Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(10)2023 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-37240083

RESUMO

Amniotic membrane and amniotic fluid derived cells are regarded as a promising stem cell source for developing regenerative medicine techniques, although they have never been tested on male infertility diseases such as varicocele (VAR). The current study aimed to examine the effects of two distinct cell sources, human Amniotic Fluid Mesenchymal Stromal Cells (hAFMSCs) and amniotic epithelial cells (hAECs), on male fertility outcomes in a rat induced VAR model. To explain cell-dependent enhancement of reproductive outcomes in rats transplanted with hAECs and hAFMSCs, insights on testis morphology, endocannabinoid system (ECS) expression and inflammatory tissue response have been carried out alongside cell homing assessment. Both cell types survived 120 days post-transplantation by modulating the ECS main components, promoting proregenerative M2 macrophages (Mφ) recruitment and a favorable anti-inflammatory IL10 expression pattern. Of note, hAECs resulted to be more effective in restoring rat fertility rate by enhancing both structural and immunoresponse mechanisms. Moreover, immunofluorescence analysis revealed that hAECs contributed to CYP11A1 expression after transplantation, whereas hAFMSCs moved towards the expression of Sertoli cell marker, SOX9, confirming a different contribution into the mechanisms leading to testis homeostasis. These findings highlight, for the first time, a distinct role of amniotic membrane and amniotic fluid derived cells in male reproduction, thus proposing innovative targeted stem-based regenerative medicine protocols for remedying high-prevalence male infertility conditions such as VAR.


Assuntos
Infertilidade Masculina , Varicocele , Ratos , Masculino , Humanos , Animais , Células Epiteliais/metabolismo , Varicocele/terapia , Varicocele/metabolismo , Âmnio , Líquido Amniótico , Fertilidade , Infertilidade Masculina/metabolismo , Diferenciação Celular
2.
Front Vet Sci ; 10: 1281040, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38179329

RESUMO

Introduction: Tendon disorders present significant challenges in the realm of musculoskeletal diseases, affecting locomotor activity and causing pain. Current treatments often fall short of achieving complete functional recovery of the tendon. It is crucial to explore, in preclinical research, the pathways governing the loss of tissue homeostasis and its regeneration. In this context, this study aimed to establish a correlation between the unbiased locomotor activity pattern of CRL:CD1 (ICR) mice exposed to uni- or bilateral Achilles tendon (AT) experimental injuries and the key histomorphometric parameters that influence tissue microarchitecture recovery. Methods: The study involved the phenotyping of spontaneous and voluntary locomotor activity patterns in male mice using digital ventilated cages (DVC®) with access to running wheels either granted or blocked. The mice underwent non-intrusive 24/7 long-term activity monitoring for the entire study period. This period included 7 days of pre-injury habituation followed by 28 days post-injury. Results and discussion: The results revealed significant variations in activity levels based on the type of tendon injury and access to running wheels. Notably, mice with bilateral lesions and unrestricted wheel access exhibited significantly higher activity after surgery. Extracellular matrix (ECM) remodeling, including COL1 deposition and organization, blood vessel remodeling, and metaplasia, as well as cytological tendon parameters, such as cell alignment and angle deviation were enhanced in surgical (bilateral lesion) and husbandry (free access to wheels) groups. Interestingly, correlation matrix analysis uncovered a strong relationship between locomotion and microarchitecture recovery (cell alignment and angle deviation) during tendon healing. Overall, this study highlights the potential of using mice activity metrics obtained from a home-cage monitoring system to predict tendon microarchitecture recovery at both cellular and ECM levels. This provides a scalable experimental setup to address the challenging topic of tendon regeneration using innovative and animal welfare-compliant strategies.

3.
Cells ; 11(3)2022 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-35159271

RESUMO

Amniotic epithelial stem cells (AECs) are largely studied for their pro-regenerative properties. However, it remains undetermined if low oxygen (O2) levels that AECs experience in vivo can be of value in maintaining their biological properties after isolation. To this aim, the present study has been designed to evaluate the effects of a hypoxia-mimetic agent, cobalt chloride (CoCl2), on AECs' stemness and angiogenic activities. First, a CoCl2 dose-effect was performed to select the concentration able to induce hypoxia, through HIF-1α stabilization, without promoting any cytotoxicity effect assessed through the analysis of cell vitality, proliferation, and apoptotic-related events. Then, the identified CoCl2 dose was evaluated on the expression and angiogenic properties of AECs' stemness markers (OCT-4, NANOG, SOX-2) by analysing VEGF expression, angiogenic chemokines' profiles, and AEC-derived conditioned media activity through an in vitro angiogenic xeno-assay. Results demonstrated that AECs are sensitive to the cytotoxicity effects of CoCl2. The unique concentration leading to HIF-1α stabilization and nuclear translocation was 10 µM, preserving cell viability and proliferation up to 48 h. CoCl2 exposure did not modulate stemness markers in AECs while progressively decreasing VEGF expression. On the contrary, CoCl2 treatment promoted a significant short-term release of angiogenic chemokines in culture media (CM). The enrichment in bio-active factors was confirmed by the ability of CoCl2-derived CM to induce HUVEC growth and the cells' organization in tubule-like structures. These findings demonstrate that an appropriate dose of CoCl2 can be adopted as a hypoxia-mimetic agent in AECs. The short-term, chemical-induced hypoxic condition can be targeted to enhance AECs' pro-angiogenic properties by providing a novel approach for stem cell-free therapy protocols.


Assuntos
Hipóxia , Fator A de Crescimento do Endotélio Vascular , Animais , Cobalto , Meios de Cultivo Condicionados/farmacologia , Células Epiteliais/metabolismo , Oxigênio , Ovinos , Fator A de Crescimento do Endotélio Vascular/metabolismo
4.
Int J Mol Sci ; 22(24)2021 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-34948315

RESUMO

The development of an adequate blood vessel network is crucial for the accomplishment of ovarian follicle growth and ovulation, which is necessary to support the proliferative and endocrine functions of the follicular cells. Although the Vascular Endothelial Growth Factor (VEGF) through gonadotropins guides ovarian angiogenesis, the role exerted by the switch on of Progesterone (P4) during the periovulatory phase remains to be clarified. The present research aimed to investigate in vivo VEGF-mediated mechanisms by inducing the development of periovulatory follicles using a pharmacologically validated synchronization treatment carried out in presence or absence of P4 receptor antagonist RU486. Spatio-temporal expression profiles of VEGF, FLT1, and FLK1 receptors and the two major MAPK/ERKs and PI3K/AKT downstream pathways were analyzed on granulosa and on theca compartment. For the first time, the results demonstrated that in vivo administration of P4 antagonist RU486 inhibits follicular VEGF receptors' signaling mainly acting on the theca layer by downregulating the activation of ERKs and AKTs. Under the effect of RU486, periovulatory follicles' microarchitecture did not move towards the periovulatory stage. The present evidence provides new insights on P4 in vivo biological effects in driving vascular and tissue remodeling during the periovulatory phase.


Assuntos
Mifepristona/farmacologia , Folículo Ovariano/efeitos dos fármacos , Progesterona/metabolismo , Receptores de Fatores de Crescimento do Endotélio Vascular/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fator A de Crescimento do Endotélio Vascular/metabolismo , Animais , Feminino , Gonadotropinas/metabolismo , Células da Granulosa/efeitos dos fármacos , Células da Granulosa/metabolismo , Humanos , Folículo Ovariano/metabolismo , Ovário/efeitos dos fármacos , Ovário/metabolismo , Suínos
5.
Cells ; 10(11)2021 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-34831443

RESUMO

Electrospun poly(lactic-co-glycolic acid) (PLGA) scaffolds with highly aligned fibers (ha-PLGA) represent promising materials in the field of tendon tissue engineering (TE) due to their characteristics in mimicking fibrous extracellular matrix (ECM) of tendon native tissue. Among these properties, scaffold biodegradability must be controlled allowing its replacement by a neo-formed native tendon tissue in a controlled manner. In this study, ha-PLGA were subjected to hydrolytic degradation up to 20 weeks, under di-H2O and PBS conditions according to ISO 10993-13:2010. These were then characterized for their physical, morphological, and mechanical features. In vitro cytotoxicity tests were conducted on ovine amniotic epithelial stem cells (oAECs), up to 7 days, to assess the effect of non-buffered and buffered PLGA by-products at different concentrations on cell viability and their stimuli on oAECs' immunomodulatory properties. The ha-PLGA scaffolds degraded slowly as evidenced by a slight decrease in mass loss (14%) and average molecular weight (35%), with estimated degradation half-time of about 40 weeks under di-H2O. The ultrastructure morphology of the scaffolds showed no significant fiber degradation even after 20 weeks, but alteration of fiber alignment was already evident at week 1. Moreover, mechanical properties decreased throughout the degradation times under wet as well as dry PBS conditions. The influence of acid degradation media on oAECs was dose-dependent, with a considerable effect at 7 days' culture point. This effect was notably reduced by using buffered media. To a certain level, cells were able to compensate the generated inflammation-like microenvironment by upregulating IL-10 gene expression and favoring an anti-inflammatory rather than pro-inflammatory response. These in vitro results are essential to better understand the degradation behavior of ha-PLGA in vivo and the effect of their degradation by-products on affecting cell performance. Indeed, buffering the degradation milieu could represent a promising strategy to balance scaffold degradation. These findings give good hope with reference to the in vivo condition characterized by physiological buffering systems.


Assuntos
Ácidos/química , Âmnio/citologia , Células Epiteliais/citologia , Imunomodulação , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Células-Tronco/citologia , Engenharia Tecidual , Alicerces Teciduais/química , Animais , Forma Celular , Condutividade Elétrica , Concentração de Íons de Hidrogênio , Interleucina-10/metabolismo , Interleucina-12/metabolismo , Peso Molecular , Ovinos
6.
Cells ; 10(8)2021 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-34440930

RESUMO

Recently, the research on stemness and multilineage differentiation mechanisms has greatly increased its value due to the potential therapeutic impact of stem cell-based approaches. Stem cells modulate their self-renewing and differentiation capacities in response to endogenous and/or extrinsic factors that can control stem cell fate. One key factor controlling stem cell phenotype is oxygen (O2). Several pieces of evidence demonstrated that the complexity of reproducing O2 physiological tensions and gradients in culture is responsible for defective stem cell behavior in vitro and after transplantation. This evidence is still worsened by considering that stem cells are conventionally incubated under non-physiological air O2 tension (21%). Therefore, the study of mechanisms and signaling activated at lower O2 tension, such as those existing under native microenvironments (referred to as hypoxia), represent an effective strategy to define if O2 is essential in preserving naïve stemness potential as well as in modulating their differentiation. Starting from this premise, the goal of the present review is to report the status of the art about the link existing between hypoxia and stemness providing insight into the factors/molecules involved, to design targeted strategies that, recapitulating naïve O2 signals, enable towards the therapeutic use of stem cell for tissue engineering and regenerative medicine.


Assuntos
Oxigênio/metabolismo , Células-Tronco/metabolismo , Animais , Diferenciação Celular/genética , Diferenciação Celular/fisiologia , Hipóxia Celular/genética , Hipóxia Celular/fisiologia , Humanos
7.
Molecules ; 25(14)2020 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-32664582

RESUMO

Electrospun PLGA microfibers with adequate intrinsic physical features (fiber alignment and diameter) have been shown to boost teno-differentiation and may represent a promising solution for tendon tissue engineering. However, the hydrophobic properties of PLGA may be adjusted through specific treatments to improve cell biodisponibility. In this study, electrospun PLGA with highly aligned microfibers were cold atmospheric plasma (CAP)-treated by varying the treatment exposure time (30, 60, and 90 s) and the working distance (1.3 and 1.7 cm) and characterized by their physicochemical, mechanical and bioactive properties on ovine amniotic epithelial cells (oAECs). CAP improved the hydrophilic properties of the treated materials due to the incorporation of new oxygen polar functionalities on the microfibers' surface especially when increasing treatment exposure time and lowering working distance. The mechanical properties, though, were affected by the treatment exposure time where the optimum performance was obtained after 60 s. Furthermore, CAP treatment did not alter oAECs' biocompatibility and improved cell adhesion and infiltration onto the microfibers especially those treated from a distance of 1.3 cm. Moreover, teno-inductive potential of highly aligned PLGA electrospun microfibers was maintained. Indeed, cells cultured onto the untreated and CAP treated microfibers differentiated towards the tenogenic lineage expressing tenomodulin, a mature tendon marker, in their cytoplasm. In conclusion, CAP treatment on PLGA microfibers conducted at 1.3 cm working distance represent the optimum conditions to activate PLGA surface by improving their hydrophilicity and cell bio-responsiveness. Since for tendon tissue engineering purposes, both high cell adhesion and mechanical parameters are crucial, PLGA treated for 60 s at 1.3 cm was identified as the optimal construct.


Assuntos
Materiais Biocompatíveis , Células Epiteliais/citologia , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Células-Tronco/citologia , Engenharia Tecidual , Alicerces Teciduais/química , Âmnio/citologia , Animais , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Adesão Celular , Diferenciação Celular , Células Cultivadas , Interações Hidrofóbicas e Hidrofílicas , Fenômenos Mecânicos , Ovinos
8.
Cells ; 9(5)2020 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-32413998

RESUMO

Injured tendons are challenging in their regeneration; thus, tissue engineering represents a promising solution. This research tests the hypothesis that the response of amniotic epithelial stem cells (AECs) can be modulated by fiber diameter size of tendon biomimetic fleeces. Particularly, the effect of electrospun poly(lactide-co-glycolide) (PLGA) fleeces with highly aligned microfibers possessing two different diameter sizes (1.27 and 2.5 µm: ha1- and ha2-PLGA, respectively) was tested on the ability of AECs to differentiate towards the tenogenic lineage by analyzing tendon related markers (Collagen type I: COL1 protein and mRNA Scleraxis: SCX, Tenomodulin: TNMD and COL1 gene expressions) and to modulate their immunomodulatory properties by investigating the pro- (IL-6 and IL-12) and anti- (IL-4 and IL-10) inflammatory cytokines. It was observed that fiber alignment and not fiber size influenced cell morphology determining the morphological change of AECs from cuboidal to fusiform tenocyte-like shape. Instead, fleece mechanical properties, cell proliferation, tenogenic differentiation, and immunomodulation were regulated by changing the ha-PLGA microfiber diameter size. Specifically, higher DNA quantity and better penetration within the fleece were found on ha2-PLGA, while ha1-PLGA fleeces with small fiber diameter size had better mechanical features and were more effective on AECs trans-differentiation towards the tenogenic lineage by significantly translating more efficiently SCX into the downstream effector TNMD. Moreover, the fiber diameter of 1.27 µm induced higher expression of pro-regenerative, anti-inflammatory interleukins mRNA expression (IL-4 and IL-10) with favorable IL-12/IL-10 ratio with respect to the fiber diameter of 2.5 µm. The obtained results demonstrate that fiber diameter is a key factor to be considered when designing tendon biomimetic fleece for tissue repair and provide new insights into the importance of controlling matrix parameters in enhancing cell differentiation and immunomodulation either for the cells functionalized within or for the transplanted host tissue.


Assuntos
Âmnio/citologia , Materiais Biomiméticos/farmacologia , Diferenciação Celular/efeitos dos fármacos , Fatores Imunológicos/farmacologia , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Células-Tronco/imunologia , Tendões/citologia , Engenharia Tecidual , Animais , Anti-Inflamatórios/farmacologia , Proliferação de Células/efeitos dos fármacos , Forma Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Epiteliais/citologia , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Interleucinas/farmacologia , Ovinos , Espectroscopia de Infravermelho com Transformada de Fourier , Células-Tronco/citologia , Células-Tronco/efeitos dos fármacos , Células-Tronco/metabolismo
9.
Cells ; 9(2)2020 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-32012741

RESUMO

Background. The design of tendon biomimetic electrospun fleece with Amniotic Epithelial Stem Cells (AECs) that have shown a high tenogenic attitude may represent an alternative strategy to overcome the unsatisfactory results of conventional treatments in tendon regeneration. Methods. In this study, we evaluated AEC-engineered electrospun poly(lactide-co-glycolide) (PLGA) fleeces with highly aligned fibers (ha-PLGA) that mimic tendon extracellular matrix, their biocompatibility, and differentiation towards the tenogenic lineage. PLGA fleeces with randomly distributed fibers (rd-PLGA) were generated as control. Results. Optimal cell infiltration and biocompatibility with both PLGA fleeces were shown. However, only ha-PLGA fleeces committed AECs towards an Epithelial-Mesenchymal Transition (EMT) after 48 h culture, inducing their cellular elongation along the fibers' axis and the upregulation of mesenchymal markers. AECs further differentiated towards tenogenic lineage as confirmed by the up-regulation of tendon-related genes and Collagen Type 1 (COL1) protein expression that, after 28 days culture, appeared extracellularly distributed along the direction of ha-PLGA fibers. Moreover, long-term co-cultures of AEC-ha-PLGA bio-hybrids with fetal tendon explants significantly accelerated of half time AEC tenogenic differentiation compared to ha-PLGA fleeces cultured only with AECs. Conclusions. The fabricated tendon biomimetic ha-PLGA fleeces induce AEC tenogenesis through an early EMT, providing a potential tendon substitute for tendon engineering research.


Assuntos
Âmnio/citologia , Materiais Biomiméticos/farmacologia , Diferenciação Celular/efeitos dos fármacos , Células Epiteliais/citologia , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/farmacologia , Células-Tronco/citologia , Tendões/citologia , Engenharia Tecidual , Animais , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Transição Epitelial-Mesenquimal/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Ovinos , Células-Tronco/efeitos dos fármacos , Células-Tronco/metabolismo
10.
J Cancer Res Clin Oncol ; 144(9): 1685-1699, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29959569

RESUMO

PURPOSE: Prostate cancer (PCa) cell radioresistance causes the failure of radiation therapy (RT) in localized or locally advanced disease. The aberrant accumulation of c-Myc oncoprotein, known to promote PCa onset and progression, may be due to the control of gene transcription and/or MEK/ERK-regulated protein stabilization. Here, we investigated the role of MEK/ERK signaling in PCa. METHODS: LnCAP, 22Rv1, DU145, and PC3 PCa cell lines were used in in vitro and in vivo experiments. U0126, trametinib MEK/ERK inhibitors, and c-Myc shRNAs were used. Radiation was delivered using an x-6 MV photon linear accelerator. U0126 in vivo activity alone or in combination with irradiation was determined in murine xenografts. RESULTS: Inhibition of MEK/ERK signaling down-regulated c-Myc protein in PCa cell lines to varying extents by affecting expression of RNA and protein, which in turn determined radiosensitization in in vitro and in vivo xenograft models of PCa cells. The crucial role played by c-Myc in the MEK/ERK pathways was demonstrated in 22Rv1 cells by the silencing of c-Myc by means of short hairpin mRNA, which yielded effects resembling the targeting of MEK/ERK signaling. The clinically approved compound trametinib used in vitro yielded the same effects as U0126 on growth and C-Myc expression. Notably, U0126 and trametinib induced a drastic down-regulation of BMX, which is known to prevent apoptosis in cancer cells. CONCLUSIONS: The results of our study suggest that signal transduction-based therapy can, by disrupting the MEK/ERK/c-Myc axis, reduce human PCa radioresistance caused by increased c-Myc expression in vivo and in vitro and restores apoptosis signals.


Assuntos
Sistema de Sinalização das MAP Quinases/genética , Neoplasias da Próstata/genética , Proteínas Proto-Oncogênicas c-myc/genética , Tolerância a Radiação/genética , Transdução de Sinais/genética , Animais , Linhagem Celular Tumoral , Regulação para Baixo/genética , Humanos , Masculino , Camundongos , Camundongos Nus , RNA Interferente Pequeno/genética , Ensaios Antitumorais Modelo de Xenoenxerto
11.
J Tissue Eng Regen Med ; 12(3): e1594-e1608, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29024514

RESUMO

Cell-based therapy holds great promise for tendon disorders, a widespread debilitating musculoskeletal condition. Even if the cell line remains to be defined, preliminary evidences have proven that amniotic-derived cells possess in vitro and in vivo a great tenogenic potential. This study investigated the efficacy of transplanted human amniotic epithelial cells (hAECs) by testing their early regenerative properties and mechanisms involved on a validated ovine Achilles tendon partial defect performed on 29 animals. The injured tendons treated with hAECs recovered rapidly, in 28 days, structural and biomechanical properties undertaking a programmed tissue regeneration, differently from the spontaneous healing tissues. hAECs remained viable within the host tendons establishing with the endogenous progenitor cells an active dialogue. Through the secretion of modulatory factors, hAECs inhibited the inflammatory cells infiltration, activated the M2 macrophage subpopulation early recruitment, and accelerated blood vessel as well as extracellular matrix remodelling. In parallel, some in situ differentiated hAECs displayed a tenocytelike phenotype. Both paracrine and direct hAECs stimulatory effects were confirmed analysing their genome profile before and after transplantation. The 49 human up-regulated transcripts recorded in transplanted hAECs belonged to tendon lineage differentiation (epithelial-mesenchymal transition, connective specific matrix components, and skeleton or muscle system development-related transcripts), as well as the in situ activation of paracrine signalling involved in inflammatory and immunomodulatory response. Altogether, these evidences support the hypothesis that hAECs are a practicable and efficient strategy for the acute treatment of tendinopathy, reinforcing the idea of a concrete use of amniotic epithelial cells towards the clinical practice.


Assuntos
Tendão do Calcâneo/patologia , Âmnio/citologia , Células Epiteliais/transplante , Regeneração , Tendão do Calcâneo/irrigação sanguínea , Tendão do Calcâneo/fisiopatologia , Animais , Fenômenos Biomecânicos , Diferenciação Celular , Sobrevivência Celular , Células Epiteliais/citologia , Matriz Extracelular/metabolismo , Regulação da Expressão Gênica , Humanos , Macrófagos/metabolismo , Neovascularização Fisiológica , Fenótipo , Ovinos , Tenócitos/patologia , Transplante Heterólogo , Remodelação Vascular , Cicatrização
12.
Sci Rep ; 7(1): 3761, 2017 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-28630448

RESUMO

The in vitro expansion is detrimental to therapeutic applications of amniotic epithelial cells (AEC), an emerging source of fetal stem cells. This study provides molecular evidences of progesterone (P4) role in preventing epithelial-mesenchymal transition (EMT) in ovine AEC (oAEC). oAEC amplified under standard conditions spontaneously acquired mesenchymal properties through the up-regulation of EMT-transcription factors. P4 supplementation prevented phenotype shift by inhibiting the EMT-inducing mechanism such as the autocrine production of TGF-ß and the activation of intracellular-related signaling. The effect of P4 still persisted for one passage after steroid removal from culture as well as steroid supplementation promptly reversed mesenchymal phenotype in oAEC which have experienced EMT during amplification. Furthermore, P4 promoted an acute up-regulation of pluripotent genes whereas enhanced basal and LPS-induced oAEC anti-inflammatory response with an increase in anti-inflammatory and a decrease in pro-inflammatory cytokines expression. Altogether, these results indicate that P4 supplementation is crucial to preserve epithelial phenotype and to enhance biological properties in expanded oAEC. Therefore, an innovative cultural approach is proposed in order to improve therapeutic potential of this promising source of epithelial stem cells.


Assuntos
Âmnio/imunologia , Células Epiteliais/imunologia , Transição Epitelial-Mesenquimal/imunologia , Imunomodulação , Progesterona/imunologia , Animais , Feminino , Ovinos
13.
Res Vet Sci ; 105: 92-102, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27033915

RESUMO

Recently, we have demonstrated that ovine amniotic epithelial cells (oAECs) allotransplanted into experimentally induced tendon lesions are able to stimulate tissue regeneration also by reducing leukocyte infiltration. Amongst leukocytes, macrophages (Mφ) M1 and M2 phenotype cells are known to mediate inflammatory and repairing processes, respectively. In this research it was investigated if, during tendon regeneration induced by AECs allotransplantation, M1Mφ and M2Mφ phenotype cells are recruited and differently distributed within the lesion site. Ovine AECs treated and untreated (Ctr) tendons were explanted at 7, 14, and 28 days and tissue microarchitecture was analyzed together with the distribution and quantification of leukocytes (CD45 positive), Mφ (CD68 pan positive), and M1Mφ (CD86, and IL12b) and M2Mφ (CD206, YM1 and IL10) phenotype related markers. In oAEC transplanted tendons CD45 and CD68 positive cells were always reduced in the lesion site. At day 14, oAEC treated tendons began to recover their microarchitecture, contextually a reduction of M1Mφ markers, mainly distributed close to oAECs, and an increase of M2Mφ markers was evidenced. CD206 positive cells were distributed near the regenerating areas. At day 28 oAECs treated tendons acquired a healthy-like structure with a reduction of M2Mφ. Differently, Ctr tendons maintained a disorganized morphology throughout the experimental time and constantly showed high values of M1Mφ markers. These findings indicate that M2Mφ recruitment could be correlated to tendon regeneration induced by oAECs allotransplantation. Moreover, these results demonstrate oAECs immunomodulatory role also in vivo and support novel insights into their allogeneic use underlying the resolution of tendon fibrosis.


Assuntos
Âmnio/citologia , Transplante de Células/veterinária , Macrófagos/fisiologia , Regeneração , Traumatismos dos Tendões/veterinária , Tendões/fisiologia , Animais , Transplante de Células/métodos , Células Epiteliais/citologia , Fenótipo , Ovinos , Traumatismos dos Tendões/terapia
14.
J Craniofac Surg ; 26(3): 737-40, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25974782

RESUMO

Sinus augmentation is a routine surgical procedure in dentistry. At present, various animal models are available for the research purpose on this topic. In particular, for the first time, we have performed a morphological study on sheep sinus, using cone beam computed tomography (CBCT), to precisely define the anatomy of the ovine sinus. Then, we compared the sheep and human sinus morphological parameters, in order to uniform the research approach to the sinus augmentation procedures and to standardize this experimental model. Six fresh heads of adult female sheep were studied with CBCT and histologic examination to determine the dimensions and the organization of the ovine maxillary sinus. The comparison of the dimensional values between man and sheep shows evident differences between the two species; CBCT offers detailed information for studying normal maxillary sinus. Human and sheep maxillary sinus show anatomical differences that must be taken into account in experimental procedures.


Assuntos
Modelos Animais , Levantamento do Assoalho do Seio Maxilar/métodos , Pesquisa Translacional Biomédica , Adulto , Animais , Tomografia Computadorizada de Feixe Cônico/métodos , Feminino , Humanos , Seio Maxilar/diagnóstico por imagem , Seio Maxilar/cirurgia , Ovinos
15.
J Anat ; 226(2): 126-42, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25546075

RESUMO

Processes of development during fetal life profoundly transform tendons from a plastic tissue into a highly differentiated structure, characterised by a very low ability to regenerate after injury in adulthood. Sheep tendon is frequently used as a translational model to investigate cell-based regenerative approaches. However, in contrast to other species, analytical and comparative baseline studies on the normal developmental maturation of sheep tendons from fetal through to adult life are not currently available. Thus, a detailed morphological and biochemical study was designed to characterise tissue maturation during mid- (2 months of pregnancy: 14 cm of length) and late fetal (4 months: 40 cm of length) life, through to adulthood. The results confirm that ovine tendon morphology undergoes profound transformations during this period. Endotenon was more developed in fetal tendons than in adult tissues, and its cell phenotype changed through tendon maturation. Indeed, groups of large rounded cells laying on smaller and more compacted ones expressing osteocalcin, vascular endothelial growth factor (VEGF) and nerve growth factor (NGF) were identified exclusively in fetal mid-stage tissues, and not in late fetal or adult tendons. VEGF, NGF as well as blood vessels and nerve fibers showed decreased expression during tendon development. Moreover, the endotenon of mid- and late fetuses contained identifiable cells that expressed several pluripotent stem cell markers [Telomerase Reverse Transcriptase (TERT), SRY Determining Region Y Box-2 (SOX2), Nanog Homeobox (NANOG) and Octamer Binding Transcription Factor-4A (OCT-4A)]. These cells were not identifiable in adult specimens. Ovine tendon development was also accompanied by morphological modifications to cell nuclei, and a progressive decrease in cellularity, proliferation index and expression of connexins 43 and 32. Tendon maturation was similarly characterised by modulation of several other gene expression profiles, including Collagen type I, Collagen type III, Scleraxis B, Tenomodulin, Trombospondin 4 and Osteocalcin. These gene profiles underwent a dramatic reduction in adult tissues. Transforming growth factor-ß~1 expression (involved in collagen synthesis) underwent a similar decrease. In conclusion, these morphological studies carried out on sheep tendons at different stages of development and aging offer normal structural and molecular baseline data to allow accurate evaluation of data from subsequent interventional studies investigating tendon healing and regeneration in ovine experimental models.


Assuntos
Tendão do Calcâneo , Ovinos , Tendão do Calcâneo/anatomia & histologia , Tendão do Calcâneo/citologia , Tendão do Calcâneo/embriologia , Tendão do Calcâneo/crescimento & desenvolvimento , Tendão do Calcâneo/metabolismo , Animais , Biomarcadores/metabolismo , Western Blotting/veterinária , Conexinas/metabolismo , Matriz Extracelular/metabolismo , Perfilação da Expressão Gênica/veterinária , Imuno-Histoquímica/veterinária , Fator de Crescimento Neural/metabolismo , Osteocalcina/metabolismo , Células-Tronco Pluripotentes/metabolismo , Ovinos/embriologia , Ovinos/crescimento & desenvolvimento , Fator A de Crescimento do Endotélio Vascular/metabolismo
16.
Stem Cell Rev Rep ; 10(5): 725-41, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24867872

RESUMO

Stem cells isolated from amniotic epithelium (AECs) have shown great potential in cell-based regenerative therapies. Because of their fetal origin, these cells exhibit elevated proliferation rates and plasticity, as well as, immune tolerance and anti-inflammatory properties. These inherent attitudes make AECs well-suited for both allogenic and xenogenic cellular transplants in animal models. Since in human only at term amnion is easily obtainable after childbirth, limited information are so far available concerning the phenotypic and functional difference between AECs isolated from early and late amnia. To this regard, the sheep animal model offers an undoubted advantage in allowing the easy collection of both types of AECs in large quantity. The aim of this study was to determine the effect of gestational age on ovine AECs (oAECs) phenotype, immunomodulatory properties, global DNA methylation status and pluripotent differentiation ability towards mesodermic and ectodermic lineages. The immunomodulatory property of oAECs in inhibiting lymphocyte proliferation was mainly unaffected by gestational age. Conversely, gestation considerably affected the expression of surface markers, as well the expression and localization of pluripotency markers. In detail, with progression of gestation the mRNA expression of NANOG and SOX2 markers was reduced, while the ones of TERT and OCT4A was unaltered; but at the end of gestation NANOG, SOX2 and TERT proteins mainly localized outside the nuclear compartment. Regarding the differentiation ability, LPL (adipogenic-specific gene) mRNA content significantly increased in oAECs isolated from early amnia, while OCN (osteogenic-specific gene) and NEFM (neurogenic-specific gene) mRNA content significantly increased in oAECs isolated from late amnia, suggesting that gestational stage affected cell plasticity. Finally, the degree of global DNA methylation increased with gestational age. All these results indicate that gestational age is a key factor capable of influencing morphological and functional properties of oAECs, and thus probably affecting the outcome of cell transplantation therapies.


Assuntos
Âmnio/citologia , Âmnio/imunologia , Metilação de DNA , Células Epiteliais/citologia , Células Epiteliais/imunologia , Idade Gestacional , Imunomodulação , Âmnio/metabolismo , Animais , Diferenciação Celular , Proliferação de Células , Células Cultivadas , Células Epiteliais/metabolismo , Fenótipo , Ovinos
17.
PLoS One ; 9(4): e95910, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24756033

RESUMO

BACKGROUND: The success of ovarian follicle growth and ovulation is strictly related to the development of an adequate blood vessel network required to sustain the proliferative and endocrine functions of the follicular cells. Even if the Vascular Endothelial Growth Factor (VEGF) drives angiogenesis before ovulation, the local role exerted by Progesterone (P4) remains to be clarified, in particular when its concentration rapidly increases before ovulation. AIM: This in vivo study was designed to clarify the effect promoted by a P4 receptor antagonist, RU486, on VEGF expression and follicular angiogenesis before ovulation, in particular, during the transition from pre to periovulatory follicles induced by human Chorionic Gonadotropins (hCG) administration. MATERIAL AND METHODS: Preovulatory follicle growth and ovulation were pharmacologically induced in prepubertal gilts by combining equine Chorionic Gonadotropins (eCG) and hCG used in the presence or absence of RU486. The effects on VEGF expression were analyzed using biochemical and immunohistochemical studies, either on granulosa or on theca layers of follicles isolated few hours before ovulation. This angiogenic factor was also correlated to follicular morphology and to blood vessels architecture. RESULTS AND CONCLUSIONS: VEGF production, blood vessel network and follicle remodeling were impaired by RU486 treatment, even if the cause-effect correlation remains to be clarified. The P4 antagonist strongly down-regulated theca VEGF expression, thus, preventing most of the angiogenic follicle response induced by hCG. RU486-treated follicles displayed a reduced vascular area, a lower rate of endothelial cell proliferation and a reduced recruitment of perivascular mural cells. These data provide important insights on the biological role of RU486 and, indirectly, on steroid hormones during periovulatory follicular phase. In addition, an in vivo model is proposed to evaluate how periovulatory follicular angiogenesis may affect the functionality of the corpus luteum (CL) and the success of pregnancy.


Assuntos
Antagonistas de Hormônios/farmacologia , Mifepristona/farmacologia , Folículo Ovariano/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Animais , Proliferação de Células , Corpo Lúteo/fisiologia , Células Endoteliais/fisiologia , Endotélio Vascular/citologia , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/fisiologia , Feminino , Neovascularização Fisiológica , Especificidade de Órgãos , Folículo Ovariano/irrigação sanguínea , Folículo Ovariano/citologia , Folículo Ovariano/efeitos dos fármacos , Ovulação , Progesterona/antagonistas & inibidores , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Sus scrofa , Fator A de Crescimento do Endotélio Vascular/genética , Fator de von Willebrand/metabolismo
18.
PLoS One ; 8(5): e63256, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23696804

RESUMO

BACKGROUND: Evidence has been provided that a cell-based therapy combined with the use of bioactive materials may significantly improve bone regeneration prior to dental implant, although the identification of an ideal source of progenitor/stem cells remains to be determined. AIM: In the present research, the bone regenerative property of an emerging source of progenitor cells, the amniotic epithelial cells (AEC), loaded on a calcium-phosphate synthetic bone substitute, made by direct rapid prototyping (rPT) technique, was evaluated in an animal study. MATERIAL AND METHODS: Two blocks of synthetic bone substitute (∼0.14 cm(3)), alone or engineered with 1×10(6) ovine AEC (oAEC), were grafted bilaterally into maxillary sinuses of six adult sheep, an animal model chosen for its high translational value in dentistry. The sheep were then randomly divided into two groups and sacrificed at 45 and 90 days post implantation (p.i.). Tissue regeneration was evaluated in the sinus explants by micro-computer tomography (micro-CT), morphological, morphometric and biochemical analyses. RESULTS AND CONCLUSIONS: The obtained data suggest that scaffold integration and bone deposition are positively influenced by allotransplantated oAEC. Sinus explants derived from sheep grafted with oAEC engineered scaffolds displayed a reduced fibrotic reaction, a limited inflammatory response and an accelerated process of angiogenesis. In addition, the presence of oAEC significantly stimulated osteogenesis either by enhancing bone deposition or making more extent the foci of bone nucleation. Besides the modulatory role played by oAEC in the crucial events successfully guiding tissue regeneration (angiogenesis, vascular endothelial growth factor expression and inflammation), data provided herein show that oAEC were also able to directly participate in the process of bone deposition, as suggested by the presence of oAEC entrapped within the newly deposited osteoid matrix and by their ability to switch-on the expression of a specific bone-related protein (osteocalcin, OCN) when transplanted into host tissues.


Assuntos
Líquido Amniótico/citologia , Regeneração Óssea , Substitutos Ósseos , Células Epiteliais/transplante , Seio Maxilar/cirurgia , Animais , Células Cultivadas , Células Epiteliais/metabolismo , Expressão Gênica , Maxila/fisiologia , Maxila/cirurgia , Seio Maxilar/irrigação sanguínea , Carneiro Doméstico , Engenharia Tecidual , Alicerces Teciduais , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo , Microtomografia por Raio-X
19.
Clin Oral Investig ; 17(7): 1661-75, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23064983

RESUMO

OBJECTIVES: The present research has been performed to evaluate whether a commercial magnesium-enriched hydroxyapatite (MgHA)/collagen-based scaffold engineered with ovine amniotic fluid mesenchymal cells (oAFMC) could improve bone regeneration process in vivo. MATERIALS AND METHODS: Bilateral sinus augmentation was performed on eight adult sheep in order to compare the tissue regeneration process at 45 and 90 days after implantation of the oAFMC-engineered scaffold (Test Group) or of the scaffold alone (Ctr Group). The process of tissue remodeling was analyzed through histological, immunohistochemical, and morphometric analyses by calculating the proliferation index (PI) of oAFMC loaded on the scaffold, the total vascular area (VA), and vascular endothelial growth factor (VEGF) expression levels within the grafted area. RESULTS: MgHA/collagen-based scaffold showed high biocompatibility preserving the survival of oAFMC for 90 days in grafted sinuses. The use of oAFMC increased bone deposition and stimulated a more rapid angiogenic reaction, thus probably supporting the higher cell PI recorded in cell-treated sinuses. A significantly higher VEGF expression (Test vs. Ctr Group; p = 0.0004) and a larger total VA (p = 0.0006) were detected in the Test Group at 45 days after surgery. The PI was significantly higher (p = 0.027) at 45 days and became significantly lower at 90 days (p = 0.0007) in the Test Group sinuses, while the PI recorded in the Ctr Group continued to increase resulting to a significantly higher PI at day 90 (CTR day 45 vs. CTR day 90; p = 0.022). CONCLUSIONS: The osteoinductive effect of a biomimetic commercial scaffold may be significantly improved by the presence of oAFMC. CLINICAL RELEVANCE: The amniotic fluid mesenchymal cell (AFMC) may represent a novel, largely and easily accessible source of mesenchymal stem cells to develop cell-based therapy for maxillofacial surgery.


Assuntos
Líquido Amniótico/citologia , Transplante de Células-Tronco Mesenquimais , Levantamento do Assoalho do Seio Maxilar/métodos , Engenharia Tecidual/métodos , Aloenxertos , Animais , Materiais Biocompatíveis , Regeneração Óssea , Proliferação de Células , Durapatita/farmacologia , Citometria de Fluxo , Imuno-Histoquímica , Magnésio/farmacologia , Modelos Animais , Osteogênese , Carneiro Doméstico , Alicerces Teciduais , Fator A de Crescimento do Endotélio Vascular/metabolismo
20.
Cell Biol Int ; 36(1): 7-19, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21880014

RESUMO

We set out to characterize stemness properties and osteogenic potential of sheep AEC (amniotic epithelial cells). AEC were isolated from 3-month-old fetuses and expanded in vitro for 12 passages. The morphology, surface markers, stemness markers and osteogenic differentiation were inspected after 1, 6 and 12 passages of expansion, with an average doubling time of 24 h. AEC clearly expressed the stemness markers Oct-3/4 (octamer-binding protein-3/4), Nanog, Sox2 and TERT (telomerase reverse transcriptase) and displayed low levels of global DNA methylation. Culture had moderate effects on cell conditions; some adhesion molecules progressively disappeared from the cell surface, and the expression of Sox2 and TERT was slightly reduced while Nanog increased. No changes occurred in the levels of DNA methylation. Cells organized in 3D spheroids were used for IVD (in vitro differentiation). Within these structures the cells developed a complex intercellular organization that involved extensive intercellular coupling despite continuous cell migration. Marked deposition of calcein in the ECM (extracellular matrix), increased ALP (alkaline phosphatase) activity, expression of bone-related genes (osteocalcin) and the matrix mineralization shown by Alizarin Red staining demonstrate that AEC can undergo rapid and extensive osteogenic differentiation. AEC introduced in experimental bone lesions survived in the site of implantation for 45 days and supported consistent bone neoformation, thus showing promising potential applications in osteogenic regenerative medicine.


Assuntos
Âmnio/citologia , Células Epiteliais/citologia , Osteogênese , Fosfatase Alcalina/metabolismo , Animais , Cálcio/metabolismo , Diferenciação Celular , Metilação de DNA , Células Epiteliais/metabolismo , Matriz Extracelular/metabolismo , Proteínas de Homeodomínio/metabolismo , Fator 3 de Transcrição de Octâmero/metabolismo , Osteocalcina/metabolismo , Fatores de Transcrição SOXB1/metabolismo , Ovinos , Telomerase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA