Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cancer Gene Ther ; 29(10): 1429-1438, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35379907

RESUMO

Cell migration depends on the dynamic organisation of the actin cytoskeleton and assembly and disassembly of focal adhesions (FAs). However, the precise mechanisms coordinating these processes remain poorly understood. We previously identified the oestrogen-related receptor α (ERRα) as a major regulator of cell migration. Here, we show that loss of ERRα leads to abnormal accumulation of actin filaments that is associated with an increased level of inactive form of the actin-depolymerising factor cofilin. We further show that ERRα depletion decreases cell adhesion and results in defective FA formation and turnover. Interestingly, specific inhibition of the RhoA-ROCK-LIMK-cofilin pathway rescues the actin polymerisation defects resulting from ERRα silencing, but not cell adhesion. Instead, we found that MAP4K4 is a direct target of ERRα and down-regulation of its activity rescues cell adhesion and FA formation in the ERRα-depleted cells. Altogether, our results highlight a crucial role of ERRα in coordinating the dynamic of actin network and FAs through the independent regulation of the RhoA and MAP4K4 pathways.


Assuntos
Actinas , Adesões Focais , Fatores de Despolimerização de Actina/metabolismo , Actinas/genética , Actinas/metabolismo , Movimento Celular/fisiologia , Adesões Focais/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas Serina-Treonina Quinases , Receptores de Estrogênio/genética , Receptores de Estrogênio/metabolismo , Receptor ERRalfa Relacionado ao Estrogênio
2.
Mol Ther Methods Clin Dev ; 18: 880-892, 2020 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-32953937

RESUMO

We have determined whether orange juice-derived nanovesicles (ONVs) could be used for the treatment of obesity-associated intestinal complications. ONVs were characterized by lipidomic, metabolomic, electron microscopy. In vitro, intestinal barriers (IBs = Caco-2+HT-29-MTX) were treated with ONVs and co-cultured with adipocytes to monitor IB fat release. In vivo, obesity was induced with a high-fat, high-sucrose diet (HFHSD mice) for 12 weeks. Then, half of HFHSD mice were gavaged with ONVs. One-month ONV treatment did not modify HFHSD-induced insulin resistance but reversed diet-induced gut modifications. In the jejunum, ONVs increased villi size, reduced triglyceride content, and modulated mRNA levels of genes involved in immune response (tumor necrosis factor [TNF]-α and interleukin [IL]-1ß), barrier permeability (CLDN1, OCLN, ZO1), fat absorption, and chylomicron release. ONVs targeted microsomal triglyceride transfer protein (MTP) and angiopoietin-like protein-4 (ANGPTL4), two therapeutic targets to reduce plasma lipids and inflammation in gastrointestinal diseases. Interestingly, ONV treatment did not aggravate liver steatosis, as MTP mRNA was increased in the liver. Therefore, ONVs protected both intestine and the liver from fat overload associated with the HFHSD. As ONVs concentrated amino acids and bioactive lipids versus orange juice, which are deficient in obese patients, the use of ONVs as a dietary supplement could bring physiological relevant compounds in the jejunum to accelerate the restoration of intestinal functions during weight loss in obese patients.

3.
Adipocyte ; 8(1): 83-97, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-30905315

RESUMO

Adipose tissue function in the regulation of lipemia is highly dependent on intestinal absorption of nutrients. Therefore the aim of the present study was the development and validation of an in vitro multiculture model allowing to measure intestinal absorption using adipocytes as lipid sensors. We previously described (1) novel methods to study oleic acid induction of adipogenesis and lipogenesis and (2) a functional reconstituted intestinal barrier using human cell lines Caco-2/HT29-MTX (9:1). In the present study we develop a co-culture model with either adipocytes or hepatocytes as sensors for intestinal lipid absorption. This model was validated using oleic acid (OA) pre-absorbed onto the intestinal barrier. Optimized experimental conditions were obtained with partially differentiated 3T3L1-MBX adipocytes sensing up to 5 µM OA in solution or 40 µM OA pre-absorbed by Caco2/HT29-MTX intestinal barriers. Metabolism including glycemia and insulinemia greatly influenced the ability to  TG accumulation in adipocytes. By comparison AML12 hepatocytes found less sensitive to OA (up to 1 µM). The present study demonstrates a much better functionality for fatty acid uptake and release in Caco2/HT29-MTX versus Caco-2 intestinal barriers. Taken together these results open new opportunities to study in vitro lipid transfer between intestinal barriers and either adipocytes or hepatocytes. Abbreviations: BSA: Bovine serum albumin; CIDEs: Cell Death Inducing DFFA Like Effectors; DMEM, Dulbecco's Modified Eagle's Medium; FABPs: Fatty Acid Binding Proteins; FAT/CD36: Fatty acid translocase; FCS: Fetal calf serum; GLP2: Glucagon-like peptide-2; NAFLD: Nonalcoholic fatty liver disease; OA: oleic acid; PBS: Phosphate buffer saline; PPARs: Peroxisome-Proliferator Activated Receptors; RTCA: realtime cell analysis; TG: triglyceride.


Assuntos
Adipócitos/fisiologia , Absorção Intestinal/fisiologia , Ácido Oleico/metabolismo , Células 3T3-L1 , Adipócitos/metabolismo , Animais , Transporte Biológico/fisiologia , Células CACO-2 , Diferenciação Celular , Técnicas de Cocultura , Proteínas de Ligação a Ácido Graxo/metabolismo , Células HT29 , Hepatócitos/metabolismo , Humanos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/fisiologia , Intestinos/fisiologia , Lipídeos/fisiologia , Lipogênese/fisiologia , Camundongos , Hepatopatia Gordurosa não Alcoólica , Transporte Proteico/fisiologia , Triglicerídeos/metabolismo
4.
Int J Mol Sci ; 18(7)2017 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-28726765

RESUMO

Gastrointestinal epithelium is the unique route for nutrients and for many pharmaceuticals to enter the body. The present study aimed to analyze precisely whether co-culture of two colon cancer cell lines, mucus-producing cells HT29-MTX and enterocyte-like Caco-2 cells, ameliorate differentiation into an in vitro intestinal barrier model and the signaling pathways involved. Differentiated Caco-2 cells gene datasets were compared first to intestinal or cancer phenotypes and second to signaling pathway gene datasets. Experimental validations were performed in real-time experiments, immunochemistry, and gene expression analyses on Caco-2 versus co-cultures of Caco-2 and HT29-MTX (10%) cells. Partial maintenance of cancer-cell phenotype in differentiated Caco-2 cells was confirmed and fatty acids merged as potential regulators of cancer signaling pathways. HT29-MTX cells induced morphological changes in Caco-2 cells, slightly increased their proliferation rate and profoundly modified gene transcription of phenotype markers, fatty acid receptors, intracellular transporters, and lipid droplet components as well as functional responses to oleic acid. In vitro, enterocyte phenotype was rescued partially by co-culture of cancer cells with goblet cells and completed through oleic acid interaction with signaling pathways dysregulated in cancer cells.


Assuntos
Neoplasias do Colo/metabolismo , Enterócitos/metabolismo , Ácido Oleico/metabolismo , Fenótipo , Células CACO-2 , Diferenciação Celular , Linhagem Celular Tumoral , Proliferação de Células , Técnicas de Cocultura , Neoplasias do Colo/genética , Neoplasias do Colo/patologia , Bases de Dados Genéticas , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Células HT29 , Humanos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia , Transcrição Gênica
5.
Oncotarget ; 8(10): 17140-17155, 2017 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-28188308

RESUMO

Melanoma is well known for its propensity for lethal metastasis and resistance to most current therapies. Tumor progression and drug resistance depend to a large extent on the interplay between tumor cells and the surrounding matrix. We previously identified Tetraspanin 8 (Tspan8) as a critical mediator of melanoma invasion, whose expression is absent in healthy skin. The present study investigated whether Tspan8 may influence cell-matrix anchorage and regulate downstream molecular pathways leading to an aggressive behavior. Using silencing and ectopic expression strategies, we showed that Tspan8-mediated invasion of melanoma cells resulted from defects in cell-matrix anchorage by interacting with ß1 integrins and by interfering with their clustering, without affecting their surface or global expression levels. These effects were associated with impaired phosphorylation of integrin-linked kinase (ILK) and its downstream target Akt-S473, but not FAK. Specific blockade of Akt or ILK activity strongly affected cell-matrix adhesion. Moreover, expression of a dominant-negative form of ILK reduced ß1 integrin clustering and cell-matrix adhesion. Finally, we observed a tumor-promoting effect of Tspan8 in vivo and a mutually exclusive expression pattern between Tspan8 and phosphorylated ILK in melanoma xenografts and human melanocytic lesions. Altogether, the in vitro, in vivo and in situ data highlight a novel regulatory role for Tspan8 in melanoma progression by modulating cell-matrix interactions through ß1 integrin-ILK axis and establish Tspan8 as a negative regulator of ILK activity. These findings emphasize the importance of targeting Tspan8 as a means of switching from low- to firm-adhesive states, mandatory to prevent tumor dissemination.


Assuntos
Integrina beta1/genética , Melanoma/genética , Proteínas Serina-Treonina Quinases/genética , Transdução de Sinais/genética , Tetraspaninas/genética , Animais , Western Blotting , Adesão Celular/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Integrina beta1/metabolismo , Masculino , Melanoma/metabolismo , Melanoma/patologia , Camundongos Nus , Microscopia Confocal , Mutação , Invasividade Neoplásica , Fosforilação , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Interferência de RNA , Tetraspaninas/metabolismo , Transplante Heterólogo
6.
Biomed Res Int ; 2015: 821761, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26380295

RESUMO

Cancer progression may be affected by metabolism. In this study, we aimed to analyze the effect of glucose on the proliferation and/or survival of human hepatocellular carcinoma (HCC) cells. Human gene datasets regulated by glucose were compared to gene datasets either dysregulated in HCC or regulated by other signaling pathways. Significant numbers of common genes suggested putative involvement in transcriptional regulations by glucose. Real-time proliferation assays using high (4.5 g/L) versus low (1 g/L) glucose on two human HCC cell lines and specific inhibitors of selected pathways were used for experimental validations. High glucose promoted HuH7 cell proliferation but not that of HepG2 cell line. Gene network analyses suggest that gene transcription by glucose could be mediated at 92% through ChREBP in HepG2 cells, compared to 40% in either other human cells or rodent healthy liver, with alteration of LKB1 (serine/threonine kinase 11) and NOX (NADPH oxidases) signaling pathways and loss of transcriptional regulation of PPARGC1A (peroxisome-proliferator activated receptors gamma coactivator 1) target genes by high glucose. Both PPARA and PPARGC1A regulate transcription of genes commonly regulated by glycolysis, by the antidiabetic agent metformin and by NOX, suggesting their major interplay in the control of HCC progression.


Assuntos
Carcinoma Hepatocelular/genética , Glucose/metabolismo , Neoplasias Hepáticas/genética , PPAR alfa/genética , Fatores de Transcrição/genética , Quinases Proteína-Quinases Ativadas por AMP , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Redes Reguladoras de Genes , Glicólise/efeitos dos fármacos , Células Hep G2 , Humanos , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Metformina/administração & dosagem , PPAR alfa/biossíntese , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , Proteínas Serina-Treonina Quinases/biossíntese , Proteínas Serina-Treonina Quinases/genética , Transdução de Sinais/efeitos dos fármacos , Fatores de Transcrição/biossíntese
7.
Nutr Cancer ; 66(4): 645-55, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24738610

RESUMO

Obesity is a risk factor for breast cancer in postmenopausal women. Leptin, a hormone excessively produced during obesity, is suggested to be involved in breast cancer. The aim of the study was to investigate procarcinogenic potential of leptin by evaluating influence of leptin on cell proliferation, cell cycle, apoptosis, and signaling on numerous breast cells lines, including 184B5 normal cells, MCF10A fibrocystic cells and MCF-7, MDA-MB-231, and T47D cancer cells. Expressions of leptin and Ob-R were analyzed using qRT-PCR and immunohistochemistry, proliferation using fluorimetric resazurin reduction test and xCELLigence system, apoptosis and cell cycle by flow cytometry, and effect of leptin on different signalling pathways using qRT-PCR and Western blot. Cells were exposed to increasing concentrations of leptin. All cell lines expressed mRNA and protein of leptin and Ob-R. Leptin stimulated proliferation of all cell lines except for 184B5 and MDA-MB-231 cells. Leptin inhibited apoptosis but didn't alter proportion of cells within cell cycle in MCF7 cells. Leptin induced overexpression of leptin, Ob-R, estrogen receptor, and aromatase mRNA in MCF-7 and T47D cells. Autoregulation induced by leptin, relationship with estrogen pathway, and proliferative and antiapoptic activity in breast cancer cells may explain that obesity-associated hyperleptinemia may be a breast cancer risk factor.


Assuntos
Neoplasias da Mama/sangue , Proliferação de Células/efeitos dos fármacos , Leptina/sangue , Obesidade/sangue , Apoptose/efeitos dos fármacos , Neoplasias da Mama/etiologia , Ciclo Celular/efeitos dos fármacos , Linhagem Celular , Linhagem Celular Tumoral , Feminino , Doença da Mama Fibrocística/sangue , Doença da Mama Fibrocística/etiologia , Humanos , Imuno-Histoquímica , Leptina/genética , Células MCF-7 , Obesidade/complicações , Receptores para Leptina/sangue , Receptores para Leptina/genética , Transdução de Sinais/efeitos dos fármacos
8.
Biotechnol J ; 7(11): 1395-404, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22930530

RESUMO

Hepatocellular carcinoma (HCC) represents one of the most frequently diagnosed human cancers; however, there are currently few treatment alternatives to surgical resection. In this study we performed bioinformatic analysis of previously published transcriptomic data in order to characterize liver specific networks, including biological functions, signaling pathways and transcription factors, potentially dysregulated in HCC. By incorporating specific signaling inhibitors into real-time proliferation assays using HepG2 cells, we then validated these in silico results. We found that G protein subunits Gi/G0, protein kinase C, Mek1/2, and Erk1/2 (P42/44), JAK1, PPARA and NFκB p65 subunit were the major signaling molecules required for survival and proliferation of human HCC cell lines. We also found that these pathways regulate the expression of key hepatic transcription factors involved in cell differentiation, such as CEBPA, EGR1, FOXM1 and PPARs. By combining bioinformatic and functional analyses, major signaling pathways related to tumorigenicity in HCC are revealed, thereby elucidating potential targets for drug therapies.


Assuntos
Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Redes Reguladoras de Genes , Neoplasias Hepáticas/genética , Carcinoma Hepatocelular/metabolismo , Processos de Crescimento Celular/genética , Linhagem Celular Tumoral , Sobrevivência Celular/genética , Análise por Conglomerados , Biologia Computacional , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Células Hep G2 , Humanos , Fígado/metabolismo , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Sistema de Sinalização das MAP Quinases , Análise de Sequência com Séries de Oligonucleotídeos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Transdução de Sinais/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transcriptoma
9.
Physiol Genomics ; 42A(1): 61-70, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20571111

RESUMO

The adipocyte-derived hormone adiponectin exerts protective actions in several disorders, including some cancers. However, while growing data suggest that adiponectin could be an effective anticancer agent, its mechanism of action in cancer cells is still poorly known. Here, using microarrays, we identified a set of 1,301 genes commonly modulated in three cancer-derived cell lines in response to short-term stimulation with full-length recombinant human adiponectin. Most of these genes are involved in translation regulation, immune or stress responses, and cell proliferation. Furthermore, among genes linked to disease that were retrieved by functional enrichment tests using text mining based on PubMed analysis, we found that 66% are involved in malignant neoplasms, further supporting the link between adiponectin and cancer mechanisms. Bioinformatic analysis demonstrated the diversity of signaling pathways and transcription factors potentially mediating adiponectin effects on gene expression, illustrating the complexity of adiponectin mechanisms of action in cancer cells.


Assuntos
Adiponectina/farmacologia , Perfilação da Expressão Gênica/métodos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica/genética , Células HeLa , Células Hep G2 , Humanos , Neoplasias/genética , Neoplasias/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Reação em Cadeia da Polimerase Via Transcriptase Reversa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA