Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
RSC Med Chem ; 15(6): 2045-2062, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38911150

RESUMO

Alzheimer's disease (AD) and cancer are among the most devastating diseases of the 21st century. Although the clinical manifestations are different and the cellular mechanisms underlying the pathologies are opposite, there are different classes of molecules that are effective in both diseases, such as quinone-based compounds and histone deacetylase inhibitors (HDACIs). Herein, we investigate the biological effects of a series of compounds built to exploit the beneficial effects of quinones and histone deacetylase inhibition (compounds 1-8). Among the different compounds, compound 6 turned out to be a potent cytotoxic agent in SH-SY5Y cancer cell line, with a half maximal inhibitory concentration (IC50) value lower than vorinostat and a pro-apoptotic activity. On the other hand, compound 8 was nontoxic up to the concentration of 100 µM and was highly effective in stimulating the proliferation of neural precursor cells (NPCs), as well as inducing differentiation into neurons, at low micromolar concentrations. In particular, it was able to induce NPC differentiation solely towards a neuronal-specific phenotype, without affecting glial cells commitment.

2.
Molecules ; 28(18)2023 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-37764505

RESUMO

γ-terpinene, α-terpinene, p-cymene, and myrcene are monoterpenes found in many essential oils extracted from a variety of plants and spices. Myrcene also occurs naturally in plants such as hops, cannabis, lemongrass, and verbena and is used as a flavoring agent in food and beverage manufacturing. In this research, the biological efficacy of γ-terpinene, α-terpinene, p-cymene, and myrcene was studied in human cell lines (HeLa, SH-SY5Y, and HDFa). Cytotoxicity, cell proliferation, cell migration, and morphology assays were performed to obtain detailed information on the anticancer properties. Our results show that myrcene has potential biological activity, especially in HeLa cells. In this cell line, it leads to an arrest of proliferation, a decrease in motility and morphological changes with loss of sphericity and thickness, and DNA damage. In addition, the interaction of γ-terpinene, α-terpinene, p-terpinene, and myrcene with calf thymus DNA (ct-DNA) was studied by UV-visible spectrophotometry. DNA binding experiments show that only myrcene can interact with DNA with an apparent dissociation constant (Kd) of 29 × 10-6 M.

3.
Bioorg Med Chem ; 91: 117419, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37487339

RESUMO

Multi-target drug discovery is one of the most active fields in the search for new drugs against Alzheimer's disease (AD). This is because the complexity of AD pathological network might be adequately tackled by multi-target-directed ligands (MTDLs) aimed at modulating simultaneously multiple targets of such a network. In a continuation of our efforts to develop MTDLs for AD, we have been focusing on the molecular hybridization of the acetylcholinesterase inhibitor tacrine with the aim of expanding its anti-AD profile. Herein, we manipulated the structure of a previously developed tacrine-quinone hybrid (1). We designed and synthesized a novel set of MTDLs (2-6) by replacing the naphthoquinone scaffold of 1 with that of 2,5,8-quinolinetrione. The most interesting hybrid 3 inhibited cholinesterase enzymes at nanomolar concentrations. In addition, 3 exerted antioxidant effects in menadione-induced oxidative stress of SH-SY5Y cells. Importantly, 3 also showed low hepatotoxicity and good anti-amyloid aggregation properties. Remarkably, we uncovered the potential of the quinolinetrione scaffold, as a novel anti-amyloid aggregation and antioxidant motif to be used in further anti-AD MTDL drug discovery endeavors.


Assuntos
Doença de Alzheimer , Neuroblastoma , Humanos , Tacrina/farmacologia , Tacrina/química , Doença de Alzheimer/tratamento farmacológico , Acetilcolinesterase , Ligantes , Inibidores da Colinesterase/farmacologia , Inibidores da Colinesterase/química , Antioxidantes/farmacologia , Peptídeos beta-Amiloides
4.
J Exp Clin Cancer Res ; 42(1): 145, 2023 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-37301960

RESUMO

BACKGROUND: Metabolic reprogramming is a well-known marker of cancer, and it represents an early event during hepatocellular carcinoma (HCC) development. The recent approval of several molecular targeted agents has revolutionized the management of advanced HCC patients. Nevertheless, the lack of circulating biomarkers still affects patient stratification to tailored treatments. In this context, there is an urgent need for biomarkers to aid treatment choice and for novel and more effective therapeutic combinations to avoid the development of drug-resistant phenotypes. This study aims to prove the involvement of miR-494 in metabolic reprogramming of HCC, to identify novel miRNA-based therapeutic combinations and to evaluate miR-494 potential as a circulating biomarker. METHODS: Bioinformatics analysis identified miR-494 metabolic targets. QPCR analysis of glucose 6-phosphatase catalytic subunit (G6pc) was performed in HCC patients and preclinical models. Functional analysis and metabolic assays assessed G6pc targeting and miR-494 involvement in metabolic changes, mitochondrial dysfunction, and ROS production in HCC cells. Live-imaging analysis evaluated the effects of miR-494/G6pc axis in cell growth of HCC cells under stressful conditions. Circulating miR-494 levels were assayed in sorafenib-treated HCC patients and DEN-HCC rats. RESULTS: MiR-494 induced the metabolic shift of HCC cells toward a glycolytic phenotype through G6pc targeting and HIF-1A pathway activation. MiR-494/G6pc axis played an active role in metabolic plasticity of cancer cells, leading to glycogen and lipid droplets accumulation that favored cell survival under harsh environmental conditions. High miR-494 serum levels associated with sorafenib resistance in preclinical models and in a preliminary cohort of HCC patients. An enhanced anticancer effect was observed for treatment combinations between antagomiR-494 and sorafenib or 2-deoxy-glucose in HCC cells. CONCLUSIONS: MiR-494/G6pc axis is critical for the metabolic rewiring of cancer cells and associates with poor prognosis. MiR-494 deserves attention as a candidate biomarker of likelihood of response to sorafenib to be tested in future validation studies. MiR-494 represents a promising therapeutic target for combination strategies with sorafenib or metabolic interference molecules for the treatment of HCC patients who are ineligible for immunotherapy.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , MicroRNAs , Ratos , Animais , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Sorafenibe/farmacologia , Sorafenibe/uso terapêutico , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Resistencia a Medicamentos Antineoplásicos/genética , MicroRNAs/metabolismo
5.
Int J Mol Sci ; 23(23)2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36499464

RESUMO

Astaxanthin is a red orange xanthophyll carotenoid produced mainly by microalgae but which can also be chemically synthesized. As demonstrated by several studies, this lipophilic molecule is endowed with potent antioxidant properties and is able to modulate biological functions. Unlike synthetic astaxanthin, natural astaxanthin (NAst) is considered safe for human nutrition, and its production is considered eco-friendly. The antioxidant activity of astaxanthin depends on its bioavailability, which, in turn, is related to its hydrophobicity. In this study, we analyzed the water-solubility of NAst and assessed its protective effect against oxidative stress by means of different approaches using a neuroblastoma cell model. Moreover, due to its highly lipophilic nature, astaxanthin is particularly protective against lipid peroxidation; therefore, the role of NAst in counteracting ferroptosis was investigated. This recently discovered process of programmed cell death is indeed characterized by iron-dependent lipid peroxidation and seems to be linked to the onset and development of oxidative-stress-related diseases. The promising results of this study, together with the "green sources" from which astaxanthin could derive, suggest a potential role for NAst in the prevention and co-treatment of chronic degenerative diseases by means of a sustainable approach.


Assuntos
Antioxidantes , Xantofilas , Humanos , Antioxidantes/farmacologia , Peroxidação de Lipídeos , Xantofilas/farmacologia , Morte Celular
6.
Molecules ; 26(3)2021 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-33513825

RESUMO

The roots of two cultivars of Paeonia, namely Paeonia officinalis "Rubra Plena" and Paeonia "Pink Hawaiian Coral", have been extracted with chloroform. The composition of the lipid fraction, analyzed by GC-MS technique, revealed the absence of paeonol and the presence of phenol, benzoic acid, fatty acid-and some sterol-derivatives. The chloroformic extracts have been tested on normal and several cancer cell lines but showed antiproliferative activity only on the ovarian carcinoma and the osteosarcoma. The biological activity of extracts was investigated mainly by confocal microscopy, flow cytometry and quantum phase imaging. The results indicated that the root extracts induced a hyperpolarization of mitochondria and an increase in reactive oxygen species levels, without inducing cell death. These effects are associated to an increased doubling time and a retarded confluence.


Assuntos
Lipídeos/química , Lipídeos/farmacologia , Paeonia/química , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Raízes de Plantas/química , Ácido Benzoico/química , Ácido Benzoico/farmacologia , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Ácidos Graxos/química , Ácidos Graxos/farmacologia , Feminino , Havaí , Células HeLa , Humanos , Células MCF-7 , Mitocôndrias/efeitos dos fármacos , Osteossarcoma/tratamento farmacológico , Neoplasias Ovarianas/tratamento farmacológico , Fenóis/química , Fenóis/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Esteróis/química , Esteróis/farmacologia
7.
FEBS J ; 288(6): 1956-1974, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32898935

RESUMO

Coenzyme Q10 (CoQ, ubiquinone) is a redox-active lipid endogenously synthesized by the cells. The final stage of CoQ biosynthesis is performed at the mitochondrial level by the 'complex Q', where coq2 is responsible for the prenylation of the benzoquinone ring of the molecule. We report that the competitive coq2 inhibitor 4-nitrobenzoate (4-NB) decreased the cellular CoQ content and caused severe impairment of mitochondrial function in the T67 human glioma cell line. In parallel with the reduction in CoQ biosynthesis, the cholesterol level increased, leading to significant perturbation of the plasma membrane physicochemical properties. We show that 4-NB treatment did not significantly affect the cell viability, because of an adaptive metabolic rewiring toward glycolysis. Hypoxia-inducible factor 1α (HIF-1α) stabilization was detected in 4-NB-treated cells, possibly due to the contribution of both reduction in intracellular oxygen tension and ROS overproduction. Exogenous CoQ supplementation partially recovered cholesterol content, HIF-1α degradation, and ROS production, whereas only weakly improved the bioenergetic impairment induced by the CoQ depletion. Our data provide new insights on the effect of CoQ depletion and contribute to shed light on the pathogenic mechanisms of ubiquinone deficiency syndrome.


Assuntos
Metabolismo Energético , Glicólise , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Ubiquinona/análogos & derivados , Alquil e Aril Transferases/antagonistas & inibidores , Alquil e Aril Transferases/metabolismo , Ataxia/metabolismo , Linhagem Celular Tumoral , Colesterol/metabolismo , Humanos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Doenças Mitocondriais/metabolismo , Debilidade Muscular/metabolismo , Nitrobenzoatos/farmacologia , Estabilidade Proteica/efeitos dos fármacos , Ubiquinona/antagonistas & inibidores , Ubiquinona/biossíntese , Ubiquinona/deficiência , Ubiquinona/metabolismo
8.
Int J Mol Sci ; 22(1)2020 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-33379147

RESUMO

Mitochondrial dysfunction plays a significant role in the metabolic flexibility of cancer cells. This study aimed to investigate the metabolic alterations due to Coenzyme Q depletion in MCF-7 cells. METHOD: The Coenzyme Q depletion was induced by competitively inhibiting with 4-nitrobenzoate the coq2 enzyme, which catalyzes one of the final reactions in the biosynthetic pathway of CoQ. The bioenergetic and metabolic characteristics of control and coenzyme Q depleted cells were investigated using polarographic and spectroscopic assays. The effect of CoQ depletion on cell growth was analyzed in different metabolic conditions. RESULTS: we showed that cancer cells could cope from energetic and oxidative stress due to mitochondrial dysfunction by reshaping their metabolism. In CoQ depleted cells, the glycolysis was upregulated together with increased glucose consumption, overexpression of GLUT1 and GLUT3, as well as activation of pyruvate kinase (PK). Moreover, the lactate secretion rate was reduced, suggesting that the pyruvate flux was redirected, toward anabolic pathways. Finally, we found a different expression pattern in enzymes involved in glutamine metabolism, and TCA cycle in CoQ depleted cells in comparison to controls. CONCLUSION: This work elucidated the metabolic alterations in CoQ-depleted cells and provided an insightful understanding of cancer metabolism targeting.


Assuntos
Metabolismo Energético , Células MCF-7/metabolismo , Mitocôndrias/metabolismo , Ubiquinona/deficiência , Humanos
9.
Cell Death Dis ; 10(12): 889, 2019 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-31767857

RESUMO

α-Bisabolol (BSB) is a plant-derived sesquiterpene alcohol able to trigger regulated cell death in transformed cells, while deprived of the general toxicity in several mouse models. Here, we investigated the involvement of lysosomal and mitochondrial compartments in the cytotoxic effects of BSB, with a specific focus on the BH3-only activator protein BID. We found that BSB particularly accumulated in cancer cell lines, displaying a higher amount of lipid rafts as compared to normal blood cells. By means of western blotting and microscopy techniques, we documented rapid BSB-induced BID translocation to lysosomes and mitochondria, both of them becoming dysfunctional. Lysosomal membranes were permeabilized, thus blocking the cytoprotective autophagic flux and provoking cathepsin B leakage into the cytosol. Multiple flow cytometry-based experiments demonstrated the loss of mitochondrial membrane potential due to pore formation across the lipid bilayer. These parallel events converged on neoplastic cell death, an outcome significantly prevented by BID knockdown. Therefore, BSB promoted BID redistribution to the cell death executioner organelles, which in turn activated anti-autophagic and proapoptotic mechanisms. This is an example of how xenohormesis can be exploited to modulate basic cellular programs in cancer.


Assuntos
Apoptose/efeitos dos fármacos , Proteína Agonista de Morte Celular de Domínio Interatuante com BH3/metabolismo , Lisossomos/metabolismo , Mitocôndrias/metabolismo , Sesquiterpenos Monocíclicos/farmacologia , Autofagia/efeitos dos fármacos , Benzimidazóis/farmacologia , Carbocianinas/farmacologia , Ciclo Celular/efeitos dos fármacos , Linhagem Celular , Gangliosídeo G(M1)/metabolismo , Técnicas de Silenciamento de Genes , Humanos , Lisossomos/efeitos dos fármacos , Microdomínios da Membrana/metabolismo , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Proteínas de Membrana/metabolismo , Mitocôndrias/efeitos dos fármacos , Transporte Proteico/efeitos dos fármacos
10.
Eur J Med Chem ; 182: 111596, 2019 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-31419776

RESUMO

Facing the complexity of Alzheimer's disease (AD), it is now currently admitted that a therapeutic pleiotropic intervention is needed to alter its progression. Among the major hallmarks of the disease, the amyloid pathology and the oxidative stress are closely related. We propose in this study to develop original Multi-Target Directed Ligands (MTDL) able to impact at the same time Aß protein accumulation and toxicity of Reactive Oxygen Species (ROS) in neuronal cells. Such MTDL were obtained by linking on a central piperidine two scaffolds of interest: a typical aminochlorobenzophenone present in numerous 5-HT4R agonists, and diverse antioxidant chemotypes. Interestingly, the most active compound 9g possesses a Ki of 12.7 nM towards 5-HT4R and an antioxidant activity in vitro and in cellulo.


Assuntos
Antioxidantes/farmacologia , Receptores 5-HT4 de Serotonina/metabolismo , Agonistas do Receptor 5-HT4 de Serotonina/farmacologia , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Animais , Antioxidantes/síntese química , Antioxidantes/química , Compostos de Bifenilo/antagonistas & inibidores , Compostos de Bifenilo/metabolismo , Células COS , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Chlorocebus aethiops , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Ligantes , Estrutura Molecular , Picratos/antagonistas & inibidores , Picratos/metabolismo , Espécies Reativas de Oxigênio/análise , Espécies Reativas de Oxigênio/metabolismo , Agonistas do Receptor 5-HT4 de Serotonina/síntese química , Agonistas do Receptor 5-HT4 de Serotonina/química , Relação Estrutura-Atividade
11.
ChemMedChem ; 14(6): 621-635, 2019 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-30664325

RESUMO

In the search for effective and sustainable drugs for human African trypanosomiasis (HAT), we developed hybrid compounds by merging the structural features of quinone 4 (2-phenoxynaphthalene-1,4-dione) with those of phenolic constituents from cashew nut shell liquid (CNSL). CNSL is a waste product from cashew nut processing factories, with great potential as a source of drug precursors. The synthesized compounds were tested against Trypanosoma brucei brucei, including three multidrug-resistant strains, T. congolense, and a human cell line. The most potent activity was found against T. b. brucei, the causative agent of HAT. Shorter-chain derivatives 20 (2-(3-(8-hydroxyoctyl)phenoxy)-5-methoxynaphthalene-1,4-dione) and 22 (5-hydroxy-2-(3-(8-hydroxyoctyl)phenoxy)naphthalene-1,4-dione) were more active than 4, displaying rapid micromolar trypanocidal activity, and no human cytotoxicity. Preliminary studies probing their mode of action on trypanosomes showed ATP depletion, followed by mitochondrial membrane depolarization and mitochondrion ultrastructural damage. This was accompanied by reactive oxygen species production. We envisage that such compounds, obtained from a renewable and inexpensive material, might be promising bio-based sustainable hits for anti-trypanosomatid drug discovery.


Assuntos
Trifosfato de Adenosina/biossíntese , Anacardium/química , Descoberta de Drogas , Mitocôndrias/efeitos dos fármacos , Extratos Vegetais/farmacologia , Tripanossomicidas/química , Tripanossomicidas/uso terapêutico , Trypanosoma brucei brucei/efeitos dos fármacos , Tripanossomíase/tratamento farmacológico , Animais , Humanos , Tripanossomicidas/farmacologia , Trypanosoma brucei brucei/microbiologia
12.
Int J Cancer ; 143(7): 1706-1719, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-29672841

RESUMO

Familial aggregation is a significant risk factor for the development of thyroid cancer and familial non-medullary thyroid cancer (FNMTC) accounts for 5-7% of all NMTC. Whole exome sequencing analysis in the family affected by FNMTC with oncocytic features where our group previously identified a predisposing locus on chromosome 19p13.2, revealed a novel heterozygous mutation (c.400G > A, NM_012335; p.Gly134Ser) in exon 5 of MYO1F, mapping to the linkage locus. In the thyroid FRTL-5 cell model stably expressing the mutant MYO1F p.Gly134Ser protein, we observed an altered mitochondrial network, with increased mitochondrial mass and a significant increase in both intracellular and extracellular reactive oxygen species, compared to cells expressing the wild-type (wt) protein or carrying the empty vector. The mutation conferred a significant advantage in colony formation, invasion and anchorage-independent growth. These data were corroborated by in vivo studies in zebrafish, since we demonstrated that the mutant MYO1F p.Gly134Ser, when overexpressed, can induce proliferation in whole vertebrate embryos, compared to the wt one. MYO1F screening in additional 192 FNMTC families identified another variant in exon 7, which leads to exon skipping, and is predicted to alter the ATP-binding domain in MYO1F. Our study identified for the first time a role for MYO1F in NMTC.


Assuntos
Proliferação de Células , Embrião não Mamífero/patologia , Mitocôndrias/patologia , Mutação , Miosina Tipo I/genética , Câncer Papilífero da Tireoide/patologia , Neoplasias da Glândula Tireoide/patologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Apoptose , Células Cultivadas , Criança , Cromossomos Humanos Par 19 , Embrião não Mamífero/metabolismo , Feminino , Predisposição Genética para Doença , Genótipo , Humanos , Masculino , Pessoa de Meia-Idade , Mitocôndrias/genética , Mitocôndrias/metabolismo , Miosina Tipo I/química , Miosina Tipo I/metabolismo , Consumo de Oxigênio , Linhagem , Conformação Proteica , Câncer Papilífero da Tireoide/genética , Câncer Papilífero da Tireoide/metabolismo , Neoplasias da Glândula Tireoide/genética , Neoplasias da Glândula Tireoide/metabolismo , Adulto Jovem , Peixe-Zebra
13.
Eur J Med Chem ; 141: 138-148, 2017 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-29031061

RESUMO

Crassiflorone is a natural product with anti-mycobacterial and anti-gonorrhoeal properties, isolated from the stem bark of the African ebony tree Diospyros crassiflora. We noticed that its pentacyclic core possesses structural resemblance to the quinone-coumarin hybrid 3, which we reported to exhibit a dual-targeted inhibitory profile towards Trypanosoma brucei glyceraldehyde-3-phosphate dehydrogenase (TbGAPDH) and Trypanosoma cruzi trypanothione reductase (TcTR). Following this basic idea, we synthesized a small library of crassiflorone derivatives 15-23 and investigated their potential as anti-trypanosomatid agents. 19 is the only compound of the series showing a balanced dual profile at 10 µM (% inhibitionTbGAPDH = 64% and % inhibitionTcTR = 65%). In phenotypic assay, the most active compounds were 18 and 21, which at 5 µM inhibited Tb bloodstream-form growth by 29% and 38%, respectively. Notably, all the newly synthesized compounds at 10 µM did not affect viability and the status of mitochondria in human A549 and 786-O cell lines, respectively. However, further optimization that addresses metabolic liabilities including solubility, as well as cytochromes P450 (CYP1A2, CYP2C9, CYP2C19, and CYP2D6) inhibition, is required before this class of natural product-derived compounds can be further progressed.


Assuntos
Gliceraldeído-3-Fosfato Desidrogenases/antagonistas & inibidores , NADH NADPH Oxirredutases/antagonistas & inibidores , Quinonas/farmacologia , Tripanossomicidas/farmacologia , Trypanosoma brucei brucei/efeitos dos fármacos , Trypanosoma cruzi/efeitos dos fármacos , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Gliceraldeído-3-Fosfato Desidrogenases/metabolismo , Humanos , Modelos Moleculares , Estrutura Molecular , NADH NADPH Oxirredutases/metabolismo , Testes de Sensibilidade Parasitária , Quinonas/síntese química , Quinonas/química , Relação Estrutura-Atividade , Tripanossomicidas/síntese química , Tripanossomicidas/química , Trypanosoma brucei brucei/enzimologia , Trypanosoma brucei brucei/crescimento & desenvolvimento , Trypanosoma cruzi/enzimologia , Trypanosoma cruzi/crescimento & desenvolvimento
14.
Eur J Med Chem ; 141: 197-210, 2017 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-29031067

RESUMO

A new series of pyridine derivatives with carbamic or amidic function has been designed and synthesized to act as cholinesterase inhibitors. The synthesized compounds were tested toward EeAChE and hAChE and toward eqBChE and hBChE. The carbamate 8 was the most potent hAChE inhibitor (IC50 = 0.153 ± 0.016 µM) while the carbamate 11 was the most potent inhibitor of hBChE (IC50 = 0.828 ± 0.067 µM). A molecular docking study indicated that the carbamate 8 was able to bind AChE by interacting with both CAS and PAS, in agreement with the mixed inhibition mechanism. Furthermore, the carbamates 8, 9 and 11 were able to inhibit Aß42 self-aggregation and possessed quite low toxicity against human astrocytoma T67 and HeLa cell lines, being the carbamate 8 the less toxic compound on both cell lines.


Assuntos
Acetilcolinesterase/metabolismo , Peptídeos beta-Amiloides/antagonistas & inibidores , Butirilcolinesterase/metabolismo , Inibidores da Colinesterase/farmacologia , Fragmentos de Peptídeos/antagonistas & inibidores , Piridinas/farmacologia , Peptídeos beta-Amiloides/metabolismo , Animais , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Inibidores da Colinesterase/síntese química , Inibidores da Colinesterase/química , Relação Dose-Resposta a Droga , Enguias , Cavalos , Humanos , Modelos Moleculares , Estrutura Molecular , Fragmentos de Peptídeos/metabolismo , Agregados Proteicos/efeitos dos fármacos , Piridinas/síntese química , Piridinas/química , Relação Estrutura-Atividade
15.
Exp Clin Endocrinol Diabetes ; 125(8): 506-513, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28675914

RESUMO

Introduction Insulin resistance (IR) is associated with polycystic ovary syndrome (PCOS). Oxidative stress (OS) is, in turn, related to IR. Studies in PCOS evidenced an increase in OS markers, but they are mainly performed in obese patients, while the complex picture of normal weight PCOS is still poorly investigated. Matherials and Methods To investigate OS in PCOS and relationship with hormonal and metabolic picture, we performed a case-control study in 2 PCOS groups: normal weight (N-PCOS, n=21, age 18-25 ys, mean±SEM BMI 20.7±0.2 kg/m2) and obese (OB-PCOS, n=15, 20-30 ys, BMI 32.8±1.1), compared with control groups matched for BMI: normal (N-C, n=10, 20-30 ys, BMI 21.6±0.9) and obese (OB-C, n=20, 21-31ys, BMI 36.8±1.0). Malondialdehyde (MDA) in blood plasma and peripheral mononuclear cells, obtained by density-gradient centrifugation, was assayed spectrophotometrically by TBARS assay. CoenzymeQ10 (CoQ10) in plasma and cells was assayed by HPLC. Plasma Total Antioxidant Capacity (TAC) was also measured by spectrophotometric method. Results PCOS patients exhibited higher Testosterone levels than controls, but OB-PCOS had highest HOMA (Homeostasis Model Assessment) index, suggesting marked insulin resistance. Despite plasma MDA levels were not significantly different (N-PCOS 3380±346.94 vs. N-C 7 120±541.66; OB-PCOS 5 517.5±853.9 vs. OB. 3 939.66±311.2 pmol/ml), intracellular MDA levels were significantly higher in N-PCOS than controls (mean 3 259±821.5 vs. 458±43.2 pmol/106/cells) and higher than OB-PCOS, although not significantly (1363.1±412.8 pmol/106/cells). Intracellular CoenzymeQ10 was higher in N-PCOS than in N-C, but the highest levels were found in OB-C. Conclusions Our data, while confirming the presence of OS in obese PCOS patients in agreement with literature, suggest that OS could be present also in normal weight PCOS, but it can be revealed in tissue rather than in plasma. The relationship with metabolic status remains to be established, but could be a physiopathological basis for antioxidant treatment in such patients.


Assuntos
Resistência à Insulina , Obesidade/metabolismo , Estresse Oxidativo , Síndrome do Ovário Policístico/metabolismo , Adulto , Biomarcadores/metabolismo , Feminino , Humanos , Obesidade/patologia , Síndrome do Ovário Policístico/patologia
16.
Chem Biol Drug Des ; 90(2): 225-235, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28079302

RESUMO

Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) has recently gained attention as an antiprotozoan and anticancer drug target. We have previously identified 2-phenoxy-1,4-naphthoquinone as an inhibitor of both Trypanosoma brucei and human GAPDH. Herein, through multiple chemical, biochemical, and biological studies, and through the design of analogs, we confirmed the formation of a covalent adduct, we clarified the inhibition mechanism, and we demonstrated antitrypanosomal, antiplasmodial, and cytotoxic activities in cell cultures. The overall results lent support to the hypothesis that 2-phenoxy-1,4-naphthoquinone binds the GAPDH catalytic cysteine covalently through a phenolate displacement mechanism. By investigating the reactivity of 2-phenoxy-1,4-naphthoquinone and its analogs with four GAPDH homologs, we showed that the covalent inhibition is not preceded by the formation of a strong non-covalent complex. However, an up to fivefold difference in inactivation rates among homologs hinted at structural or electrostatic differences of their active sites that could be exploited to further design kinetically selective inhibitors. Moreover, we preliminarily showed that 2-phenoxy-1,4-naphthoquinone displays selectivity for GAPDHs over two other cysteine-dependent enzymes, supporting its suitability as a warhead starting fragment for the design of novel inhibitors.


Assuntos
Antiprotozoários/química , Antiprotozoários/farmacologia , Gliceraldeído-3-Fosfato Desidrogenases/antagonistas & inibidores , Naftoquinonas/química , Naftoquinonas/farmacologia , Plasmodium falciparum/enzimologia , Trypanosoma brucei brucei/enzimologia , Gliceraldeído-3-Fosfato Desidrogenases/metabolismo , Humanos , Malária Falciparum/tratamento farmacológico , Plasmodium falciparum/efeitos dos fármacos , Tripanossomicidas/química , Tripanossomicidas/farmacologia , Trypanosoma brucei brucei/efeitos dos fármacos
17.
J Bioenerg Biomembr ; 48(4): 413-23, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27525823

RESUMO

Propofol (2,6-diisopropylphenol) is an anaesthetic widely used for human sedation. Due to its intrinsic antioxidant properties, rapid induction of anaesthesia and fast recovery, it is employed in paediatric anaesthesia and in the intensive care of premature infants. Recent studies have pointed out that exposure to anaesthesia in the early stage of life might be responsible of long-lasting cognitive impairment. The apoptotic neurodegeneration induced by general anaesthetics (GA) involves mitochondrial impairment due to the inhibition of the OXPHOS machinery. In the present work, we aim to identify the main mitochondrial respiratory chain target of propofol toxicity and to evaluate the possible protective effect of CoQ10 supplementation. The propofol effect on the mitochondrial functionality was assayed in isolated mitochondria and in two cell lines (HeLa and T67) by measuring oxygen consumption rate. The protective effect of CoQ10 was assessed by measuring cells viability, NADH-oxidase activity and ATP/ADP ratio in cells treated with propofol. Our results show that propofol reduces cellular oxygen consumption rate acting mainly on mitochondrial Complex I. The kinetic analysis of Complex I inhibition indicates that propofol interferes with the Q module acting as a non-competitive inhibitor with higher affinity for the free form of the enzyme. Cells supplemented with CoQ10 are more resistant to propofol toxicity. Propofol exposure induces cellular damages due to mitochondrial impairment. The site of propofol inhibition on Complex I is the Q module. CoQ10 supplementation protects cells against the loss of energy suggesting its possible therapeutic role to minimizing the detrimental effects of general anaesthesia.


Assuntos
Complexo I de Transporte de Elétrons/fisiologia , Mitocôndrias/efeitos dos fármacos , Propofol/toxicidade , Ubiquinona/análogos & derivados , Linhagem Celular Tumoral , Respiração Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Suplementos Nutricionais , Células HeLa , Humanos , Hipnóticos e Sedativos/toxicidade , Mitocôndrias/química , Mitocôndrias/metabolismo , Consumo de Oxigênio/efeitos dos fármacos , Ubiquinona/efeitos dos fármacos , Ubiquinona/farmacologia
18.
Neurobiol Aging ; 45: 213.e1-213.e2, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27394078

RESUMO

COQ2 mutations have been implicated in the etiology of multiple system atrophy (MSA) in Japan. However, several genetic screenings have not confirmed the role of its variants in the disease. We performed COQ2 sequence analysis in 87 probable MSA. A homozygous change p.A43G was found in an MSA-C patient. Cosegregation analysis and the evaluation of CoQ10 content in muscle and fibroblasts did not support the pathogenic role of this variant.


Assuntos
Alquil e Aril Transferases/genética , Análise Mutacional de DNA , Estudos de Associação Genética , Atrofia de Múltiplos Sistemas/genética , Mutação/genética , Adulto , Idoso , Estudos de Coortes , Feminino , Homozigoto , Humanos , Itália , Masculino , Pessoa de Meia-Idade
19.
Sci Rep ; 6: 24000, 2016 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-27039838

RESUMO

Peptaibols are peculiar peptides produced by fungi as weapons against other microorganisms. Previous studies showed that peptaibols are promising peptide-based drugs because they act against cell membranes rather than a specific target, thus lowering the possibility of the onset of multi-drug resistance, and they possess non-coded α-amino acid residues that confer proteolytic resistance. Trichogin GA IV (TG) is a short peptaibol displaying antimicrobial and cytotoxic activity. In the present work, we studied thirteen TG analogues, adopting a multidisciplinary approach. We showed that the cytotoxicity is tuneable by single amino-acids substitutions. Many analogues maintain the same level of non-selective cytotoxicity of TG and three analogues are completely non-toxic. Two promising lead compounds, characterized by the introduction of a positively charged unnatural amino-acid in the hydrophobic face of the helix, selectively kill T67 cancer cells without affecting healthy cells. To explain the determinants of the cytotoxicity, we investigated the structural parameters of the peptides, their cell-binding properties, cell localization, and dynamics in the membrane, as well as the cell membrane composition. We show that, while cytotoxicity is governed by the fine balance between the amphipathicity and hydrophobicity, the selectivity depends also on the expression of negatively charged phospholipids on the cell surface.


Assuntos
Lipopeptídeos/química , Peptaibols/síntese química , Peptaibols/farmacologia , Linhagem Celular Tumoral , Proliferação de Células , Sobrevivência Celular/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Células HeLa , Humanos , Peptaibols/química
20.
ChemMedChem ; 11(12): 1284-95, 2016 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-26880501

RESUMO

We discovered a small series of hit compounds that show multitargeting activities against key targets in Alzheimer's disease (AD). The compounds were designed by combining the structural features of the anti-AD drug donepezil with clioquinol, which is able to chelate redox-active metals, thus decreasing metal-driven oxidative phenomena and ß-amyloid (Aß)-mediated neurotoxicity. The majority of the new hybrid compounds selectively target human butyrylcholinesterase at micromolar concentrations and effectively inhibit Aß self-aggregation. In addition, compounds 5-chloro-7-((4-(2-methoxybenzyl)piperazin-1-yl)methyl)-8-hydroxyquinoline (1 b), 7-((4-(2-methoxybenzyl)piperazin-1-yl)methyl)-8-hydroxyquinoline (2 b), and 7-(((1-benzylpiperidin-4-yl)amino)methyl)-5-chloro-8-hydroxyquinoline (3 a) are able to chelate copper(II) and zinc(II) and exert antioxidant activity in vitro. Importantly, in the case of 2 b, the multitarget profile is accompanied by high predicted blood-brain barrier permeability, low cytotoxicity in T67 cells, and acceptable toxicity in HUVEC primary cells.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Inibidores da Colinesterase/uso terapêutico , Oxiquinolina/química , Peptídeos beta-Amiloides/antagonistas & inibidores , Peptídeos beta-Amiloides/metabolismo , Antioxidantes/química , Antioxidantes/uso terapêutico , Antioxidantes/toxicidade , Barreira Hematoencefálica/metabolismo , Butirilcolinesterase/química , Butirilcolinesterase/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Quelantes/química , Inibidores da Colinesterase/química , Inibidores da Colinesterase/toxicidade , Clioquinol/química , Clioquinol/uso terapêutico , Clioquinol/toxicidade , Cobre/química , Donepezila , Desenho de Fármacos , Células Endoteliais da Veia Umbilical Humana , Humanos , Indanos/química , Indanos/uso terapêutico , Indanos/toxicidade , Oxiquinolina/uso terapêutico , Oxiquinolina/toxicidade , Piperidinas/química , Piperidinas/uso terapêutico , Piperidinas/toxicidade , Relação Estrutura-Atividade , Zinco/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA