Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(39): e2307999120, 2023 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-37729199

RESUMO

Asbestos is the main cause of malignant mesothelioma. Previous studies have linked asbestos-induced mesothelioma to the release of HMGB1 from the nucleus to the cytoplasm, and from the cytoplasm to the extracellular space. In the cytoplasm, HMGB1 induces autophagy impairing asbestos-induced cell death. Extracellularly, HMGB1 stimulates the secretion of TNFα. Jointly, these two cytokines kick-start a chronic inflammatory process that over time promotes mesothelioma development. Whether the main source of extracellular HMGB1 were the mesothelial cells, the inflammatory cells, or both was unsolved. This information is critical to identify the targets and design preventive/therapeutic strategies to interfere with asbestos-induced mesothelioma. To address this issue, we developed the conditional mesothelial HMGB1-knockout (Hmgb1ΔpMeso) and the conditional myelomonocytic-lineage HMGB1-knockout (Hmgb1ΔMylc) mouse models. We establish here that HMGB1 is mainly produced and released by the mesothelial cells during the early phases of inflammation following asbestos exposure. The release of HMGB1 from mesothelial cells leads to atypical mesothelial hyperplasia, and in some animals, this evolves over the years into mesothelioma. We found that Hmgb1ΔpMeso, whose mesothelial cells cannot produce HMGB1, show a greatly reduced inflammatory response to asbestos, and their mesothelial cells express and secrete significantly reduced levels of TNFα. Moreover, the tissue microenvironment in areas of asbestos deposits displays an increased fraction of M1-polarized macrophages compared to M2 macrophages. Supporting the biological significance of these findings, Hmgb1ΔpMeso mice showed a delayed and reduced incidence of mesothelioma and an increased mesothelioma-specific survival. Altogether, our study provides a biological explanation for HMGB1 as a driver of asbestos-induced mesothelioma.


Assuntos
Amianto , Proteína HMGB1 , Mesotelioma Maligno , Mesotelioma , Animais , Camundongos , Fator de Necrose Tumoral alfa/genética , Proteína HMGB1/genética , Mesotelioma/induzido quimicamente , Mesotelioma/genética , Amianto/toxicidade , Inflamação , Microambiente Tumoral
2.
Nat Cancer ; 4(10): 1437-1454, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37640929

RESUMO

Cholinergic nerves are involved in tumor progression and dissemination. In contrast to other visceral tissues, cholinergic innervation in the hepatic parenchyma is poorly detected. It remains unclear whether there is any form of cholinergic regulation of liver cancer. Here, we show that cholinergic T cells curtail the development of liver cancer by supporting antitumor immune responses. In a mouse multihit model of hepatocellular carcinoma (HCC), we observed activation of the adaptive immune response and induction of two populations of CD4+ T cells expressing choline acetyltransferase (ChAT), including regulatory T cells and dysfunctional PD-1+ T cells. Tumor antigens drove the clonal expansion of these cholinergic T cells in HCC. Genetic ablation of Chat in T cells led to an increased prevalence of preneoplastic cells and exacerbated liver cancer due to compromised antitumor immunity. Mechanistically, the cholinergic activity intrinsic in T cells constrained Ca2+-NFAT signaling induced by T cell antigen receptor engagement. Without this cholinergic modulation, hyperactivated CD25+ T regulatory cells and dysregulated PD-1+ T cells impaired HCC immunosurveillance. Our results unveil a previously unappreciated role for cholinergic T cells in liver cancer immunobiology.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Animais , Camundongos , Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/genética , Receptor de Morte Celular Programada 1/genética , Monitorização Imunológica , Linfócitos T Reguladores/patologia
3.
Cancer Cell ; 41(2): 323-339.e10, 2023 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-36736318

RESUMO

Angioimmunoblastic T cell lymphoma (AITL) is a peripheral T cell lymphoma that originates from T follicular helper (Tfh) cells and exhibits a prominent tumor microenvironment (TME). IDH2 and TET2 mutations co-occur frequently in AITL, but their contribution to tumorigenesis is poorly understood. We developed an AITL mouse model that is driven by Idh2 and Tet2 mutations. Malignant Tfh cells display aberrant transcriptomic and epigenetic programs that impair TCR signaling. Neoplastic Tfh cells bearing combined Idh2 and Tet2 mutations show altered cross-talk with germinal center B cells that promotes B cell clonal expansion while decreasing Fas-FasL interaction and reducing B cell apoptosis. The plasma cell count and angiogenesis are also increased in the Idh2-mutated tumors, implying a major relationship between Idh2 mutation and the characteristic AITL TME. Our mouse model recapitulates several features of human IDH2-mutated AITL and provides a rationale for exploring therapeutic targeting of Tfh-TME cross-talk for AITL patients.


Assuntos
Dioxigenases , Linfadenopatia Imunoblástica , Linfoma de Células T , Animais , Humanos , Camundongos , Dioxigenases/genética , Proteínas de Ligação a DNA/genética , Linfadenopatia Imunoblástica/genética , Isocitrato Desidrogenase/genética , Linfoma de Células T/genética , Mutação , Células T Auxiliares Foliculares/patologia , Linfócitos T Auxiliares-Indutores , Microambiente Tumoral/genética
4.
Proc Natl Acad Sci U S A ; 120(4): e2208176120, 2023 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-36652477

RESUMO

Mutations in IDH1, IDH2, and TET2 are recurrently observed in myeloid neoplasms. IDH1 and IDH2 encode isocitrate dehydrogenase isoforms, which normally catalyze the conversion of isocitrate to α-ketoglutarate (α-KG). Oncogenic IDH1/2 mutations confer neomorphic activity, leading to the production of D-2-hydroxyglutarate (D-2-HG), a potent inhibitor of α-KG-dependent enzymes which include the TET methylcytosine dioxygenases. Given their mutual exclusivity in myeloid neoplasms, IDH1, IDH2, and TET2 mutations may converge on a common oncogenic mechanism. Contrary to this expectation, we observed that they have distinct, and even opposite, effects on hematopoietic stem and progenitor cells in genetically engineered mice. Epigenetic and single-cell transcriptomic analyses revealed that Idh2R172K and Tet2 loss-of-function have divergent consequences on the expression and activity of key hematopoietic and leukemogenic regulators. Notably, chromatin accessibility and transcriptional deregulation in Idh2R172K cells were partially disconnected from DNA methylation alterations. These results highlight unanticipated divergent effects of IDH1/2 and TET2 mutations, providing support for the optimization of genotype-specific therapies.


Assuntos
Proteínas de Ligação a DNA , Dioxigenases , Isocitrato Desidrogenase , Células-Tronco , Animais , Camundongos , Dioxigenases/genética , Proteínas de Ligação a DNA/genética , Isocitrato Desidrogenase/genética , Isocitrato Desidrogenase/metabolismo , Ácidos Cetoglutáricos/metabolismo , Mutação , Neoplasias , Células-Tronco/metabolismo
5.
Nat Rev Drug Discov ; 20(12): 899-919, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-33686237

RESUMO

The success of checkpoint inhibitors has accelerated the clinical implementation of a vast mosaic of single agents and combination immunotherapies. However, the lack of clinical translation for a number of immunotherapies as monotherapies or in combination with checkpoint inhibitors has clarified that new strategies must be employed to advance the field. The next chapter of immunotherapy should examine the immuno-oncology therapeutic failures, and consider the complexity of immune cell-cancer cell interactions to better design more effective anticancer drugs. Herein, we briefly review the history of immunotherapy and checkpoint blockade, highlighting important clinical failures. We discuss the critical aspects - beyond T cell co-receptors - of immune processes within the tumour microenvironment (TME) that may serve as avenues along which new therapeutic strategies in immuno-oncology can be forged. Emerging insights into tumour biology suggest that successful future therapeutics will focus on two key factors: rescuing T cell homing and dysfunction in the TME, and reappropriating mononuclear phagocyte function for TME inflammatory remodelling. New drugs will need to consider the complex cell networks that exist within tumours and among cancer types.


Assuntos
Inibidores de Checkpoint Imunológico , Neoplasias , Antineoplásicos/imunologia , Antineoplásicos/farmacologia , Humanos , Inibidores de Checkpoint Imunológico/imunologia , Inibidores de Checkpoint Imunológico/farmacologia , Imunoterapia/métodos , Imunoterapia/tendências , Neoplasias/tratamento farmacológico , Neoplasias/imunologia , Microambiente Tumoral/efeitos dos fármacos , Microambiente Tumoral/imunologia
6.
Blood ; 137(7): 945-958, 2021 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-33254233

RESUMO

Isocitrate dehydrogenase (IDH) mutations are common genetic alterations in myeloid disorders, including acute myeloid leukemia (AML) and myelodysplastic syndrome (MDS). Epigenetic changes, including abnormal histone and DNA methylation, have been implicated in the pathogenic build-up of hematopoietic progenitors, but it is still unclear whether and how IDH mutations themselves affect hematopoiesis. Here, we show that IDH1-mutant mice develop myeloid dysplasia in that these animals exhibit anemia, ineffective erythropoiesis, and increased immature progenitors and erythroblasts. In erythroid cells of these mice, D-2-hydroxyglutarate, an aberrant metabolite produced by the mutant IDH1 enzyme, inhibits oxoglutarate dehydrogenase activity and diminishes succinyl-coenzyme A (CoA) production. This succinyl-CoA deficiency attenuates heme biosynthesis in IDH1-mutant hematopoietic cells, thus blocking erythroid differentiation at the late erythroblast stage and the erythroid commitment of hematopoietic stem cells, while the exogenous succinyl-CoA or 5-ALA rescues erythropoiesis in IDH1-mutant erythroid cells. Heme deficiency also impairs heme oxygenase-1 expression, which reduces levels of important heme catabolites such as biliverdin and bilirubin. These deficits result in accumulation of excessive reactive oxygen species that induce the cell death of IDH1-mutant erythroid cells. Our results clearly show the essential role of IDH1 in normal erythropoiesis and describe how its mutation leads to myeloid disorders. These data thus have important implications for the devising of new treatments for IDH-mutant tumors.


Assuntos
Eritropoese/genética , Células-Tronco Hematopoéticas/metabolismo , Heme/biossíntese , Isocitrato Desidrogenase/genética , Mutação de Sentido Incorreto , Mutação Puntual , Pré-Leucemia/genética , Acil Coenzima A/biossíntese , Acil Coenzima A/deficiência , Anemia/genética , Animais , Medula Óssea/patologia , Eritroblastos/metabolismo , Técnicas de Introdução de Genes , Glutaratos/metabolismo , Heme/deficiência , Heme Oxigenase-1/metabolismo , Isocitrato Desidrogenase/fisiologia , Complexo Cetoglutarato Desidrogenase/antagonistas & inibidores , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Células Mieloides/patologia , Mielopoese/genética , Pré-Leucemia/metabolismo , Pré-Leucemia/patologia , Espécies Reativas de Oxigênio/metabolismo , Proteínas Recombinantes/metabolismo , Esplenomegalia/etiologia , Trombocitopenia/genética
7.
Commun Biol ; 2: 348, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31552301

RESUMO

Age-related macular degeneration (AMD) is an expanding problem as longevity increases worldwide. While inflammation clearly contributes to vision loss in AMD, the mechanism remains controversial. Here we show that neutrophils are important in this inflammatory process. In the retinas of both early AMD patients and in a mouse model with an early AMD-like phenotype, we show neutrophil infiltration. Such infiltration was confirmed experimentally using ribbon-scanning confocal microscopy (RSCM) and IFNλ- activated dye labeled normal neutrophils. With neutrophils lacking lipocalin-2 (LCN-2), infiltration was greatly reduced. Further, increased levels of IFNλ in early AMD trigger neutrophil activation and LCN-2 upregulation. LCN-2 promotes inflammation by modulating integrin ß1 levels to stimulate adhesion and transmigration of activated neutrophils into the retina. We show that in the mouse model, inhibiting AKT2 neutralizes IFNλ inflammatory signals, reduces LCN-2-mediated neutrophil infiltration, and reverses early AMD-like phenotype changes. Thus, AKT2 inhibitors may have therapeutic potential in early, dry AMD.


Assuntos
Degeneração Macular/etiologia , Degeneração Macular/metabolismo , Neutrófilos/imunologia , Neutrófilos/metabolismo , Retina/imunologia , Retina/metabolismo , Idoso , Idoso de 80 Anos ou mais , Animais , Biomarcadores , Modelos Animais de Doenças , Feminino , Expressão Gênica , Humanos , Imunofenotipagem , Interferon gama/metabolismo , Lipocalina-2/genética , Lipocalina-2/metabolismo , Degeneração Macular/patologia , Masculino , Camundongos , Camundongos Knockout , Modelos Biológicos , Infiltração de Neutrófilos , Neutrófilos/patologia , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Espécies Reativas de Oxigênio/metabolismo , Retina/patologia
8.
J Hypertens ; 37(7): 1482-1492, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31033725

RESUMO

BACKGROUND: Adaptive immunity is crucial in cardiovascular and renal inflammation/fibrosis upon hyperactivation of mineralocorticoid receptor. We have previously demonstrated that dendritic cells can respond to mineralocorticoid receptor activation, and the neutrophil gelatinase-associated lipocalin (NGAL) in dendritic cells is highly increased during aldosterone (Aldo)/mineralocorticoid receptor-dependent cardiovascular damage. However, the interrelationship among dendritic cells, target organs inflammation/fibrosis induced by mineralocorticoid receptor, and NGAL-dependence remains unknown. OBJECTIVE: We studied the role of dendritic cells in mineralocorticoid receptor-dependent tissue remodeling and whether NGAL can modulate the inflammatory response of dendritic cells after mineralocorticoid receptor activation. METHODS: Cardiovascular and renal remodeling induced by Aldo and high-salt diet [nephrectomy-Aldo-salt (NAS) model] were analyzed in CD11c.DOG mice, a model which allows dendritic cells ablation by using diphtheria toxin. In addition, in-vitro studies in NGAL-knock out dendritic cells were performed to determine the immunomodulatory role of NGAL upon Aldo treatment. RESULTS: The ablation of dendritic cells prevented the development of cardiac hypertrophy, perivascular fibrosis, and the overexpression of NGAL, brain natriuretic peptide, and two profibrotic factors induced by NAS: collagen 1A1 and connective tissue growth factor. We determined that dendritic cells were not required to prevent renal hypertrophy/fibrosis induced by NAS. Between different immune cells analyzed, we observed that NGAL abundance was higher in antigen-presenting cells, while in-vitro studies showed that mineralocorticoid receptor stimulation in dendritic cells favored NGAL and IL-23 expression (p19 and p40 subunits), which are involved in the development of fibrosis and the Th17-driven response, respectively. CONCLUSION: NGAL produced by dendritic cells may play a pivotal role in the activation of adaptive immunity that leads to cardiovascular fibrosis during mineralocorticoids excess.


Assuntos
Sistema Cardiovascular/metabolismo , Células Dendríticas/metabolismo , Lipocalina-2/genética , Receptores de Mineralocorticoides/metabolismo , Aldosterona/metabolismo , Animais , Antígenos CD11/metabolismo , Cardiomegalia , Técnicas de Cocultura , Feminino , Fibrose , Hiperaldosteronismo , Inflamação , Subunidade p19 da Interleucina-23/metabolismo , Rim/metabolismo , Ativação Linfocitária , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Peptídeo Natriurético Encefálico/metabolismo , Cloreto de Sódio na Dieta/metabolismo , Linfócitos T/citologia
9.
Proc Natl Acad Sci U S A ; 116(10): 4326-4335, 2019 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-30770442

RESUMO

The combination of immune checkpoint blockade with chemotherapy is currently under investigation as a promising strategy for the treatment of triple negative breast cancer (TNBC). Tumor-associated macrophages (TAMs) are the most prominent component of the breast cancer microenvironment because they influence tumor progression and the response to therapies. Here we show that macrophages acquire an immunosuppressive phenotype and increase the expression of programmed death ligand-1 (PD-L1) when treated with reactive oxygen species (ROS) inducers such as the glutathione synthesis inhibitor, buthionine sulphoximine (BSO), and paclitaxel. Mechanistically, these agents cause accumulation of ROS that in turn activate NF-κB signaling to promote PD-L1 transcription and the release of immunosuppressive chemokines. Systemic in vivo administration of paclitaxel promotes PD-L1 accumulation on the surface of TAMS in a mouse model of TNBC, consistent with in vitro results. Combinatorial treatment with paclitaxel and an anti-mouse PD-L1 blocking antibody significantly improved the therapeutic efficacy of paclitaxel by reducing tumor burden and increasing the number of tumor-associated cytotoxic T cells. Our results provide a strong rationale for the use of anti-PD-L1 blockade in the treatment of TNBC patients. Furthermore, interrogation of chemotherapy-induced PD-L1 expression in TAMs is warranted to define appropriate patient selection in the use of PD-L1 blockade.


Assuntos
Antígeno B7-H1/metabolismo , Imunossupressores/farmacologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Espécies Reativas de Oxigênio/farmacologia , Animais , Antígeno B7-H1/genética , Neoplasias da Mama/metabolismo , Butionina Sulfoximina/farmacologia , Linhagem Celular Tumoral , Quimiocinas , Tratamento Farmacológico , Feminino , Glutationa/metabolismo , Humanos , Camundongos , Paclitaxel/farmacologia , Fenótipo , RNA Mensageiro/metabolismo , Neoplasias de Mama Triplo Negativas , Microambiente Tumoral , Regulação para Cima
10.
Proc Natl Acad Sci U S A ; 116(9): 3604-3613, 2019 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-30733286

RESUMO

Cancer cells have higher reactive oxygen species (ROS) than normal cells, due to genetic and metabolic alterations. An emerging scenario is that cancer cells increase ROS to activate protumorigenic signaling while activating antioxidant pathways to maintain redox homeostasis. Here we show that, in basal-like and BRCA1-related breast cancer (BC), ROS levels correlate with the expression and activity of the transcription factor aryl hydrocarbon receptor (AhR). Mechanistically, ROS triggers AhR nuclear accumulation and activation to promote the transcription of both antioxidant enzymes and the epidermal growth factor receptor (EGFR) ligand, amphiregulin (AREG). In a mouse model of BRCA1-related BC, cancer-associated AhR and AREG control tumor growth and production of chemokines to attract monocytes and activate proangiogenic function of macrophages in the tumor microenvironment. Interestingly, the expression of these chemokines as well as infiltration of monocyte-lineage cells (monocyte and macrophages) positively correlated with ROS levels in basal-like BC. These data support the existence of a coordinated link between cancer-intrinsic ROS regulation and the features of tumor microenvironment. Therapeutically, chemical inhibition of AhR activity sensitizes human BC models to Erlotinib, a selective EGFR tyrosine kinase inhibitor, suggesting a promising combinatorial anticancer effect of AhR and EGFR pathway inhibition. Thus, AhR represents an attractive target to inhibit redox homeostasis and modulate the tumor promoting microenvironment of basal-like and BRCA1-associated BC.


Assuntos
Anfirregulina/genética , Proteína BRCA1/genética , Neoplasias da Mama/genética , Receptores de Hidrocarboneto Arílico/genética , Adulto , Animais , Apoptose/efeitos dos fármacos , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Receptores ErbB/genética , Cloridrato de Erlotinib/administração & dosagem , Feminino , Regulação Neoplásica da Expressão Gênica , Homeostase/genética , Humanos , Camundongos , Pessoa de Meia-Idade , Oxirredução/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Microambiente Tumoral/genética
11.
Cell Metab ; 28(6): 811-813, 2018 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-30517895

RESUMO

Metabolic reprogramming is a hallmark of cancer cell metabolism. Recently, in Cancer Cell, Ye and colleagues (2018) reported that leukemic cells have the capacity to modulate glucose metabolism in multiple organs of their host, thereby increasing the glucose resources available for malignant cell growth.


Assuntos
Leucemia , Neoplasias , Metabolismo dos Carboidratos , Transformação Celular Neoplásica , Glucose , Humanos
12.
Am J Physiol Cell Physiol ; 315(5): C714-C721, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30257107

RESUMO

Lipocalin-2 (LCN2) is an adipokine previously described for its contribution to numerous processes, including innate immunity and energy metabolism. LCN2 has also been demonstrated to be an extracellular matrix (ECM) regulator through its association with the ECM protease matrix metalloproteinase-9 (MMP-9). With the global rise in obesity and the associated comorbidities related to increasing adiposity, it is imperative to gain an understanding of the cross talk between adipose tissue and other metabolic tissues, such as skeletal muscle. Given the function of LCN2 on the ECM in other tissues and the importance of matrix remodeling in skeletal muscle regeneration, we examined the localization and expression of LCN2 in uninjured and regenerating wild-type skeletal muscle and assessed the impact of LCN2 deletion (LCN2-/-) on skeletal muscle repair following cardiotoxin injury. Though LCN2 was minimally present in uninjured skeletal muscle, its expression was increased significantly at 1 and 2 days postinjury, with expression present in Pax7-positive satellite cells. Although satellite cell content was unchanged, the ability of quiescent satellite cells to become activated was significantly impaired in LCN2-/- skeletal muscles. Skeletal muscle regeneration was also significantly compromised as evidenced by decreased embryonic myosin heavy chain expression and smaller regenerating myofiber areas. Consistent with a role for LCN2 in MMP-9 regulation, regenerating muscle also displayed a significant increase in fibrosis and lower ( P = 0.07) MMP-9 activity in LCN2-/- mice at 2 days postinjury. These data highlight a novel role for LCN2 in muscle regeneration and suggest that changes in adipokine expression can significantly impact skeletal muscle repair.


Assuntos
Lipocalina-2/genética , Metaloproteinase 9 da Matriz/genética , Músculo Esquelético/crescimento & desenvolvimento , Adipocinas/genética , Adipocinas/metabolismo , Tecido Adiposo/metabolismo , Tecido Adiposo/patologia , Animais , Regulação da Expressão Gênica/genética , Humanos , Lipocalina-2/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Camundongos , Camundongos Knockout , Músculo Esquelético/metabolismo , Mioblastos/metabolismo , Mioblastos/patologia , Regeneração/genética , Regeneração/fisiologia , Células Satélites de Músculo Esquelético/metabolismo , Células Satélites de Músculo Esquelético/patologia , Cicatrização/genética
13.
J Bone Miner Res ; 33(6): 1141-1153, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29444358

RESUMO

Lipocalin 2 (Lcn2) is an adipokine that carries out a variety of functions in diverse organs. We investigated the bone phenotype and the energy metabolism of Lcn2 globally deleted mice (Lcn2-/- ) at different ages. Lcn2-/- mice were largely osteopenic, exhibiting lower trabecular bone volume, lesser trabecular number, and higher trabecular separation when compared to wild-type (WT) mice. Lcn2-/- mice showed a lower osteoblast number and surface over bone surface, and subsequently a significantly lower bone formation rate, while osteoclast variables were unremarkable. Surprisingly, we found no difference in alkaline phosphatase (ALP) activity or in nodule mineralization in Lcn2-/- calvaria osteoblast cultures, while less ALP-positive colonies were obtained from freshly isolated Lcn2-/- bone marrow stromal cells, suggesting a nonautonomous osteoblast response to Lcn2 ablation. Given that Lcn2-/- mice showed higher body weight and hyperphagia, we investigated whether their osteoblast impairment could be due to altered energy metabolism. Lcn2-/- mice showed lower fasted glycemia and hyperinsulinemia. Consistently, glucose tolerance was significantly higher in Lcn2-/- compared to WT mice, while insulin tolerance was similar. Lcn2-/- mice also exhibited polyuria, glycosuria, proteinuria, and renal cortex vacuolization, suggesting a kidney contribution to their phenotype. Interestingly, the expression of the glucose transporter protein type 1, that conveys glucose into the osteoblasts and is essential for osteogenesis, was significantly lower in the Lcn2-/- bone, possibly explaining the in vivo osteoblast impairment induced by the global Lcn2 ablation. Taken together, these results unveil an important role of Lcn2 in bone metabolism, highlighting a link with glucose metabolism that is more complex than expected from the current knowledge. © 2018 American Society for Bone and Mineral Research.


Assuntos
Doenças Ósseas Metabólicas/metabolismo , Osso e Ossos/metabolismo , Metabolismo Energético , Lipocalina-2/metabolismo , Adiposidade , Animais , Biomarcadores/metabolismo , Peso Corporal , Doenças Ósseas Metabólicas/patologia , Remodelação Óssea , Transportador de Glucose Tipo 1/metabolismo , Gônadas/metabolismo , Rim/metabolismo , Camundongos Endogâmicos C57BL , Tamanho do Órgão , Osteoblastos/metabolismo , Osteoclastos/metabolismo , Fenótipo
14.
Proc Natl Acad Sci U S A ; 115(7): 1576-1581, 2018 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-29378951

RESUMO

Lipocalin-2 (Lcn2), a critical component of the innate immune response which binds siderophores and limits bacterial iron acquisition, can elicit spillover adverse proinflammatory effects. Here we show that holo-Lcn2 (Lcn2-siderophore-iron, 1:3:1) increases mitochondrial reactive oxygen species (ROS) generation and attenuates mitochondrial oxidative phosphorylation in adult rat primary cardiomyocytes in a manner blocked by N-acetyl-cysteine or the mitochondria-specific antioxidant SkQ1. We further demonstrate using siderophores 2,3-DHBA (2,3-dihydroxybenzoic acid) and 2,5-DHBA that increased ROS and reduction in oxidative phosphorylation are direct effects of the siderophore component of holo-Lcn2 and not due to apo-Lcn2 alone. Extracellular apo-Lcn2 enhanced the potency of 2,3-DHBA and 2,5-DHBA to increase ROS production and decrease mitochondrial respiratory capacity, whereas intracellular apo-Lcn2 attenuated these effects. These actions of holo-Lcn2 required an intact plasma membrane and were decreased by inhibition of endocytosis. The hearts, but not serum, of Lcn2 knockout (LKO) mice contained lower levels of 2,5-DHBA compared with wild-type hearts. Furthermore, LKO mice were protected from ischemia/reperfusion-induced cardiac mitochondrial dysfunction. Our study identifies the siderophore moiety of holo-Lcn2 as a regulator of cardiomyocyte mitochondrial bioenergetics.


Assuntos
Lipocalina-2/fisiologia , Mitocôndrias/patologia , Miócitos Cardíacos/patologia , Espécies Reativas de Oxigênio/metabolismo , Traumatismo por Reperfusão/patologia , Sideróforos/metabolismo , Animais , Gentisatos/farmacologia , Hidroxibenzoatos/farmacologia , Ferro/metabolismo , Masculino , Camundongos , Camundongos Knockout , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Fosforilação Oxidativa , Ratos , Ratos Wistar , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/metabolismo
15.
Am J Transl Res ; 9(6): 2723-2735, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28670364

RESUMO

Lipocalin-2 (also known as NGAL) levels are elevated in obesity and diabetes yet relatively little is known regarding effects on the heart. We induced pressure overload (PO) in mice and found that lipocalin-2 knockout (LKO) mice exhibited less PO-induced autophagy and NLRP3 inflammasome activation than Wt. PO-induced mitochondrial damage was reduced and autophagic flux greater in LKO mice, which correlated with less cardiac dysfunction. All of these observations were negated upon adenoviral-mediated restoration of normal lipocalin-2 levels in LKO. Studies in primary cardiac fibroblasts indicated that lipocalin-2 enhanced priming and activation of NLRP3-inflammasome, detected by increased IL-1ß, IL-18 and Caspase-1 activation. This was attenuated in cells isolated from NLRP3-deficient mice or upon pharmacological inhibition of NLRP3. Furthermore, lipocalin-2 induced release of HMGB1 from cells and NLRP3-inflammasome activation was attenuated by TLR4 inhibition. We also found evidence of increased inflammasome activation and reduced autophagy in cardiac biopsy samples from heart failure patients. Overall, this study provides new mechanistic insight on the detrimental role of lipocalin-2 in the development of cardiac dysfunction.

16.
Biochim Biophys Acta Mol Basis Dis ; 1863(9): 2093-2110, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28396286

RESUMO

Lipocalin-2 (LCN2) is a secreted adipokine that transports small hydrophobic molecules such as fatty acids and steroids. LCN2 limits bacterial growth by sequestering iron-containing siderophores and in mammalian liver protects against inflammation, infection, injury and other stressors. Because LCN2 modulates hepatic fat metabolism and homeostasis, we performed a comparative profiling of proteins and lipids of wild type (WT) and Lcn2-deficient mice fed either standard chow or a methionine- and choline-deficient (MCD) diet. Label-free proteomics and 2D-DIGE protein expression profiling revealed differential expression of BRIT1/MCPH1, FABP5, HMGB1, HBB2, and L-FABP, results confirmed by Western blotting. Gene ontology enrichment analysis identified enrichment for genes associated with mitochondrial membrane permeabilization and metabolic processes involving carboxylic acid. Measurements of mitochondrial membrane potential, mitochondrial chelatable iron pool, intracellular lipid peroxidation, and peroxisome numbers in primary hepatocytes confirmed that LCN2 regulates mitochondrial and peroxisomal integrity. Matrix-Assisted Laser Desorption/Ionization Time-Of-Flight (MALDI-TOF) mass spectrometry imaging identified significant changes to sphingomyelins, triglycerides, and glycerophospholipids in livers of mice fed an MCD diet regardless of LCN2 status. However, two arachidonic acid-containing glycerophospholipids were increased in Lcn2-deficient livers. Thus, LCN2 influences peroxisomal and mitochondrial biology in the liver to maintain triglyceride balance, handle oxidative stress, and control apoptosis.


Assuntos
Fígado Gorduroso/metabolismo , Regulação da Expressão Gênica , Hepatócitos/metabolismo , Lipocalina-2/deficiência , Mitocôndrias Hepáticas/metabolismo , Peroxissomos/metabolismo , Animais , Apoptose , Fígado Gorduroso/genética , Fígado Gorduroso/patologia , Hepatócitos/patologia , Lipocalina-2/metabolismo , Potencial da Membrana Mitocondrial , Camundongos , Camundongos Knockout , Mitocôndrias Hepáticas/genética , Mitocôndrias Hepáticas/patologia , Estresse Oxidativo , Peroxissomos/genética , Peroxissomos/patologia , Triglicerídeos/metabolismo
17.
J Cell Physiol ; 232(8): 2125-2134, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27800610

RESUMO

Lipocalin-2 (Lcn2; also termed neutrophil gelatinase-associated lipocalin (NGAL)) levels correlate positively with heart failure (HF) yet mechanisms via which Lcn2 contributes to the pathogenesis of HF remain unclear. In this study, we used coronary artery ligation surgery to induce ischemia in wild-type (wt) mice and this induced a significant increase in myocardial Lcn2. We then compared wt and Lcn2 knockout (KO) mice and observed that wt mice showed greater ischemia-induced caspase-3 activation and DNA damage measured by TUNEL than Lcn2KO mice. Analysis of autophagy by LC3 and p62 Western blotting, LC3 immunohistochemistry and transmission electron microscopy (TEM) indicated that Lcn2 KO mice had a greater ischemia-induced increase in autophagy. Lcn2KO were protected against ischemia-induced cardiac functional abnormalities measured by echocardiography. Upon treating a cardiomyocyte cell line (h9c2) with Lcn2 and examining AMPK and ULK1 phosphorylation, LC3 and p62 by Western blot as well as tandem fluorescent RFP/GFP-LC3 puncta by immunofluorescence, MagicRed assay for lysosomal cathepsin activity and TEM we demonstrated that Lcn2 suppressed autophagic flux. Lcn2 also exacerbated hypoxia-induced cytochromc c release from mitochondria and caspase-3 activation. We generated an autophagy-deficient H9c2 cell model by overexpressing dominant-negative Atg5 and found significantly increased apoptosis after Lcn2 treatment. In summary, our data indicate that Lcn2 can suppress the beneficial cardiac autophagic response to ischemia and that this contributes to enhanced ischemia-induced cell death and cardiac dysfunction. J. Cell. Physiol. 232: 2125-2134, 2017. © 2016 Wiley Periodicals, Inc.


Assuntos
Apoptose , Autofagia , Lipocalina-2/metabolismo , Isquemia Miocárdica/metabolismo , Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Proteína 5 Relacionada à Autofagia/genética , Proteína 5 Relacionada à Autofagia/metabolismo , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/metabolismo , Caspase 3/metabolismo , Hipóxia Celular , Linhagem Celular , Modelos Animais de Doenças , Ativação Enzimática , Predisposição Genética para Doença , Lipocalina-2/deficiência , Lipocalina-2/genética , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Isquemia Miocárdica/genética , Isquemia Miocárdica/patologia , Miocárdio/ultraestrutura , Miócitos Cardíacos/ultraestrutura , Fenótipo , Ratos , Transdução de Sinais , Transfecção
18.
Cardiovasc Res ; 111(3): 262-73, 2016 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-27229458

RESUMO

AIMS: To study the role of lipocalin-2 (Lcn2) and the effect of Lcn2 blockade via anti-Lcn2 antibody in the development of abdominal aortic aneurysm (AAA). METHODS AND RESULTS: Expression mRNA and protein levels of Lcn2 and its human orthologue neutrophil gelatinase-associated lipocalin (NGAL) in aortic wall samples from experimental mouse and human AAA samples, respectively, were analysed by real-time PCR and immunohistochemistry. Experimental AAA was induced by aortic elastase perfusion in wild-type mice (WT) and Lcn2-deficient mice (Lcn2-/-). NGAL/Lcn2 mRNA and protein levels in human and murine AAA samples were increased compared with healthy aortas. Decreased AAA incidence and reduced aortic expansion were observed in Lcn2-/- mice or mice preoperative treated with a polyclonal anti-Lcn2 antibody compared with WT mice or mice treated with control IgG, respectively, at Day 14 after elastase perfusion. Moreover, immunohistochemical analysis of AAA tissues from Lcn2-/- or anti-Lcn2-treated mice showed diminished elastin damage, reduced microvessels and polymorphonuclear neutrophil (PMN) infiltration, and enhanced preservation of vascular smooth muscle cells compared with WT aortas. Fluorescent molecular tomography revealed decreased MMP activity in AAA of Lcn2-/- mice compared with WT controls. Therapeutic administration of anti-Lcn2 antibody to WT mice 3 days after elastase perfusion decreased aortic dilatation and PMN infiltration compared with WT mice treated with control IgG. CONCLUSION: Either Lcn2 deficiency or anti-Lcn2 antibody blockade limits AAA expansion in mice by decreasing PMN infiltration in the aorta. Lcn2 modulation may therefore be a viable new therapeutic option for the treatment of AAA.


Assuntos
Anticorpos/farmacologia , Aorta Abdominal/efeitos dos fármacos , Aneurisma da Aorta Abdominal/prevenção & controle , Lipocalina-2/antagonistas & inibidores , Lipocalina-2/deficiência , Animais , Aorta Abdominal/metabolismo , Aorta Abdominal/patologia , Aneurisma da Aorta Abdominal/genética , Aneurisma da Aorta Abdominal/metabolismo , Aneurisma da Aorta Abdominal/patologia , Estudos de Casos e Controles , Células Cultivadas , Quimiotaxia de Leucócito/efeitos dos fármacos , Dilatação Patológica , Modelos Animais de Doenças , Elastina/metabolismo , Predisposição Genética para Doença , Humanos , Lipocalina-2/genética , Lipocalina-2/imunologia , Lipocalina-2/metabolismo , Metaloproteinases da Matriz/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microvasos/efeitos dos fármacos , Microvasos/metabolismo , Microvasos/patologia , Músculo Liso Vascular/efeitos dos fármacos , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patologia , Infiltração de Neutrófilos/efeitos dos fármacos , Fenótipo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Fatores de Tempo
19.
Artigo em Inglês | MEDLINE | ID: mdl-28057846

RESUMO

It has become clear that tumorigenesis results from much more than just the activation of an oncogene and/or the inactivation of a tumor-suppressor gene, and that the cancer cell genome contains many more alterations than can be specifically targeted at once. This observation has led our group to a search for alternative ways to kill cancer cells (while sparing normal cells) by focusing on properties unique to the former. We have identified four approaches with the potential to generate new anticancer therapies: combatting the tactics by which cancers evade antitumor immune responses, targeting metabolic adaptations that tumor cells use to survive conditions that would kill normal cells, manipulating a cancer cell's response to excessive oxidative stress, and exploiting aneuploidy. This review describes our progress to date on these fronts.


Assuntos
Carcinogênese/imunologia , Genoma/genética , Neoplasias/metabolismo , Estresse Oxidativo/genética , Linfócitos T/imunologia , Aneuploidia , Animais , Carcinogênese/genética , Humanos , Neoplasias/genética , Estresse Oxidativo/imunologia , Linfócitos T/metabolismo
20.
Hypertension ; 66(1): 158-66, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25987661

RESUMO

Activation of the mineralocorticoid receptor has been shown to be deleterious in cardiovascular diseases (CVDs). We have recently shown that lipocalin 2 (Lcn2), or neutrophil gelatinase-associated lipocalin (NGAL), is a primary target of aldosterone/mineralocorticoid receptor in the cardiovascular system. Lcn2 is a circulating protein, which binds matrix metalloproteinase 9 and modulates its stability. We hypothesized that Lcn2 could be a mediator of aldosterone/mineralocorticoid receptor profibrotic effects in the cardiovascular system. Correlations between aldosterone and profibrotic markers, such as procollagen type I N-terminal peptide, were investigated in healthy subjects and subjects with abdominal obesity. The implication of Lcn2 in the mineralocorticoid pathway was studied using Lcn2 knockout mice subjected to a nephrectomy/aldosterone/salt (NAS) challenge for 4 weeks. In human subjects, NGAL/matrix metalloproteinase 9 was positively correlated with plasma aldosterone and fibrosis biomarkers. In mice, loss of Lcn2 prevented the NAS-induced increase of plasma procollagen type I N-terminal peptide, as well as the increase of collagen fibers deposition and collagen I expression in the coronary vessels and the aorta. The lack of Lcn2 also blunted the NAS-induced increase in systolic blood pressure. Ex vivo, treatment of human fibroblasts with recombinant Lcn2 induced the expression of collagen I and the profibrotic galectin-3 and cardiotrophin-1 molecules. Our results showed that Lcn2 plays a key role in aldosterone/mineralocorticoid receptor-mediated vascular fibrosis. The clinical data indicate that this may translate in human patients. Lcn2 is, therefore, a new biotarget in cardiovascular fibrosis induced by mineralocorticoid activation.


Assuntos
Proteínas de Fase Aguda/fisiologia , Aldosterona/toxicidade , Lipocalinas/fisiologia , Obesidade Abdominal/fisiopatologia , Proteínas Oncogênicas/fisiologia , Proteínas Proto-Oncogênicas/fisiologia , Proteínas de Fase Aguda/deficiência , Proteínas de Fase Aguda/genética , Proteínas de Fase Aguda/farmacologia , Aldosterona/sangue , Animais , Aorta/efeitos dos fármacos , Aorta/patologia , Cardiomiopatia Hipertrófica/induzido quimicamente , Cardiomiopatia Hipertrófica/fisiopatologia , Células Cultivadas , Citocinas/biossíntese , Citocinas/genética , Feminino , Fibroblastos , Fibrose , Galectina 3/biossíntese , Galectina 3/sangue , Galectina 3/genética , Humanos , Hipertensão/fisiopatologia , Hipertrofia , Rim/patologia , Lipocalina-2 , Lipocalinas/sangue , Lipocalinas/genética , Lipocalinas/farmacologia , Masculino , Camundongos , Miocárdio/citologia , Miocárdio/metabolismo , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/fisiologia , Nefrectomia/efeitos adversos , Obesidade Abdominal/sangue , Proteínas Oncogênicas/deficiência , Proteínas Oncogênicas/genética , Fragmentos de Peptídeos/sangue , Pró-Colágeno/sangue , Proteínas Proto-Oncogênicas/sangue , Proteínas Proto-Oncogênicas/farmacologia , Ratos , Proteínas Recombinantes/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA