Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
PLoS Pathog ; 18(10): e1010855, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36191054

RESUMO

Infection of the human gut by Salmonella enterica Typhimurium (STM) results in a localized inflammatory disease that is not mimicked in murine infections. To determine mechanisms by which neutrophils, as early responders to bacterial challenge, direct inflammatory programming of human intestinal epithelium, we established a multi-component human intestinal organoid (HIO) model of STM infection. HIOs were micro-injected with STM and seeded with primary human polymorphonuclear leukocytes (PMN-HIOs). PMNs did not significantly alter luminal colonization of Salmonella, but their presence reduced intraepithelial bacterial burden. Adding PMNs to infected HIOs resulted in substantial accumulation of shed TUNEL+ epithelial cells that was driven by PMN Caspase-1 activity. Inhibition of Caspases-1, -3 or -4 abrogated epithelial cell death and extrusion in the infected PMN-HIOs but only Caspase-1 inhibition significantly increased bacterial burden in the PMN-HIO epithelium. Thus, PMNs promote cell death in human intestinal epithelial cells through multiple caspases as a protective response to infection. IL-1ß was necessary and sufficient to induce cell shedding in the infected HIOs. These data support a critical innate immune function for human neutrophils in amplifying cell death and extrusion of human epithelial cells from the Salmonella-infected intestinal monolayer.


Assuntos
Neutrófilos , Infecções por Salmonella , Animais , Humanos , Camundongos , Caspases/metabolismo , Células Epiteliais , Mucosa Intestinal/microbiologia , Infecções por Salmonella/metabolismo , Salmonella typhimurium
2.
PLoS Pathog ; 15(10): e1008057, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31671153

RESUMO

Human astroviruses (HAstV) are understudied positive-strand RNA viruses that cause gastroenteritis mostly in children and the elderly. Three clades of astroviruses, classic, MLB-type and VA-type have been reported in humans. One limitation towards a better understanding of these viruses has been the lack of a physiologically relevant cell culture model that supports growth of all clades of HAstV. Herein, we demonstrate infection of HAstV strains belonging to all three clades in epithelium-only human intestinal enteroids (HIE) isolated from biopsy-derived intestinal crypts. A detailed investigation of infection of VA1, a member of the non-canonical HAstV-VA/HMO clade, showed robust replication in HIE derived from different patients and from different intestinal regions independent of the cellular differentiation status. Flow cytometry and immunofluorescence analysis revealed that VA1 infects several cell types, including intestinal progenitor cells and mature enterocytes, in HIE cultures. RNA profiling of VA1-infected HIE uncovered that the host response to infection is dominated by interferon (IFN)-mediated innate immune responses. A comparison of the antiviral host response in non-transformed HIE and transformed human colon carcinoma Caco-2 cells highlighted significant differences between these cells, including an increased magnitude of the response in HIE. Additional studies confirmed the sensitivity of VA1 to exogenous IFNs, and indicated that the endogenous IFN response of HIE to curtail the growth of strains from all three clades. Genotypic variation in the permissiveness of different HIE lines to HAstV could be overcome by pharmacologic inhibition of JAK/STAT signaling. Collectively, our data identify HIE as a universal infection model for HAstV and an improved model of the intestinal epithelium to investigate enteric virus-host interactions.


Assuntos
Infecções por Astroviridae/imunologia , Infecções por Astroviridae/veterinária , Mucosa Intestinal/imunologia , Intestino Delgado/imunologia , Mamastrovirus/fisiologia , Tropismo Viral/genética , Animais , Células CACO-2 , Linhagem Celular , Chlorocebus aethiops , Enterócitos/virologia , Gastroenterite/virologia , Humanos , Imunidade Inata/imunologia , Interferons/imunologia , Mucosa Intestinal/citologia , Mucosa Intestinal/virologia , Intestino Delgado/citologia , Intestino Delgado/virologia , Mamastrovirus/genética , Mamastrovirus/imunologia , Células Vero , Tropismo Viral/imunologia
3.
Stem Cells ; 34(7): 1742-52, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27074314

RESUMO

Polysialic acid (PSA) is a carbohydrate polymer of repeating α-2,8 sialic acid residues that decorates multiple targets, including neural cell adhesion molecule (NCAM). PST and STX encode the two enzymes responsible for PSA modification of target proteins in mammalian cells, but despite widespread polysialylation in embryonic development, the majority of studies have focused strictly on the role of PSA in neurogenesis. Using human pluripotent stem cells (hPSCs), we have revisited the developmental role of PST and STX and show that early progenitors of the three embryonic germ layers are polysialylated on their cell surface. Changes in polysialylation can be attributed to lineage-specific expression of polysialyltransferase genes; PST is elevated in endoderm and mesoderm, while STX is elevated in ectoderm. In hPSCs, PST and STX genes are epigenetically marked by overlapping domains of H3K27 and H3K4 trimethylation, indicating that they are held in a "developmentally-primed" state. Activation of PST transcription during early mesendoderm differentiation is under control of the T-Goosecoid transcription factor network, a key regulatory axis required for early cell fate decisions in the vertebrate embryo. This establishes polysialyltransferase genes as part of a developmental program associated with germ layer establishment. Finally, we show by shRNA knockdown and CRISPR-Cas9 genome editing that PST-dependent cell surface polysialylation is essential for endoderm specification. This is the first report to demonstrate a role for a glycosyltransferase in hPSC lineage specification. Stem Cells 2016;34:1742-1752.


Assuntos
Camadas Germinativas/metabolismo , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/metabolismo , Ácidos Siálicos/metabolismo , Sialiltransferases/metabolismo , Diferenciação Celular , Linhagem Celular , Linhagem da Célula , Membrana Celular/metabolismo , Endoderma/citologia , Endoderma/metabolismo , Humanos , Especificidade por Substrato , Fatores de Transcrição/metabolismo , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA