Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cell Metab ; 26(5): 738-752.e6, 2017 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-28988824

RESUMO

The intestinal epithelial cells (IECs) that line the gut form a robust line of defense against ingested pathogens. We investigated the impact of infection with the enteric pathogen Citrobacter rodentium on mouse IEC metabolism using global proteomic and targeted metabolomics and lipidomics. The major signatures of the infection were upregulation of the sugar transporter Sglt4, aerobic glycolysis, and production of phosphocreatine, which mobilizes cytosolic energy. In contrast, biogenesis of mitochondrial cardiolipins, essential for ATP production, was inhibited, which coincided with increased levels of mucosal O2 and a reduction in colon-associated anaerobic commensals. In addition, IECs responded to infection by activating Srebp2 and the cholesterol biosynthetic pathway. Unexpectedly, infected IECs also upregulated the cholesterol efflux proteins AbcA1, AbcG8, and ApoA1, resulting in higher levels of fecal cholesterol and a bloom of Proteobacteria. These results suggest that C. rodentium manipulates host metabolism to evade innate immune responses and establish a favorable gut ecosystem.


Assuntos
Trifosfato de Adenosina/metabolismo , Colesterol/metabolismo , Citrobacter rodentium/metabolismo , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiologia , Trifosfato de Adenosina/análise , Animais , Linhagem Celular , Colesterol/análise , Células Epiteliais/metabolismo , Células Epiteliais/microbiologia , Fezes/microbiologia , Feminino , Humanos , Imunidade Inata/fisiologia , Masculino , Metabolômica , Camundongos , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo , Proteômica
2.
mBio ; 3(5)2012.
Artigo em Inglês | MEDLINE | ID: mdl-23033475

RESUMO

UNLABELLED: Translocation of effector proteins via a type III secretion system (T3SS) is a widespread infection strategy among Gram-negative bacterial pathogens. Each pathogen translocates a particular set of effectors that subvert cell signaling in a way that suits its particular infection cycle. However, as effector unbalance might lead to cytotoxicity, the pathogens must employ mechanisms that regulate the intracellular effector concentration. We present evidence that the effector EspZ controls T3SS effector translocation from enteropathogenic (EPEC) and enterohemorrhagic (EHEC) Escherichia coli. Consistently, an EPEC espZ mutant is highly cytotoxic. Following ectopic expression, we found that EspZ inhibited the formation of actin pedestals as it blocked the translocation of Tir, as well as other effectors, including Map and EspF. Moreover, during infection EspZ inhibited effector translocation following superinfection. Importantly, while EspZ of EHEC O157:H7 had a universal "translocation stop" activity, EspZ of EPEC inhibited effector translocation from typical EPEC strains but not from EHEC O157:H7 or its progenitor, atypical EPEC O55:H7. We found that the N and C termini of EspZ, which contains two transmembrane domains, face the cytosolic leaflet of the plasma membrane at the site of bacterial attachment, while the extracellular loop of EspZ is responsible for its strain-specific activity. These results show that EPEC and EHEC acquired a sophisticated mechanism to regulate the effector translocation. IMPORTANCE: Enteropathogenic Escherichia coli (EPEC) and enterohemorrhagic E. coli (EHEC) are important diarrheal pathogens responsible for significant morbidity and mortality in developing countries and the developed world, respectively. The virulence strategy of EPEC and EHEC revolves around a conserved type III secretion system (T3SS), which translocates bacterial proteins known as effectors directly into host cells. Previous studies have shown that when cells are infected in two waves with EPEC, the first wave inhibits effector translocation by the second wave in a T3SS-dependent manner, although the factor involved was not known. Importantly, we identified EspZ as the effector responsible for blocking protein translocation following a secondary EPEC infection. Interestingly, we found that while EspZ of EHEC can block protein translocation from both EPEC and EHEC strains, EPEC EspZ cannot block translocation from EHEC. These studies show that EPEC and EHEC employ a novel infection strategy to regulate T3SS translocation.


Assuntos
Sistemas de Secreção Bacterianos , Escherichia coli Êntero-Hemorrágica/genética , Escherichia coli Enteropatogênica/genética , Proteínas de Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica , Transporte Proteico , Sobrevivência Celular , Escherichia coli Êntero-Hemorrágica/patogenicidade , Escherichia coli Enteropatogênica/patogenicidade , Células Epiteliais/microbiologia , Células Epiteliais/fisiologia , Células HeLa , Humanos , Fatores de Virulência/metabolismo
3.
Cell Microbiol ; 12(12): 1718-31, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20618342

RESUMO

Enteropathogenic Escherichia coli (EPEC) strains are diarrhoeal pathogens that use a type III secretion system to translocate effector proteins into host cells in order to colonize and multiply in the human gut. Map, EspI and NleH1 are conserved EPEC effectors that possess a C-terminal class I PSD-95/Disc Large/ZO-1 (PDZ)-binding motif. Using a PDZ array screen we identified Na(+)/H(+) exchanger regulatory factor 2 (NHERF2), a scaffold protein involved in tethering and recycling ion channels in polarized epithelia that contains two PDZ domains, as a common target of Map, EspI and NleH1. Using recombinant proteins and co-immunoprecipitation we confirmed that NHERF2 binds each of the effectors. We generated a HeLa cell line stably expressing HA-tagged NHERF2 and found that Map, EspI and NleH1 colocalize and interact with intracellular NHERF2 via their C-terminal PDZ-binding motif. Overexpression of NHERF2 enhanced the formation and persistence of Map-induced filopodia, accelerated the trafficking of EspI to the Golgi and diminished the anti-apoptotic activity of NleH1. The binding of multiple T3SS effectors to a single scaffold protein is unique. Our data suggest that NHERF2 may act as a plasma membrane sorting site, providing a novel regulatory mechanism to control the intracellular spatial and temporal effector protein activity.


Assuntos
Escherichia coli Enteropatogênica/patogenicidade , Proteínas de Escherichia coli/metabolismo , Fosfoproteínas/metabolismo , Trocadores de Sódio-Hidrogênio/metabolismo , Fatores de Virulência/metabolismo , Escherichia coli Enteropatogênica/metabolismo , Células Epiteliais/microbiologia , Células HeLa , Humanos , Imunoprecipitação , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Transporte Proteico , Proteínas Recombinantes/metabolismo
4.
Cell Microbiol ; 11(2): 309-22, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19046338

RESUMO

Enteropathogenic Escherichia coli (EPEC) subverts actin dynamics in eukaryotic cells by injecting effector proteins via a type III secretion system. First, WxxxE effector Map triggers transient formation of filopodia. Then, following recovery from the filopodial signals, EPEC triggers robust actin polymerization via a signalling complex comprising Tir and the adaptor proteins Nck. In this paper we show that Map triggers filopodia formation by activating Cdc42; expression of dominant-negative Cdc42 or knock-down of Cdc42 by siRNA impaired filopodia formation. In addition, Map binds PDZ1 of NHERF1. We show that Map-NHERF1 interaction is needed for filopodia stabilization in a process involving ezrin and the RhoA/ROCK cascade; expression of dominant-negative ezrin and RhoA or siRNA knock-down of RhoA lead to rapid elimination of filopodia. Moreover, we show that formation of the Tir-Nck signalling complex leads to filopodia withdrawal. Recovery from the filopodial signals requires phosphorylation of a Tir tyrosine (Y474) residue and actin polymerization pathway as both infection of cells with EPEC expressing TirY474S or infection of Nck knockout cells with wild-type EPEC resulted in persistence of filopodia. These results show that EPEC effectors modulate actin dynamics by temporal subverting the Rho GTPases and other actin polymerization pathways for the benefit of the adherent pathogen.


Assuntos
Escherichia coli Enteropatogênica/patogenicidade , Proteínas de Escherichia coli/metabolismo , Pseudópodes/fisiologia , Fatores de Virulência/metabolismo , Actinas/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Animais , Linhagem Celular , Proteínas do Citoesqueleto/antagonistas & inibidores , Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/metabolismo , Técnicas de Silenciamento de Genes , Camundongos , Modelos Biológicos , Mutação de Sentido Incorreto , Proteínas Oncogênicas/metabolismo , Fosfoproteínas/metabolismo , Complexo Glicoproteico GPIb-IX de Plaquetas/antagonistas & inibidores , Complexo Glicoproteico GPIb-IX de Plaquetas/genética , Complexo Glicoproteico GPIb-IX de Plaquetas/metabolismo , Ligação Proteica , Receptores de Superfície Celular/metabolismo , Trocadores de Sódio-Hidrogênio/metabolismo , Quinases Associadas a rho/metabolismo , Proteína rhoA de Ligação ao GTP/antagonistas & inibidores , Proteína rhoA de Ligação ao GTP/genética , Proteína rhoA de Ligação ao GTP/metabolismo
5.
Infect Immun ; 76(11): 4804-13, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18725419

RESUMO

The human pathogen enterohemorrhagic Escherichia coli (EHEC) O157:H7 colonizes human and animal gut via formation of attaching and effacing lesions. EHEC strains use a type III secretion system to translocate a battery of effector proteins into the mammalian host cell, which subvert diverse signal transduction pathways implicated in actin dynamics, phagocytosis, and innate immunity. The genomes of sequenced EHEC O157:H7 strains contain two copies of the effector protein gene nleH, which share 49% sequence similarity with the gene for the Shigella effector OspG, recently implicated in inhibition of migration of the transcriptional regulator NF-kappaB to the nucleus. In this study we investigated the role of NleH during EHEC O157:H7 infection of calves and lambs. We found that while EHEC DeltanleH colonized the bovine gut more efficiently than the wild-type strain, in lambs the wild-type strain exhibited a competitive advantage over the mutant during mixed infection. Using the mouse pathogen Citrobacter rodentium, which shares many virulence factors with EHEC O157:H7, including NleH, we observed that the wild-type strain exhibited a competitive advantage over the mutant during mixed infection. We found no measurable differences in T-cell infiltration or hyperplasia in colons of mice inoculated with the wild-type or the nleH mutant strain. Using NF-kappaB reporter mice carrying a transgene containing a luciferase reporter driven by three NF-kappaB response elements, we found that NleH causes an increase in NF-kappaB activity in the colonic mucosa. Consistent with this, we found that the nleH mutant triggered a significantly lower tumor necrosis factor alpha response than the wild-type strain.


Assuntos
Citrobacter rodentium/patogenicidade , Escherichia coli O157/patogenicidade , Mucosa Intestinal/microbiologia , Fatores de Virulência/metabolismo , Animais , Bovinos , Infecções por Enterobacteriaceae/imunologia , Infecções por Enterobacteriaceae/metabolismo , Infecções por Enterobacteriaceae/patologia , Infecções por Escherichia coli/imunologia , Infecções por Escherichia coli/metabolismo , Infecções por Escherichia coli/patologia , Técnica Indireta de Fluorescência para Anticorpo , Imuno-Histoquímica , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia , Camundongos , NF-kappa B/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Suínos , Fatores de Virulência/genética
6.
Cell Microbiol ; 10(3): 632-54, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17979980

RESUMO

Human decay accelerating factor (hDAF, CD55) and members of the carcinoembryonic-antigen-related cell-adhesion molecules (hCEACAMs) family are recognized as receptors by Gram-negative, diffusely adhering Escherichia coli (DAEC) strains expressing Afa/Dr adhesins. We report here that hCEACAM1-4L has a key function in downregulating the protein tyrosine Src kinase associated with hDAF signalling. After infecting HeLa epithelial cells stably transfected with hCEACAM1-4L cDNA with Dr adhesin-positive E. coli, the amount of the pTyr(416)-active form of the Src protein decreased, whereas that of the pTyr(527)-inactive form of Src protein did not increase. This downregulation of the Src protein implies that part of the hCEACAM1-4L protein had been translocated into lipid rafts, the protein was phosphorylated at Tyr residues in the cytoplasmic domain, and it was physically associated with the protein tyrosine phosphatase, SHP-2. Finally, we found that the hCEACAM1-4L-associated SHP-2 was not phosphorylated and lacked phosphatase activity, suggesting that the downregulation of Src protein associated with hDAF signalling results from the absence of dephosphorylation of the pTyr(527)-inactive form necessary for Src kinase activation.


Assuntos
Antígenos CD/metabolismo , Antígenos CD55/metabolismo , Moléculas de Adesão Celular/metabolismo , Escherichia coli/fisiologia , Quinases da Família src/metabolismo , Adesinas de Escherichia coli/metabolismo , Regulação para Baixo , Células HeLa , Humanos , Microdomínios da Membrana/química , Ligação Proteica , Proteína Tirosina Fosfatase não Receptora Tipo 11/metabolismo
7.
Mol Microbiol ; 52(4): 963-83, 2004 May.
Artigo em Inglês | MEDLINE | ID: mdl-15130118

RESUMO

Little is known about the molecular bases underlying the virulence of diffusely adhering Escherichia coli (DAEC) harbouring the Afa/Dr family of adhesins. These adhesins recognize as receptors the GPI-anchored proteins CD55 (decay-accelerating factor, DAF) and CD66e (carcinoembryonic antigen, CEA). CD66e is a member of the CEA-related cell adhesion molecules (CEACAM) family, comprising seven members. We analysed the interactions of Afa/Dr DAEC with the CEACAMs using CEACAM-expressing CHO and HeLa cells. The results demonstrate that only E. coli expressing a subfamily of Afa/Dr adhesins, named here Afa/Dr-I, including Dr, F1845 and AfaE-III adhesins, bound onto CHO cells expressing CEACAM1, CEA or CEACAM6. Whereas all the Afa/Dr adhesins elicit recruitment of CD55 around adhering bacteria, only the Afa/Dr-I subfamily elicits the recruitment of CEACAM1, CEA and CEACAM6. In addition, although CEACAM3 is not recognized as a receptor by the subfamily of Afa/Dr adhesins, it is recruited around bacteria in HeLa cells. The recruited CEACAM1, CEA and CEACAM6 around adhering bacteria resist totally or in part a detergent extraction, whereas the recruited CEACAM3 does not. Finally, the results show that recognition of CEA and CEACAM6, but not CEACAM1, is accompanied by tight attachment to bacteria of cell surface microvilli-like extensions, which are elongated. Moreover, recognition of CEA is accompanied by an activation of the Rho GTPase Cdc42 and by a phosphorylation of ERM, which in turn elicit the observed cell surface microvilli-like extensions.


Assuntos
Adesinas de Escherichia coli/metabolismo , Antígenos de Bactérias/metabolismo , Aderência Bacteriana , Antígeno Carcinoembrionário/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/patogenicidade , Proteínas de Fímbrias/metabolismo , Hemaglutininas/metabolismo , Animais , Antígenos CD/metabolismo , Antígenos de Diferenciação/metabolismo , Antígenos de Neoplasias/metabolismo , Antígenos CD55/metabolismo , Células CHO , Moléculas de Adesão Celular/metabolismo , Linhagem Celular , Cricetinae , Proteínas de Ligação a DNA/metabolismo , Proteínas Ligadas por GPI , Células HeLa , Humanos , Ligação Proteica , Fatores de Transcrição/metabolismo , Proteína cdc42 de Ligação ao GTP/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA