Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Phys Chem B ; 125(15): 3763-3780, 2021 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-33844527

RESUMO

While the pervasiveness of allostery in proteins is commonly accepted, we further show the generic nature of allosteric mechanisms by analyzing here transmembrane ion-channel viroporin 3a and RNA-dependent RNA polymerase (RdRp) from SARS-CoV-2 along with metabolic enzymes isocitrate dehydrogenase 1 (IDH1) and fumarate hydratase (FH) implicated in cancers. Using the previously developed structure-based statistical mechanical model of allostery (SBSMMA), we share our experience in analyzing the allosteric signaling, predicting latent allosteric sites, inducing and tuning targeted allosteric response, and exploring the allosteric effects of mutations. This, yet incomplete list of phenomenology, forms a complex and unique allosteric territory of protein function, which should be thoroughly explored. We propose a generic computational framework, which not only allows one to obtain a comprehensive allosteric control over proteins but also provides an opportunity to approach the fragment-based design of allosteric effectors and drug candidates. The advantages of allosteric drugs over traditional orthosteric compounds, complemented by the emerging role of the allosteric effects of mutations in the expansion of the cancer mutational landscape and in the increased mutability of viral proteins, leave no choice besides further extensive studies of allosteric mechanisms and their biomedical implications.


Assuntos
COVID-19 , Regulação Alostérica , Sítio Alostérico , Humanos , Modelos Moleculares , SARS-CoV-2
2.
Biophys J ; 119(9): 1833-1848, 2020 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-33086047

RESUMO

Amide hydrogen-deuterium exchange mass spectrometry is powerful for describing combinatorial coupling effects of a cooperative ligand pair binding at noncontiguous sites: adenosine at the ATP-pocket and a docking peptide (PIFtide) at the PIF-pocket, on a model protein kinase PDK1. Binding of two ligands to PDK1 reveal multiple hotspots of synergistic allostery with cumulative effects greater than the sum of individual effects mediated by each ligand. We quantified this synergism and ranked these hotspots using a difference in deuteration-based approach, which showed that the strongest synergistic effects were observed at three of the critical catalytic loci of kinases: the αB-αC helices, and HRD-motif loop, and DFG-motif. Additionally, we observed weaker synergistic effects at a distal GHI-subdomain locus. Synergistic changes in deuterium exchange observed at a distal site but not at the intermediate sites of the large lobe of the kinase reveals allosteric propagation in proteins to operate through two modes. Direct electrostatic interactions between polar and charged amino acids that mediate targeted relay of allosteric signals, and diffused relay of allosteric signals through soft matter-like hydrophobic core amino acids. Furthermore, we provide evidence that the conserved ß-3 strand lysine of protein kinases (Lys111 of PDK1) functions as an integrator node to coordinate allosteric coupling of the two ligand-binding sites. It maintains indirect interactions with the ATP-pocket and mediates a critical salt bridge with a glutamate (Glu130) of αC helix, which is conserved across all kinases. In summary, allosteric propagation in cooperative, dual-liganded enzyme targets is bidirectional and synergistic and offers a strategy for combinatorial drug development.


Assuntos
Peptídeos , Proteínas Quinases , Regulação Alostérica , Sítio Alostérico , Sítios de Ligação , Ligantes , Proteínas Quinases/metabolismo
3.
Nucleic Acids Res ; 48(W1): W116-W124, 2020 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-32392302

RESUMO

The AlloSigMA 2 server provides an interactive platform for exploring the allosteric signaling caused by ligand binding and/or mutations, for analyzing the allosteric effects of mutations and for detecting potential cancer drivers and pathogenic nsSNPs. It can also be used for searching latent allosteric sites and for computationally designing allosteric effectors for these sites with required agonist/antagonist activity. The server is based on the implementation of the Structure-Based Statistical Mechanical Model of Allostery (SBSMMA), which allows one to evaluate the allosteric free energy as a result of the perturbation at per-residue resolution. The Allosteric Signaling Map (ASM) providing a comprehensive residue-by-residue allosteric control over the protein activity can be obtained for any structure of interest. The Allosteric Probing Map (APM), in turn, allows one to perform the fragment-based-like computational design experiment aimed at finding leads for potential allosteric effectors. The server can be instrumental in elucidating of allosteric mechanisms and actions of allosteric mutations, and in the efforts on design of new elements of allosteric control. The server is freely available at: http://allosigma.bii.a-star.edu.sg.


Assuntos
Mutação , Proteínas/química , Proteínas/genética , Software , Regulação Alostérica , Sítio Alostérico , Ligantes , Modelos Moleculares , Modelos Estatísticos , Proteínas/metabolismo
4.
Curr Opin Struct Biol ; 62: 149-157, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32062398

RESUMO

Allosteric drugs have become an indispensable toolbox of rapidly developing precision medicine, having already established reputation of advantages over traditional medicines. Allosteric mechanisms are also widely involved in the action of SNPs and latent cancer drivers, and can be used in fine and specific tuning of biologics, providing a great potential in diagnostics and therapy. We discuss here major targets for prospected allosteric medicines, currently available allosteric compounds, and drug-candidates at different stages of research and (pre)clinical trials. We describe our computational model of the comprehensive allosteric control of protein activity, outlining the ways of implementing it in pharmacological applications. Finally, we formulate outstanding questions and discuss feasible directions in the work on allosteric drugs and mutations.


Assuntos
Desenho de Fármacos , Descoberta de Drogas , Preparações Farmacêuticas/química , Proteínas/metabolismo , Regulação Alostérica , Sítio Alostérico , Humanos
5.
Proc Natl Acad Sci U S A ; 115(51): E11943-E11950, 2018 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-30504143

RESUMO

Abundant and essential motifs, such as phosphate-binding loops (P-loops), are presumed to be the seeds of modern enzymes. The Walker-A P-loop is absolutely essential in modern NTPase enzymes, in mediating binding, and transfer of the terminal phosphate groups of NTPs. However, NTPase function depends on many additional active-site residues placed throughout the protein's scaffold. Can motifs such as P-loops confer function in a simpler context? We applied a phylogenetic analysis that yielded a sequence logo of the putative ancestral Walker-A P-loop element: a ß-strand connected to an α-helix via the P-loop. Computational design incorporated this element into de novo designed ß-α repeat proteins with relatively few sequence modifications. We obtained soluble, stable proteins that unlike modern P-loop NTPases bound ATP in a magnesium-independent manner. Foremost, these simple P-loop proteins avidly bound polynucleotides, RNA, and single-strand DNA, and mutations in the P-loop's key residues abolished binding. Binding appears to be facilitated by the structural plasticity of these proteins, including quaternary structure polymorphism that promotes a combined action of multiple P-loops. Accordingly, oligomerization enabled a 55-aa protein carrying a single P-loop to confer avid polynucleotide binding. Overall, our results show that the P-loop Walker-A motif can be implemented in small and simple ß-α repeat proteins, primarily as a polynucleotide binding motif.


Assuntos
Sítios de Ligação , Fosfatos/química , Domínios e Motivos de Interação entre Proteínas , Proteínas/química , Trifosfato de Adenosina/química , Sequência de Aminoácidos , Domínio Catalítico , DNA , Evolução Molecular , Magnésio , Modelos Moleculares , Mutação , Nucleosídeo-Trifosfatase/química , Filogenia , Polinucleotídeos , Ligação Proteica , Conformação Proteica , RNA , Proteínas de Ligação a RNA/química , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos
7.
Prog Biophys Mol Biol ; 128: 85-99, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-27697476

RESUMO

Study of the hierarchy of domain structure with alternative sets of domains and analysis of discontinuous domains, consisting of remote segments of the polypeptide chain, raised a question about the minimal structural unit of the protein domain. The hypothesis on the decisive role of the polypeptide backbone in determining the elementary units of globular proteins have led to the discovery of closed loops. It is reviewed here how closed loops form the loop-n-lock structure of proteins, providing the foundation for stability and designability of protein folds/domain and underlying their co-translational folding. Simplified protein sequences are considered here with the aim to explore the basic principles that presumably dominated the folding and stability of proteins in the early stages of structural evolution. Elementary functional loops (EFLs), closed loops with one or few catalytic residues, are, in turn, units of the protein function. They are apparent descendants of the prebiotic ring-like peptides, which gave rise to the first functional folds/domains being fused in the beginning of the evolution of protein structure. It is also shown how evolutionary relations between protein functional superfamilies and folds delineated with the help of EFLs can contribute to establishing the rules for design of desired enzymatic functions. Generalized descriptors of the elementary functions are proposed to be used as basic units in the future computational design.


Assuntos
Dobramento de Proteína , Proteínas/química , Proteínas/metabolismo , Humanos , Biossíntese de Proteínas , Domínios Proteicos , Estabilidade Proteica
8.
Protein Sci ; 24(9): 1475-85, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26131561

RESUMO

Aminoacyl-tRNA synthetases (ARSs) play an essential role in the protein synthesis by catalyzing an attachment of their cognate amino acids to tRNAs. Unlike their prokaryotic counterparts, ARSs in higher eukaryotes form a multiaminoacyl-tRNA synthetase complex (MARS), consisting of the subset of ARS polypeptides and three auxiliary proteins. The intriguing feature of MARS complex is the presence of only nine out of twenty ARSs, specific for Arg, Asp, Gln, Glu, Ile, Leu, Lys, Met, and Pro, regardless of the organism, cell, or tissue types. Although existence of MARSs complex in higher eukaryotes has been already known for more than four decades, its functional significance remains elusive. We found that seven of the nine corresponding amino acids (Arg, Gln, Glu, Ile, Leu, Lys, and Met) together with Ala form a predictor of the protein α-helicity. Remarkably, all amino acids (besides Ala) in the predictor have the highest possible number of side-chain rotamers. Therefore, compositional bias of a typical α-helix can contribute to the helix's stability by increasing the entropy of the folded state. It also appears that position-specific α-helical propensity, specifically periodic alternation of charged and hydrophobic residues in the helices, may well be provided by the structural organization of the complex. Considering characteristics of MARS complex from the perspective of the α-helicity, we hypothesize that specific composition and structure of the complex represents a functional mechanism for coordination of translation with the fast and correct folding of amphiphilic α-helices.


Assuntos
Aminoacil-tRNA Sintetases/química , Aminoacil-tRNA Sintetases/metabolismo , Sequência de Aminoácidos , Aminoácidos/química , Fragmentos de Peptídeos/química , Dobramento de Proteína , Modificação Traducional de Proteínas , Estrutura Secundária de Proteína
9.
Bioinformatics ; 27(17): 2368-75, 2011 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-21724592

RESUMO

MOTIVATION: Enzymes are complex catalytic machines, which perform sequences of elementary chemical transformations resulting in biochemical function. The building blocks of enzymes, elementary functional loops (EFLs), possess distinct functional signatures and provide catalytic and binding amino acids to the enzyme's active sites. The goal of this work is to obtain primordial prototypes of EFLs that existed before the formation of enzymatic domains and served as their building blocks. RESULTS: We developed a computational strategy for reconstructing ancient prototypes of EFLs based on the comparison of sequence segments on the proteomic scale, which goes beyond detection of conserved functional motifs in homologous proteins. We illustrate the procedure by a CxxC-containing prototype with a very basic and ancient elementary function of metal/metal-containing cofactor binding and redox activity. Acquiring the prototypes of EFLs is necessary for revealing how the original set of protein folds with enzymatic functions emerged in predomain evolution. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online. CONTACT: igor.berezovsky@uni.no.


Assuntos
Metaloproteínas/química , Proteômica/métodos , Biologia Computacional , Cisteína/química , Enzimas/química , Evolução Molecular , Análise de Sequência de Proteína
10.
Eur J Biochem ; 271(23-24): 4762-8, 2004 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-15606763

RESUMO

The description of globular protein structures as an ensemble of contiguous 'closed loops' or 'tightened end fragments' reveals fold elements crucial for the formation of stable structures and for navigating the very process of protein folding. These are the ends of the loops, which are spatially close to each other but are situated apart in the polypeptide chain by 25-30 residues. They also correlate with the locations of highly conserved hydrophobic residues (referred to as topohydrophobic), in a structural alignment of the members of a protein family. This study analysed these positions in 111 representatives of different protein folds, and then carried out dynamic Monte Carlo simulations of the first steps of the folding process, aimed at predicting the origins of the assembling folds. The simulations demonstrated that there is an obvious trend for certain sets of residues, named 'mostly interacting residues', to be buried at the early stages of the folding process. Location of these residues at the loop ends and correlation with topohydrophobic positions are demonstrated, thereby giving a route to simulations of the protein folding process.


Assuntos
Proteínas/química , Sequência de Aminoácidos , Dados de Sequência Molecular , Método de Monte Carlo , Conformação Proteica , Dobramento de Proteína , Homologia de Sequência de Aminoácidos
11.
J Biomol Struct Dyn ; 21(3): 317-25, 2003 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-14616028

RESUMO

Analysis of crystallized protein structures suggests that globular proteins are organized as consecutively connected units of 25-35 residues. These units are closed loops, that is returns of the polypeptide chain trajectory to a close contact with itself. This universal feature of apparently polymer-statistical nature is a basis for a principally novel view on the globular proteins as loop fold structures. The same unit size has been detected in protein sequences translated from complete prokaryotic genomes by positional autocorrelation analysis, which strongly indicates the evolutionary connection of the units. The units are further characterized by prototype sequences matching to their numerous derivatives in the translated genomes. The matches to five strongest prokaryotic prototypes and three prototypes of C. elegans are identified in the sequences of crystallized proteins, and their structures analyzed. Corresponding segments of the polypeptide chains in majority of cases form closed loops, though evolutionary fate of every prototype element is shown to be rather diverse. Then loop ends can be separated by a sequence-wise distant segments and stabilized by the spatial interactions in the context of the overall globular structure. The units belong to a presumably limited spectrum of the sequence prototypes, full repertoire of which would constitute a proteomic code.


Assuntos
Proteínas/química , Proteoma , Proteômica/métodos , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Caenorhabditis elegans , Cristalografia por Raios X , Escherichia coli/metabolismo , Modelos Estatísticos , Dados de Sequência Molecular , Peptídeos/química , Polímeros/química , Conformação Proteica , Dobramento de Proteína , Homologia de Sequência de Aminoácidos
12.
J Biomol Struct Dyn ; 21(3): 327-39, 2003 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-14616029

RESUMO

Recent sequence analysis of complete prokaryotic proteomes suggests that in early evolutionary stages proteins were rather small, of the size 25-35 amino acids. Corroborating evidence comes from protein crystal data, which indicate this size for closed loops--universal structural units of globular proteins. In the latest development we were able to derive and structurally characterize several sequence/structure prototypes apparently representing early protein units. Structurally the prototypes appear as closed loops stabilized by end-to-end van der Waals interactions. While nearly standard in size the loops are highly diverse in terms of their secondary structure. A presentation of the protein as an assembly of descendants of the prototypes, the first of its kind, is described in detail here. The sequence and structure of the ATP-binding subunit of histidine permease of S. typhimurium is shown to contain several modified copies of different prototype elements, closed loops, and, thus, can be spelled as: x-PI-x-PIV-PVI-PII-PVII-x, where PI-PVII are the prototype elements. This study sets up the basic principles for the sequence/structure prototype spelling of globular proteins.


Assuntos
Proteínas/química , Proteômica/métodos , Transportadores de Cassetes de Ligação de ATP/química , Trifosfato de Adenosina/química , Sequência de Aminoácidos , Sistemas de Transporte de Aminoácidos Básicos/química , Proteínas de Bactérias/química , Cristalografia por Raios X , Modelos Moleculares , Modelos Estatísticos , Dados de Sequência Molecular , Conformação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Proteoma , Salmonella typhimurium/enzimologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA