKA phosphorylation sites were mutated to active phosphomimetic or non-phosphorylatable amino acids. The transcriptional activity of SREBP was reduced by the phosphomimetic mutation of S332 of nSREBP-1a and the corresponding serine (S308) of nSREBP-1c. This site is a strong candidate for mediating the negative regulatory effect of glucagon on SREBP-1 and lipogenesis.


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Ativação Transcricional , Animais , Glucagon/farmacologia , Células HEK293 , Humanos , Espectrometria de Massas , Fosforilação , Alinhamento de Sequência , Proteína de Ligação a Elemento Regulador de Esterol 1/genética
5.
Mol Cell Biochem ; 389(1-2): 159-67, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24395194

RESUMO

Mitochondria are complex organelles essential to cardiomyocyte survival. Protein phosphorylation is emerging as a key regulator of mitochondrial function. In the study reported here, we analyzed subsarcolemmal (SSM) mitochondria harvested from rats who have received 4 weeks of aldosterone/salt treatment to simulate the neurohormonal profile of human congestive heart failure. Our objective was to obtain an initial qualitative inventory of the phosphoproteins in this biologic system. SSM mitochondria were harvested, and the phosphoproteome was analyzed with a gel-free bioanalytical platform. Mitochondrial proteins were digested with trypsin, and the digests were enriched for phosphopeptides with immobilized metal ion affinity chromatography. The phosphopeptides were analyzed by ion trap liquid chromatography-tandem mass spectrometry, and the phosphoproteins identified via database searches. Based on MS/MS and MS(3) data, we characterized a set of 42 phosphopeptides that encompassed 39 phosphorylation sites. These peptides mapped to 26 proteins, for example, long-chain specific acyl-CoA dehydrogenase, Complex III subunit 6, and mitochondrial import receptor TOM70. Collectively, the characterized phosphoproteins belong to diverse functional modules, including bioenergetic pathways, protein import machinery, and calcium handling. The phosphoprotein panel discovered in this study provides a foundation for future differential phosphoproteome profiling toward an integrated understanding of the role of mitochondrial phosphorylation in heart failure.


Assuntos
Insuficiência Cardíaca/metabolismo , Mitocôndrias/metabolismo , Miócitos Cardíacos/metabolismo , Fosfoproteínas/metabolismo , Proteoma/metabolismo , Animais , Masculino , Mapeamento de Peptídeos/métodos , Peptídeos/metabolismo , Proteômica/métodos , Ratos , Ratos Sprague-Dawley
6.
Electrophoresis ; 32(15): 1984-91, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21739434

RESUMO

Early detection of prostate cancer and determination of its aggressiveness are critical factors that influence treatment outcomes. To aid in the clinical decision making, novel biomarkers are being sought. Direct, global-scale examination of primary human specimens provides the most relevant picture of the tumor machinery and its perturbations, and this information is highly significant in the context of biomarker discovery. In the pilot study reported here, we focused on mapping of the phosphoproteome in human prostate cancer specimens obtained from a tissue repository. A gel-free proteomic strategy included whole proteome digestion, phosphopeptide enrichment with immobilized metal ion affinity chromatography (IMAC), and phosphoprotein identification via LC-MS/MS and database searches. We applied this strategy to obtain phosphoprotein signatures from a set of five specimens. Phosphoproteins were characterized from each specimen. The phosphoprotein panels included 16-23 phosphoproteins that encompassed 18-30 phosphorylation sites. Some of proteins/sites were characterized in multiple specimens, whereas the majority of sites were found in single specimens. The characterized panels include caldesmone, desmin, HSP ß-1, synaptopodin-2, filamin-C, tensin-1, and others. In summary, the study showed that cancer-relevant phosphoproteins can be characterized directly from archived prostate tumor specimens, establishing the groundwork for further biomarker discovery.


Assuntos
Biomarcadores Tumorais/análise , Fosfopeptídeos/análise , Fosfoproteínas/análise , Neoplasias da Próstata/química , Proteômica/métodos , Sequência de Aminoácidos , Biomarcadores Tumorais/química , Cromatografia de Afinidade , Histocitoquímica , Humanos , Masculino , Dados de Sequência Molecular , Fosfopeptídeos/química , Fosfopeptídeos/metabolismo , Fosfoproteínas/química , Fosfoproteínas/metabolismo , Próstata/química , Neoplasias da Próstata/metabolismo , Espectrometria de Massas em Tandem
7.
J Proteome Res ; 9(1): 174-8, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20044836

RESUMO

Reversible protein phosphorylation forms the basis of cell signaling networks. Aberrations in protein phosphorylation have been linked to human diseases including cancer. Phosphoproteomics has recently emerged as an approach that focuses on analysis of protein phosphorylation on a global scale. We have recently developed a new methodology, termed in-gel IEF LC-MS/MS, and we have adapted this methodology for phosphoproteome analysis. Here, we report on the application of in-gel IEF LC-MS/MS to the mapping of the phosphoproteome in the LNCaP human prostate cancer cell line. The analytical methodology used in the study included separation of the LNCaP proteins by in-gel isoelectric focusing (IEF), digestion of the proteins with trypsin, enrichment of the digests for phosphopeptides with Immobilized Metal Ion Affinity Chromatography (IMAC), analysis of the enriched digests by LC-MS/MS, and identification of the phosphorylated peptides/proteins through searches of a protein sequence database. With this analytical platform, we have characterized over 600 different phosphorylation sites in 296 phosphoproteins. This panel of the LNCaP phosphoproteins is 3-fold larger than the panel obtained in our previous work, which attests to the power of the chosen analytical methodology. The characterized phosphoproteins are functionally diverse and include a number of proteins relevant to cancer.


Assuntos
Focalização Isoelétrica/métodos , Fosfoproteínas/metabolismo , Neoplasias da Próstata/metabolismo , Proteoma/metabolismo , Espectrometria de Massas em Tandem/métodos , Linhagem Celular Tumoral , Cromatografia de Afinidade , Humanos , Concentração de Íons de Hidrogênio , Masculino , Fosfoproteínas/análise , Neoplasias da Próstata/química , Proteoma/análise , Frações Subcelulares/química
8.
Proteome Sci ; 6: 13, 2008 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-18492268

RESUMO

BACKGROUND: Monocytes can be primed in vitro by lipopolysaccharide (LPS) for release of cytokines, for enhanced killing of cancer cells, and for enhanced release of microbicidal oxygen radicals like superoxide and peroxide. We investigated the proteins involved in regulating priming, using 2D gel proteomics. RESULTS: Monocytes from 4 normal donors were cultured for 16 h in chemically defined medium in Teflon bags +/- LPS and +/- 4-(2-aminoethyl)-benzenesulfonyl fluoride (AEBSF), a serine protease inhibitor. LPS-primed monocytes released inflammatory cytokines, and produced increased amounts of superoxide. AEBSF blocked priming for enhanced superoxide, but did not affect cytokine release, showing that AEBSF was not toxic. After staining large-format 2D gels with Sypro ruby, we compared the monocyte proteome under the four conditions for each donor. We found 30 protein spots that differed significantly in response to LPS or AEBSF, and these proteins were identified by ion trap mass spectrometry. CONCLUSION: We identified 19 separate proteins that changed in response to LPS or AEBSF, including ATP synthase, coagulation factor XIII, ferritin, coronin, HN ribonuclear proteins, integrin alpha IIb, pyruvate kinase, ras suppressor protein, superoxide dismutase, transketolase, tropomyosin, vimentin, and others. Interestingly, in response to LPS, precursor proteins for interleukin-1beta appeared; and in response to AEBSF, there was an increase in elastase inhibitor. The increase in elastase inhibitor provides support for our hypothesis that priming requires an endogenous serine protease.

9.
Electrophoresis ; 28(12): 2027-34, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17487921

RESUMO

Protein phosphorylation plays a major role in most cell-signaling pathways in all eukaryotic cells. Disruptions in phosphorylation-mediated cell-signaling events are associated with various diseases, including cancer. Here, we applied a fully non-gel-based methodology to obtain an initial panel of phosphoproteins from the LNCaP human prostate cancer cell line. The analytical strategy involved enrichment of phosphopeptides by immobilized metal ion affinity chromatography, the use of POROS Oligo R3 to capture phosphopeptides that were not retained with a C18 packing, and gas-phase fractionation in the m/z dimension to extend the dynamic range of the LC-MS/MS analysis. In this pilot investigation, 137 phosphorylation sites in 81 phosphoproteins were identified. The characterized phosphoproteins include kinases, co-regulators of steroid receptors, and a number of cancer-related proteins.


Assuntos
Extratos Celulares/química , Cromatografia de Afinidade/métodos , Fosfoproteínas/análise , Fosfoproteínas/química , Neoplasias da Próstata/química , Proteoma/análise , Sequência de Aminoácidos , Extratos Celulares/análise , Linhagem Celular Tumoral , Bases de Dados de Proteínas , Humanos , Masculino , Fosfoproteínas/metabolismo , Fosforilação , Projetos Piloto , Neoplasias da Próstata/metabolismo , Transdução de Sinais , Espectrometria de Massas por Ionização por Electrospray/métodos
10.
Anal Chem ; 76(23): 7028-38, 2004 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-15571356

RESUMO

With the advent of soft ionization methods such as MALDI and ESI, mass spectrometry has become the most important technique for the analysis of proteins and peptides. ESI-MS is often preceded by separation of the peptide sample by reversed-phase liquid chromatography (LC). Acetonitrile (ACN) is the most commonly employed organic solvent in LC-ESI-MS analysis of peptides. In this report, we demonstrate that the use of methanol (MeOH) as the organic modifier improves the detection limits for analysis of peptide mixtures such as those found in tryptic digests of proteins. A nanoLC-ESI-quadrupole ion trap instrument (LCQ Deca, ThermoFinnigan) was used to analyze peptide standards, protein digests of known concentrations, and tryptic digests of 2-DGE-separated proteins. MeOH displayed excellent chromatographic performance (separation and sensitivity), and shorter gradient times were possible for chromatographic separation with MeOH versus ACN. Sensitivity levels of a few hundred attomoles were achieved with MeOH; those levels could not be achieved with ACN. In addition, MeOH-based nanoLC-MS/MS yielded superior results for the analysis of digests of 2-DGE-separated proteins. For the 14 protein spots analyzed, the success rate of protein identification with MeOH-based nanoLC-ESI-MS/MS was 100%, with multiple proteins identified in several of the spots. In contrast, ACN-based procedure failed to identify any proteins in 21% of the spots and overall identified 33% fewer proteins than the MeOH-based procedure. In summary, higher sensitivity and shorter gradient times make MeOH an excellent organic modifier for the use in nanoLC-ESI-MS/MS analysis of peptides.


Assuntos
Metanol/química , Peptídeos/análise , Cromatografia Líquida/métodos , Espectrometria de Massas/métodos , Sensibilidade e Especificidade , Fatores de Tempo
11.
Proteomics ; 4(3): 587-98, 2004 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-14997482

RESUMO

Post-translational modifications of proteins from the human pituitary gland play an important role in the regulation of different body functions. We report on the application of a liquid chromatography-tandem mass spectrometry (MS/MS) based approach to detect and characterize phosphorylated proteins in a whole human pituitary digest. By combining an immobilized metal affinity column-based enrichment method with MS/MS conditions that favor the neutral loss of phosphoric acid from a phosphorylated precursor ion, we identified several previously undescribed phosphorylated peptides. The identified peptides were matched to the sequences of six pituitary proteins: the human growth hormone, chromogranin A, secretogranin I, 60S ribosomal protein P1 and/or P2, DnaJ homolog subfamily C member 5, and galanin. The phosphorylation sites of these important regulatory proteins were determined by MS/MS and MS(3) analysis.


Assuntos
Espectrometria de Massas/métodos , Hipófise/metabolismo , Sequência de Aminoácidos , Cromogranina A , Cromograninas/química , Bases de Dados como Assunto , Galanina/química , Hormônio do Crescimento Humano/química , Humanos , Íons , Dados de Sequência Molecular , Peptídeos/química , Fosfopeptídeos/química , Fosforilação , Processamento de Proteína Pós-Traducional , Fatores de Tempo , Tripsina/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA