Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 941: 173555, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38806120

RESUMO

A sound evaluation of the cadmium (Cd) mass balance in agricultural soils needs accurate data of Cd leaching. Reported Cd concentrations from in situ studies are often one order of magnitude lower than predicted by empirical models, which were calibrated to pore water data from stored soils. It is hypothesized that this discrepancy is related to the preferential flow of water (non-equilibrium) and/or artefacts caused by drying and rewetting soils prior to pore water analysis. These hypotheses were tested on multiple soils (n = 27) with contrasting properties. Pore waters were collected by soil centrifugation from field fresh soil samples and also after incubating the same soils (28 days, 20 °C), following two drying-rewetting cycles, the idea being that chemical equilibrium in the soil is reached after incubation. Incubation increased pore water Cd by a factor 4, on average, and up to a factor 16. That increase was statistically related to the decrease of pore water pH and the increase of nitrate, both mainly related to incubation-induced nitrification. After correcting for both factors, the Cd rise was also highest at higher pore water Ca. This suggests that higher Ca in soil enlarges Cd concentration gradients among pore classes in field fresh soils because high Ca promotes soil aggregation and separation of mobile from immobile water. Several empirical models were used to predict pore water Cd. Predictions exceeded observations up to a factor 30 for the fresh pore waters but matched well with those of incubated soils; again, deviations from the 1:1 line in field fresh soils were largest in high Ca (>0.8 mM) soils, suggesting that local equilibrium conditions in field fresh soils are not found at higher Ca. Our results demonstrate that empirical models need recalibration with field fresh pore water data to make accurate soil Cd mass balances in risk assessments.

2.
Sci Total Environ ; 890: 164419, 2023 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-37236457

RESUMO

Accurate data of cadmium (Cd) and uranium (U) leaching are needed in the context of identifying their mass balances in agricultural soils. There is some controversy related to sampling methods and the contribution of colloid facilitated transport. Here, leaching was measured in undisturbed unsaturated soils and the impact of colloids was measured with due attention to solution sampling protocols. Soils were sampled in an arable, pH neutral silty loam soil. The columns (n = 8) were irrigated and PTFE suction plates (1 µm pores) at the bottom ensured unsaturated flow. New here is that both percolates and associated suction plates were collected, the elements in the plates were recovered with acid digestion and used as a lower estimate of colloidal forms. The fraction of elements collected in the plates were 33 % (Cd) and 80 % (U) of the total mobility (=percolates + plates), illustrating colloidal transport. Composition of pore water extracted by soil centrifugation varied largely between initial and final samples and showed that colloids increased as a result of reduced solution calcium after leaching two pore volumes with low calcium water. Flow Field-Flow Fractionation (FIFFF) of the pore water and percolates revealed co-elution of U with colloidal organic matter, oxyhydroxides and clay, illustrating colloidal transport of U by these vectors. Colloidal transport of Cd was less pronounced and was dominated by organic matter. Soil extracts with 0.01 M CaCl2 have lower colloid concentration and consequently underestimate mobile U. In contrast, Cd concentrations in 0.01 M CaCl2 extracts exceed that of percolates due to chloride complexation and higher calcium, mobilizing Cd. Soil leaching experiments better indicate potential leaching losses than a single pore water composition because the former yields the time integrated data. Suction plates and/or bottom filters need to be analysed in leaching studies to account for metal transport by colloids.


Assuntos
Poluentes do Solo , Urânio , Cádmio/análise , Solo/química , Urânio/análise , Cálcio/análise , Cloreto de Cálcio , Poluentes do Solo/análise , Água/análise , Coloides/química
3.
J Environ Manage ; 332: 117396, 2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-36739774

RESUMO

Glauconite sands (GS) are abundantly available iron (Fe)-rich minerals that are efficient in lowering the release of phosphorus (P) from sediments to the overlying water. Many river sediments are, however, net sinks for P rather than sources and it is unclear if these GS minerals also enhance the P uptake from water. This is because the concentration of Fe(III) minerals at the sediment-water interface (SWI) depends on the redox potential that is affected by physicochemical processes. This study was set-up to investigate if a sediment amendment with GS can both lower P release from the sediment and enhance P uptake from the overlying water. The P fluxes across the SWI were compared between GS-amended (added at 10% weight fraction) and non-amended river sediment in static (incubation) and dynamic (flume) systems. The net P uptake was measured in response to a pulse external P loading (0.5-5 mg P L-1). Sodium glutamate was added to all treatments to simulate water with a high oxygen demand. Before the P pulse, the GS-amended sediments released significantly less P to the overlying water than the non-amended sediments in both static as dynamic systems. Spiking the water reverted the net P flux over the SWI only in the dynamic system, and the net P uptake in the sediment was factor two larger in GS-amended sediment compared to the non-amended sediment. This study showed that GS addition not only reduced internal P release, but also enhanced P uptake from the overlying water. However, the long-term efficiency in streams likely decreases over time due to saturation processes.


Assuntos
Fósforo , Poluentes Químicos da Água , Ferro/análise , Areia , Rios , Sedimentos Geológicos , Minerais , Água , Poluentes Químicos da Água/análise , Lagos
4.
Sci Total Environ ; 864: 160820, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36526189

RESUMO

Iron (Fe) rich by-product from drinking water treatment plants can be added to rivers and lakes to immobilise phosphorus (P) in sediment and lower eutrophication risks. This study was set up to investigate the P immobilisation efficiency of an Fe rich by-product as affected by the pH and sulphate (SO4) concentration in the overlying water. Both factors are known to inhibit long-term P immobilisation under anoxic conditions. A static sediment-water incubation was conducted at varying buffered water pH values (6, 7 and 8) and different initial SO4 concentrations (0-170 mg SO4 L-1) with or without Fe rich by-product amendment to the sediment. In the unamended sediment, the P release to the overlying water was highest, and up to 6 mg P L-1, at lowest water pH due to higher reductive dissolution of Fe(III) oxyhydroxides. The Fe rich by-product amendment to the sediment largely reduced P release from sediment by factors 50-160 depending on pH, with slightly lowest immobilisation at highest pH 8, likely because of pH dependent P sorption. The total sulphur (S) concentrations in the overlying water reduced during incubation. The P release in unamended sediments increased from 2.7 mg L-1 to 4.2 mg L-1 with higher initial SO4 concentrations, suggesting sulphide formation during incubation and FeS precipitation that facilitates release of P. However, no such SO4 effects were found where Fe rich by-product was applied that lowered P release to <0.1 mg L-1 illustrating high stability of immobilised P in amended sediments. This study suggests that Fe rich by-product is efficient for P immobilisation but that loss of Fe in low pH water may lower its long-term effect.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA