Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Mater Today Bio ; 26: 100991, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38558773

RESUMO

Background: Effective communication is crucial for broad acceptance and applicability of alternative methods in 3R biomedical research and preclinical testing. 3D bioprinting is used to construct intricate biological structures towards functional liver models, specifically engineered for deployment as alternative models in drug screening, toxicological investigations, and tissue engineering. Despite a growing number of reviews in this emerging field, a comprehensive study, systematically assessing practices and reporting quality for bioprinted liver models is missing. Methods: In this systematic scoping review we systematically searched MEDLINE (Ovid), EMBASE (Ovid) and BioRxiv for studies published prior to June 2nd, 2022. We extracted data on methodological conduct, applied bioinks, the composition of the printed model, performed experiments and model applications. Records were screened for eligibility and data were extracted from included articles by two independent reviewers from a panel of seven domain experts specializing in bioprinting and liver biology. We used RAYYAN for the screening process and SyRF for data extraction. We used R for data analysis, and R and Graphpad PRISM for visualization. Results: Through our systematic database search we identified 1042 records, from which 63 met the eligibility criteria for inclusion in this systematic scoping review. Our findings revealed that extrusion-based printing, in conjunction with bioinks composed of natural components, emerged as the predominant printing technique in the bioprinting of liver models. Notably, the HepG2 hepatoma cell line was the most frequently employed liver cell type, despite acknowledged limitations. Furthermore, 51% of the printed models featured co-cultures with non-parenchymal cells to enhance their complexity. The included studies offered a variety of techniques for characterizing these liver models, with their primary application predominantly focused on toxicity testing. Among the frequently analyzed liver markers, albumin and urea stood out. Additionally, Cytochrome P450 (CYP) isoforms, primarily CYP3A and CYP1A, were assessed, and select studies employed nuclear receptor agonists to induce CYP activity. Conclusion: Our systematic scoping review offers an evidence-based overview and evaluation of the current state of research on bioprinted liver models, representing a promising and innovative technology for creating alternative organ models. We conducted a thorough examination of both the methodological and technical facets of model development and scrutinized the reporting quality within the realm of bioprinted liver models. This systematic scoping review can serve as a valuable template for systematically evaluating the progress of organ model development in various other domains. The transparently derived evidence presented here can provide essential support to the research community, facilitating the adaptation of technological advancements, the establishment of standards, and the enhancement of model robustness. This is particularly crucial as we work toward the long-term objective of establishing new approach methods as reliable alternatives to animal testing, with extensive and versatile applications.

2.
Eur Urol Open Sci ; 53: 78-82, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37304229

RESUMO

The current diagnostic pathway for patients with muscle-invasive bladder cancer (MIBC), which involves with computed tomography urography, cystoscopy, and transurethral resection of the bladder (TURB) to histologically confirm MIBC, delays definitive treatment. The Vesical Imaging-Reporting and Data System (VI-RADS) has been suggested for MIBC identification using magnetic resonance imaging (MRI), but a recent randomized trial reported misclassification in one-third of patients. We investigated a new endoscopic biopsy device (Urodrill) for histological confirmation of MIBC and assessment of molecular subtype by gene expression in patients with VI-RADS 4 and 5 lesions on MRI. In ten patients, Urodrill biopsies were guided by MR images to the muscle-invasive portion of the tumor via a flexible cystoscope under general anesthesia. During the same session, conventional TURB was subsequently performed. A Urodrill sample was successfully obtained in nine of ten patients. MIBC was verified in six of nine patients, and seven of nine samples contained detrusor muscle. In seven of eight patients for whom a Urodrill biopsy sample was subjected to RNA sequencing, single-sample molecular classification according to the Lund taxonomy was feasible. No complications related to the biopsy device occurred. A randomized trial comparing this new diagnostic pathway for patients with VI-RADS 4 and 5 lesions and the current standard (TURB) is warranted. Patient summary: We report on a novel biopsy device for patients with muscle-invasive bladder cancer that facilitates histology analysis and molecular characterization of tumor samples.

4.
Int J Mol Sci ; 24(7)2023 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-37047045

RESUMO

Lung cancer still has one of the highest morbidity and mortality rates among all types of cancer. Its incidence continues to increase, especially in developing countries. Although the medical field has witnessed the development of targeted therapies, new treatment options need to be developed urgently. For the discovery of new drugs, human cancer models are required to study drug efficiency in a relevant setting. Here, we report the generation of a non-small cell lung cancer model with a perfusion system. The bioprinted model was produced by digital light processing (DLP). This technique has the advantage of including simulated human blood vessels, and its simple assembly and maintenance allow for easy testing of drug candidates. In a proof-of-concept study, we applied gemcitabine and determined the IC50 values in the 3D models and 2D monolayer cultures and compared the response of the model under static and dynamic cultivation by perfusion. As the drug must penetrate the hydrogel to reach the cells, the IC50 value was three orders of magnitude higher for bioprinted constructs than for 2D cell cultures. Compared to static cultivation, the viability of cells in the bioprinted 3D model was significantly increased by approximately 60% in the perfusion system. Dynamic cultivation also enhanced the cytotoxicity of the tested drug, and the drug-mediated apoptosis was increased with a fourfold higher fraction of cells with a signal for the apoptosis marker caspase-3 and a sixfold higher fraction of cells positive for PARP-1. Altogether, this easily reproducible cancer model can be used for initial testing of the cytotoxicity of new anticancer substances. For subsequent in-depth characterization of candidate drugs, further improvements will be necessary, such as the generation of a multi-cell type lung cancer model and the lining of vascular structures with endothelial cells.


Assuntos
Bioimpressão , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Células Endoteliais/fisiologia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Neoplasias Pulmonares/tratamento farmacológico , Hidrogéis/química , Técnicas de Cultura de Células/métodos , Bioimpressão/métodos , Impressão Tridimensional , Engenharia Tecidual/métodos , Alicerces Teciduais/química
5.
Int J Mol Sci ; 23(17)2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-36077349

RESUMO

Radiotherapy is an important component in the treatment of lung cancer, one of the most common cancers worldwide, frequently resulting in death within only a few years of diagnosis. In order to evaluate new therapeutic approaches and compare their efficiency with regard to tumour control at a pre-clinical stage, it is important to develop standardized samples which can serve as inter-institutional outcome controls, independent of differences in local technical parameters or specific techniques. Recent developments in 3D bioprinting techniques could provide a sophisticated solution to this challenge. We have conducted a pilot project to evaluate the suitability of standardized samples generated from 3D printed human lung cancer cells in radiotherapy studies. The samples were irradiated at high dose rates using both broad beam and microbeam techniques. We found the 3D printed constructs to be sufficiently mechanically stable for use in microbeam studies with peak doses up to 400 Gy to test for cytotoxicity, DNA damage, and cancer cell death in vitro. The results of this study show how 3D structures generated from human lung cancer cells in an additive printing process can be used to study the effects of radiotherapy in a standardized manner.


Assuntos
Bioimpressão , Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/radioterapia , Projetos Piloto , Impressão Tridimensional
6.
Cancers (Basel) ; 14(2)2022 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-35053544

RESUMO

A surveillance strategy of the heritable TP53-related cancer syndrome (hTP53rc), commonly referred to as the Li-Fraumeni syndrome (LFS), is studied in a prospective observational nationwide multi-centre study in Sweden (SWEP53). The aim of this sub-study is to evaluate whole-body MRI (WB-MRI) regarding the rate of malignant, indeterminate, and benign imaging findings and the associated further workup generated by the baseline examination. Individuals with hTP53rc were enrolled in a surveillance program including annual whole-body MRI (WB-MRI), brain-MRI, and in female carriers, dedicated breast MRI. A total of 68 adults ≥18 years old have been enrolled to date. Of these, 61 fulfilled the inclusion criteria for the baseline MRI scan. In total, 42 showed a normal scan, while 19 (31%) needed further workup, of whom three individuals (3/19 = 16%) were diagnosed with asymptomatic malignant tumours (thyroid cancer, disseminated upper GI cancer, and liver metastasis from a previous breast cancer). Forty-three participants were women, of whom 21 had performed risk-reducing mastectomy prior to inclusion. The remaining were monitored with breast MRI, and no breast tumours were detected on baseline MRI. WB-MRI has the potential to identify asymptomatic tumours in individuals with hTP53rc syndrome. The challenge is to adequately and efficiently investigate all indeterminate findings. Thus, a multidisciplinary team should be considered in surveillance programs for individuals with hTP53rc syndrome.

7.
ACS Omega ; 7(2): 2114-2126, 2022 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-35071900

RESUMO

Three-dimensional (3D) tissue culture has attracted a great deal of attention as a result of the need to replace the conventional two-dimensional cell cultures with more meaningful methods, especially for understanding the sophisticated nature of native tumor microenvironments. However, most techniques for 3D tissue culture are laborious, expensive, and limited to spheroid formation. In this study, a low-cost and highly effective nanofibrous scaffold is presented for spontaneous formation of reproducible 3D breast cancer microtissues. Experimentally, aligned and non-aligned chitosan/poly(ethylene oxide) nanofibrous scaffolds were prepared at one of two chitosan concentrations (2 and 4 wt %) and various electrospinning parameters. The resulting fabricated scaffolds (C2P1 and C4P1) were structurally and morphologically characterized, as well as analyzed in silico. The obtained data suggest that the fiber diameter, surface roughness, and scaffold wettability are tunable and can be influenced based on the chitosan concentration, electrospinning conditions, and alignment mode. To test the usefulness of the fabricated scaffolds for 3D cell culture, a breast cancer cell line (MCF-7) was cultured on their surfaces and evaluated morphologically and biochemically. The obtained data showed a higher proliferation rate for cells grown on scaffolds compared to cells grown on two-dimensional adherent plates (tissue culture plate). The MTT assay revealed that the rate of cell proliferation on nanofibrous scaffolds is statistically significantly higher compared to tissue culture plate (P ≤ 0.001) after 14 days of culture. The formation of spheroids within the first few days of culture shows that the scaffolds effectively support 3D tissue culture from the outset of the experiment. Furthermore, 3D breast cancer tissues were spontaneously formed within 10 days of culture on aligned and non-aligned nanofibrous scaffolds, which suggests that the scaffolds imitate the in vivo extracellular matrix in the tumor microenvironment. Detailed mechanisms for the spontaneous formation of the 3D microtissues have been proposed. Our results suggest that scaffold surface topography significantly influences tissue formation and behavior of the cells.

8.
Viruses ; 13(10)2021 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-34696460

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has infected almost 200 million people worldwide and led to approximately 4 million deaths as of August 2021. Despite successful vaccine development, treatment options are limited. A promising strategy to specifically target viral infections is to suppress viral replication through RNA interference (RNAi). Hence, we designed eight small interfering RNAs (siRNAs) targeting the highly conserved 5'-untranslated region (5'-UTR) of SARS-CoV-2. The most promising candidate identified in initial reporter assays, termed siCoV6, targets the leader sequence of the virus, which is present in the genomic as well as in all subgenomic RNAs. In assays with infectious SARS-CoV-2, it reduced replication by two orders of magnitude and prevented the development of a cytopathic effect. Moreover, it retained its activity against the SARS-CoV-2 alpha variant and has perfect homology against all sequences of the delta variant that were analyzed by bioinformatic means. Interestingly, the siRNA was even highly active in virus replication assays with the SARS-CoV-1 family member. This work thus identified a very potent siRNA with a broad activity against various SARS-CoV viruses that represents a promising candidate for the development of new treatment options.


Assuntos
Antivirais/farmacologia , COVID-19/terapia , Interferência de RNA , RNA Interferente Pequeno/farmacologia , SARS-CoV-2/crescimento & desenvolvimento , Replicação Viral/efeitos dos fármacos , Regiões 5' não Traduzidas/genética , Animais , Linhagem Celular Tumoral , Chlorocebus aethiops , Avaliação Pré-Clínica de Medicamentos , Células HeLa , Humanos , RNA Interferente Pequeno/genética , SARS-CoV-2/genética , Células Vero , Replicação Viral/genética
9.
Int J Mol Sci ; 23(1)2021 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-35008547

RESUMO

Development of new anticancer drugs with currently available animal models is hampered by the fact that human cancer cells are embedded in an animal-derived environment. Neuroblastoma is the most common extracranial solid malignancy of childhood. Major obstacles include managing chemotherapy-resistant relapses and resistance to induction therapy, leading to early death in very-high-risk patients. Here, we present a three-dimensional (3D) model for neuroblastoma composed of IMR-32 cells with amplified genes of the myelocytomatosis viral related oncogene MYCN and the anaplastic lymphoma kinase (ALK) in a renal environment of exclusively human origin, made of human embryonic kidney 293 cells and primary human kidney fibroblasts. The model was produced with two pneumatic extrusion printheads using a commercially available bioprinter. Two drugs were exemplarily tested in this model: While the histone deacetylase inhibitor panobinostat selectively killed the cancer cells by apoptosis induction but did not affect renal cells in the therapeutically effective concentration range, the peptidyl nucleoside antibiotic blasticidin induced cell death in both cell types. Importantly, differences in sensitivity between two-dimensional (2D) and 3D cultures were cell-type specific, making the therapeutic window broader in the bioprinted model and demonstrating the value of studying anticancer drugs in human 3D models. Altogether, this cancer model allows testing cytotoxicity and tumor selectivity of new anticancer drugs, and the open scaffold design enables the free exchange of tumor and microenvironment by any cell type.


Assuntos
Antineoplásicos/farmacologia , Rim/efeitos dos fármacos , Neuroblastoma/tratamento farmacológico , Microambiente Tumoral/efeitos dos fármacos , Quinase do Linfoma Anaplásico/metabolismo , Apoptose/efeitos dos fármacos , Morte Celular/efeitos dos fármacos , Linhagem Celular , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Células HEK293 , Humanos , Rim/metabolismo , Proteína Proto-Oncogênica N-Myc/metabolismo , Neuroblastoma/metabolismo , Panobinostat/farmacologia
10.
ALTEX ; 38(2): 269-288, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33264417

RESUMO

Bioprinting is a rapidly developing technology that enables the exact positioning of living cells embedded in bio-materials in precise spatial arrangements to fabricate engineered tissues and organs. While the ultimate goal of bio­printing approaches is to produce organs for transplantation purposes, bioprinted organ models also hold great potential for research purposes to serve as alternatives to animal experiments. By using human cells, humanized organ models can be generated that may produce more relevant results for human (patho-)physiology than animal models. However, standard bioprinting procedures currently use numerous hidden animal components. Virtually all studies published in the field to date make use of cells grown in media with fetal bovine serum (FBS). In addition, Matrigel, the extracellular matrix (ECM) harvested from Engelbreth-Holm-Swarm sarcoma grown in mice, is widely employed to cultivate stem cells and 3D organ models. Finally, most bioinks currently in use contain gelatin or comparable animal components to improve cell viability and adhesion. The present review will give an introduction to the potential of bioprinting to fabricate 3D models that may be substituted for animal experiments and will go on to describe strategies to replace animal components cur­rently included in standard procedures of bioprinting. These approaches comprise the adaptation of cells to FBS-free media, the use of bioinks composed of synthetic or plant material, and the replacement of animal ingredients by materials of human origin. We propose denoting bioprinting strategies devoid of animal components as clean bioprinting.


Assuntos
Bioimpressão , Animais , Sobrevivência Celular , Matriz Extracelular , Camundongos , Impressão Tridimensional , Engenharia Tecidual
11.
Int J Mol Sci ; 19(10)2018 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-30321994

RESUMO

Bioprinting is a novel technology that may help to overcome limitations associated with two-dimensional (2D) cell cultures and animal experiments, as it allows the production of three-dimensional (3D) tissue models composed of human cells. The present study describes the optimization of a bioink composed of alginate, gelatin and human extracellular matrix (hECM) to print human HepaRG liver cells with a pneumatic extrusion printer. The resulting tissue model was tested for its suitability for the study of transduction by an adeno-associated virus (AAV) vector and infection with human adenovirus 5 (hAdV5). We found supplementation of the basic alginate/gelatin bioink with 0.5 and 1 mg/mL hECM provides desirable properties for the printing process, the stability of the printed constructs, and the viability and metabolic functions of the printed HepaRG cells. The tissue models were efficiently transduced by AAV vectors of serotype 6, which successfully silenced an endogenous target (cyclophilin B) by means of RNA interference. Furthermore, the printed 3D model supported efficient adenoviral replication making it suitable to study virus biology and develop new antiviral compounds. We consider the approach described here paradigmatic for the development of 3D tissue models for studies including viral vectors and infectious viruses.


Assuntos
Bioimpressão/métodos , Fígado/citologia , Impressão Tridimensional/instrumentação , Engenharia Tecidual/métodos , Alginatos/química , Bioimpressão/instrumentação , Linhagem Celular , Sobrevivência Celular , Matriz Extracelular/química , Gelatina/química , Humanos , Modelos Biológicos , Alicerces Teciduais
12.
Biotechnol J ; 13(1)2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28865134

RESUMO

Lung diseases belong to the major causes of death worldwide. Recent innovative methodological developments now allow more and more for the use of primary human tissue and cells to model such diseases. In this regard, the review covers bronchial air-liquid interface cultures, precision cut lung slices as well as ex vivo cultures of explanted peripheral lung tissue and de-/re-cellularization models. Diseases such as asthma or infections are discussed and an outlook on further areas for development is given. Overall, the progress in ex vivo modeling by using primary human material could make translational research activities more efficient by simultaneously fostering the mechanistic understanding of human lung diseases while reducing animal usage in biomedical research.


Assuntos
Brônquios/citologia , Pneumopatias/terapia , Pesquisa Translacional Biomédica , Células Epiteliais/citologia , Humanos , Pneumopatias/fisiopatologia
13.
Mol Pain ; 14: 1744806917749669, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29212407

RESUMO

Activation of the neuronal potassium channel Kv7.2 encoded by the KCNQ2 gene has recently been shown to be an attractive mechanism to inhibit nociceptive transmission. However, potent, selective, and clinically proven activators of Kv7.2/Kv7.3 currents with analgesic properties are still lacking. An important prerequisite for the development of new drugs is a model to test the selectivity of novel agonists by abrogating Kv7.2/Kv7.3 function. Since constitutive knockout mice are not viable, we developed a model based on RNA interference-mediated silencing of KCNQ2. By delivery of a KCNQ2-specific short hairpin RNA with adeno-associated virus vectors, we completely abolished the activity of the specific Kv7.2/Kv7.3-opener ICA-27243 in rat sensory neurons. Results obtained in the silencing experiments were consistent between freshly prepared and cryopreserved dorsal root ganglion neurons, as well as in dorsal root ganglion neurons dissociated and cultured after in vivo administration of the silencing vector by intrathecal injections into rats. Interestingly, the tested associated virus serotypes substantially differed with respect to their transduction capability in cultured neuronal cell lines and primary dorsal root ganglion neurons and the in vivo transfer of transgenes by intrathecal injection of associated virus vectors. However, our study provides the proof-of-concept that RNA interference-mediated silencing of KCNQ2 is a suitable approach to create an ex vivo model for testing the specificity of novel Kv7.2/Kv7.3 agonists.


Assuntos
Dependovirus/metabolismo , Gânglios Espinais/metabolismo , Técnicas de Silenciamento de Genes , Técnicas de Transferência de Genes , Vetores Genéticos/metabolismo , Canal de Potássio KCNQ2/metabolismo , Neurônios/metabolismo , Interferência de RNA , Potenciais de Ação/efeitos dos fármacos , Animais , Benzamidas/farmacologia , Células Cultivadas , Fluorescência , Gânglios Espinais/efeitos dos fármacos , Células HEK293 , Humanos , Masculino , Neurônios/efeitos dos fármacos , Piridinas/farmacologia , RNA Interferente Pequeno/metabolismo , Ratos Sprague-Dawley , Sorotipagem , Fatores de Tempo
14.
Eur Respir J ; 50(1)2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28705941

RESUMO

The severity and lethality of influenza A virus (IAV) infections is frequently aggravated by secondary bacterial pneumonia. However, the mechanisms in human lung tissue that provoke this increase in fatality are unknown and therapeutic immune modulatory options are lacking.We established a human lung ex vivo co-infection model to investigate innate immune related mechanisms contributing to the susceptibility of secondary pneumococcal pneumonia.We revealed that type I and III interferon (IFN) inhibits Streptococcus pneumoniae-induced interleukin (IL)-1ß release. The lack of IL-1ß resulted in the repression of bacterially induced granulocyte-macrophage colony-stimulating factor (GM-CSF) liberation. Specific inhibition of IFN receptor I and III-associated tyrosine kinase 2 (Tyk2) completely restored the S. pneumoniae-induced IL-1ß-GM-CSF axis, leading to a reduction of bacterial growth. A preceding IAV infection of the human alveolus leads to a type I and III IFN-dependent blockade of the early cytokines IL-1ß and GM-CSF, which are key for orchestrating an adequate innate immune response against bacteria. Their virally induced suppression may result in impaired bacterial clearance and alveolar repair.Pharmacological inhibition of Tyk2 might be a new treatment option to sustain beneficial endogenous GM-CSF levels in IAV-associated secondary bacterial pneumonia.


Assuntos
Fator Estimulador de Colônias de Granulócitos e Macrófagos/metabolismo , Influenza Humana/tratamento farmacológico , Interferons/farmacologia , Pneumonia Bacteriana/tratamento farmacológico , Infecções Estafilocócicas/tratamento farmacológico , TYK2 Quinase/antagonistas & inibidores , Humanos , Imunidade Inata/efeitos dos fármacos , Fatores Imunológicos , Vírus da Influenza A , Influenza Humana/imunologia , Interleucina-1beta/metabolismo , Pulmão/efeitos dos fármacos , Pneumonia Bacteriana/imunologia , Infecções Estafilocócicas/imunologia , TYK2 Quinase/metabolismo
15.
J Cyst Fibros ; 7(6): 515-9, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18619927

RESUMO

BACKGROUND: This study aims to quantitatively and qualitatively assess microvascular complications and their risk factors in patients with cystic fibrosis-related diabetes (CFRD) compared to those with type 1 diabetes mellitus (DM1). METHODS: 79 patients with CFRD were matched with 79 patients with DM1 according to sex, age and duration of insulin therapy. Retinopathy, peripheral neuropathy, nephropathy and microalbuminuria were the microvascular complications assessed. Risk factors studied were: smoking, BMI, HbA1c, cholesterol, cholesterol/HDL ratio, diastolic and systolic blood pressure. RESULTS: Both groups had the same number of microvascular complications (29%). CFRD patients showed more microalbuminuria (21% versus 4.1%; p=0.003), while retinopathy was more common in patients with DM1 (24% versus 10%; p=0.044). The prevalences of peripheral neuropathy and nephropathy were similar. Patients with CFRD had lower BMI (p<0.0001), total cholesterol (p<0.0001) and HbA1c (p=0.056) levels, and a lower prevalence of smokers (p<0.0001). Cholesterol/HDL ratio and diastolic and systolic blood pressure were similar in both groups. CONCLUSIONS: The microvascular complications shown by patients with CFRD are similar to those seen in patients with DM1 but with a lower prevalence of retinopathy and a higher prevalence of microalbuminuria. The latter may reflect the influence of other cystic fibrosis-related factors on renal function.


Assuntos
Fibrose Cística/complicações , Angiopatias Diabéticas/epidemiologia , Adolescente , Adulto , Estudos de Casos e Controles , Diabetes Mellitus Tipo 1/complicações , Feminino , Humanos , Masculino , Análise por Pareamento , Microvasos , Pessoa de Meia-Idade , Prevalência , Fatores de Risco , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA