Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Theriogenology ; 160: 128-133, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33217626

RESUMO

The present study was designed to evaluate luteinization rates subsequent to aspiration of dominant follicles (≥25 mm) in the absence of a functional CL (progesterone <1 ng/mL) and characterize the temporal changes in plasma concentrations of progesterone following aspiration-induced luteinization during the estrous cycle in mares. A total of 29 estrous cycles involving 15 mares in a cross-over design were randomly assigned to five groups: 1) ASP-F≥25 mm (n = 6; follicle aspiration 25-29 mm), 2) ASP-F≥30 mm (n = 6; follicle aspiration 30-34 mm), 3) ASP-F≥35 mm (n = 6; follicle aspiration 35-40 mm), 4) ASP-F≥40 (n = 6; follicle aspiration ≥40), and 5) Control (n = 5; spontaneous ovulation or no follicle aspiration). Subsequent to ovulation (Day 0), PGF was administered to all groups on Day 5, blood samples were collected daily and aspiration of the dominant follicle was done using ultrasound-guided transvaginal follicle needle puncture. Among the follicle aspirations groups 25-29, 30-34, 35-39, and ≥40 mm, the luteinization rates were not different (P > 0.05) at 83, 67, 83, and 100%, respectively. Correspondingly, progesterone concentrations increased (>2 ng/mL) by approximately 6, 7, 5, and 4 d after aspiration, respectively, which were delayed (P < 0.05) in the 25-29 and 30-34 mm follicle aspiration groups compared to 2 d after ovulation in the control group. Thereafter, progesterone reached maximal concentrations (10-11 ng/mL) as averaged over all aspiration groups but were lower (P < 0.05) compared to the mean maximal concentration (18 ng/mL) in the control group. Subsequently, there was a decrease in progesterone concentrations (<2 ng/mL) in response to luteolysis, which was delayed (P < 0.05) in the aspiration groups over Days 16-20 compared to Day 15 in the control group. Despite this discrepancy, the mean length of the interovulatory intervals were not different (P > 0.05) among groups on Day 23. Thus, the present study provided novel information that the luteinization rate is relatively high (83%) and consistent following aspiration of dominant follicles (≥25 mm) in the absence of a functional CL and that the increase in progesterone reaches sustainable progestational concentrations (≥2 ng/mL) in accord with the length of the estrous cycle that may potentially support development and maintenance of early pregnancy in recipient mares involved in an embryo transfer program.


Assuntos
Luteinização , Progesterona , Animais , Ciclo Estral , Feminino , Cavalos , Ovulação , Gravidez , Ultrassonografia de Intervenção/veterinária
2.
Theriogenology ; 71(9): 1343-57, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19339040

RESUMO

Veterinarians and scientists involved in applied and basic research in cattle require a lexicon of terms that is used uniformly so that diagnoses and inference of results between and among studies can be correctly interpreted and substantiated or negated and therapy and hypotheses can be formulated without unnecessary confusion and redundancy in treatments and experiments. This review provides a compilation of many of the classical and contemporary terms used in association with ovarian dynamics primarily during the estrous cycle in cattle, which can also apply to other reproductive states. While many classical terms used to describe healthy and diseased conditions associated with follicles and corpora lutea are still applicable today, there are some that have become antiquated (e.g., cystic corpus luteum, cystic ovarian degeneration, luteolysis, and granulosa cell tumor), due, in part, to advanced technology (e.g., ultrasonography) and a more thorough understanding of ovarian function. In this regard, older terms have been revised (e.g., corpus luteum with a cavity, follicular and luteinized-follicular cysts, structural and functional luteal regression, and granulosa-theca cell tumor) and newer terms have been coined (e.g., follicle deviation) and advocated herein. Defining and adopting terminology used in bovine reproduction that is clear, precise and understandable and available in a single source, is expected to make the exchange of clinical and research information and outcomes more effective, safe, and economical.


Assuntos
Bovinos/anatomia & histologia , Bovinos/fisiologia , Ovário/anatomia & histologia , Ovário/fisiologia , Terminologia como Assunto , Anestro , Animais , Doenças dos Bovinos , Ciclo Estral , Feminino , Fase Folicular , Doenças Ovarianas/veterinária , Folículo Ovariano/anatomia & histologia , Folículo Ovariano/fisiologia , Ovulação
3.
Theriogenology ; 68(8): 1183-91, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17904213

RESUMO

A regimen of progesterone plus estradiol (P&E) was used as a standard for ovarian synchronization to test the efficacy and evaluate the commercial application of ultrasound-guided follicle ablation as a non-steroidal alternative for ovulation synchronization in mares. Recipient mares at a private embryo transfer facility were at unknown stages of the estrous cycle at the start of the experiment on Day 1 when they were randomly assigned to an ablation group (n=18-21 mares) or to a P&E group (n=20-21 mares). In the ablation group, mares were lightly sedated and all follicles > or = 10 mm were removed by transvaginal ultrasound-guided follicle aspiration. In the P&E group, a combination of progesterone (150 mg) plus estradiol (10mg) prepared in safflower oil was given daily (im) for 10 d. Two doses of prostaglandin F(2alpha) (PGF, 10mg/dose, im) were given 12 h apart on Day 5 in the ablation group, or a single dose on Day 10 in the P&E group. Human chorionic gonadotropin (hCG, 2500 IU/mare, im) was given at a fixed time, 6 and 10 d after PGF treatment in the ablation and P&E groups, respectively, with the expectation of a follicle > or = 30 mm at the time of treatment. In both the ablation and P&E groups, transrectal ultrasonography was done at the start of the study (Day 1) and again on the day of hCG treatment and daily thereafter to determine the presence of a CL, measure diameter of the largest follicle and detect ovulation. The mean interval from the start of the study and from PGF treatment to ovulation was shorter (P<0.0001) in the ablation group (13.7 and 9.7 d, respectively) compared to the P&E group (22.3 and 13.2 d, respectively). Following fixed-day treatment with hCG after PGF treatment, the degree of ovulation synchronization was not different (P>0.05) between the ablation and P&E groups within a 2-d (56 and 70%) or 4-d (83% and 90%) period. Although ultrasound-guided follicle ablation may not be practical in all circumstances, it excluded the conventional 10-d regimen of progesterone and estradiol and was considered an efficacious and feasible, non-steroidal alternative for ovulation synchronization in mares during the estrous cycle.


Assuntos
Sincronização do Estro/métodos , Cavalos/fisiologia , Folículo Ovariano/cirurgia , Ovulação/fisiologia , Técnicas de Reprodução Assistida/veterinária , Animais , Gonadotropina Coriônica/administração & dosagem , Estradiol/administração & dosagem , Feminino , Folículo Ovariano/anatomia & histologia , Folículo Ovariano/diagnóstico por imagem , Ovulação/efeitos dos fármacos , Progesterona/administração & dosagem , Distribuição Aleatória , Sucção/veterinária , Fatores de Tempo , Ultrassonografia
4.
Anim Reprod Sci ; 95(1-2): 144-50, 2006 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16310986

RESUMO

The interrelationships of progesterone, estradiol, and LH were studied in mares (n=9), beginning at the first ovulation (Day 0) of an interovulatory interval. An increase in mean progesterone concentrations began on Day 0 and reached maximum on Day 6, with luteolysis beginning on Day 14. A common progesterone threshold concentration of about 2 ng/ml for a negative effect on LH occurred at the beginning and end of the luteal phase. Progesterone and LH concentrations decreased at a similar rate from Day 6 until the onset of luteolysis on Day 14, consistent with a decreasing positive effect of LH on progesterone. Concentrations of LH during the increase in the ovulatory surge consisted of two linear regression segments involving a rate of 0.4 ng/ml/day for Days 14-22 and 1.8 ng/ml/day for Day 22 to 1 day after the second ovulation. The end of the first segment and beginning of the second segment was 2 days before ovulation and was the day the ovulatory estradiol surge was at a peak.


Assuntos
Estradiol/sangue , Cavalos/sangue , Cavalos/fisiologia , Hormônio Luteinizante/sangue , Ovulação/fisiologia , Progesterona/sangue , Animais , Feminino , Modelos Lineares , Luteólise/fisiologia , Detecção da Ovulação/veterinária
5.
Theriogenology ; 65(8): 1605-19, 2006 May.
Artigo em Inglês | MEDLINE | ID: mdl-16242763

RESUMO

The present study was designed to characterize and compare the physiology and ultrasonographic morphology of the corpus luteum (CL) during regression and resurgence following a single dose of native prostaglandin F2alpha (PGF) given 3 days after ovulation, with a more conventional treatment given 10 days after ovulation. On the day of pre-treatment ovulation (Day 0), horse mares were randomly assigned to receive PGF (Lutalyse; 10 mg/mare, i.m.) on Day 3 (17 mares) or Day 10 (17 mares). Beginning on either Days 3 or 10, follicle and CL data and blood samples were collected daily until post-treatment ovulation. Functional and structural regression of the CL in response to PGF treatment were similar in both the Day 3 and 10 groups, as indicated by an abrupt decrease in circulating concentrations of progesterone, decrease in luteal gland diameter and increase in luteal tissue echogenicity. As a result, the mean +/- S.E.M. interovulatory interval was shorter (P < 0.0001) in the Day 3 group (13.2 +/- 0.9 days) than in the Day 10 group (19.2 +/- 0.7 days). Within the Day 3 group, functional resurgence of the CL was detected in 75% of the mares (12 of 16) beginning 3 days after PGF treatment, as indicated by transient major (6 mares) and minor (6 mares) increases (P < 0.05 and < 0.1, respectively) in progesterone. Correspondingly, mean length of the interovulatory interval was longer (P < 0.03) in mares with major resurgence (15.8 +/- 1.6 days) than in mares with minor (11.2 +/- 1.2 days) and no resurgences (13.5 +/- 0.3 days) in progesterone. Structural resurgence of the CL in the Day 3 group and functional and structural resurgence in the Day 10 group were not detected. In conclusion, PGF treatment 3 days after ovulation resulted in structural and functional regression of the CL and hastened the interval to the next ovulation, despite post-treatment resurgences in progesterone.


Assuntos
Corpo Lúteo/efeitos dos fármacos , Dinoprosta/farmacologia , Cavalos/fisiologia , Ovulação/fisiologia , Progesterona/sangue , Animais , Corpo Lúteo/diagnóstico por imagem , Corpo Lúteo/fisiologia , Feminino , Folículo Ovariano/anatomia & histologia , Folículo Ovariano/efeitos dos fármacos , Distribuição Aleatória , Fatores de Tempo , Ultrassonografia
6.
Biol Reprod ; 70(1): 99-105, 2004 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-12954722

RESUMO

In cattle and mares, free insulin-like growth factor 1 (IGF-1) is higher in the future dominant follicle (F1) than in the future largest subordinate follicle (F2) before deviation in diameter or selection is manifested between the two follicles. The effect of IGF-1 on other follicular-fluid factors and on the destiny of F2 were studied in two experiments in each species, using a total of 40 heifers and 42 mares. An injection of IGF-1 was made into F2 at the expected beginning of deviation (heifers, F1 >or= 8.5 mm; mares, F1 >or= 20.0 mm; Hour 0). In heifers, follicular fluid was taken from F2 at Hours 3, 6, 12, or 24; each heifer was sampled only once. In mares, sequential F2 samples were taken from each mare at Hours 0, 6, and 24 or at Hours 12 and 24. Transvaginal ultrasound guidance was used for treatment and sample collection. In heifers, IGF-1 treatment of F2 stimulated the secretion of estradiol (P < 0.05) between Hours 3 and 6 and androstenedione (P < 0.05) between Hours 3 and 12. In F2 of control heifers, estradiol decreased (P < 0.05) and androstenedione did not change significantly. In mares, IGF-1 treatment of F2 did not affect the concentrations of estradiol during the 24-h posttreatment period; androstenedione decreased (P < 0.04) in the IGF-1 group and increased (P < 0.006) in the controls. Compared with control mares, the IGF-1 group had higher (P < 0.04) activin-A at Hours 12 and 24 and higher (P < 0.0006) inhibin-A at Hour 24. After ablating F1 at Hour 24 in mares, F2 became dominant and ovulated in more mares (P < 0.0002) in the IGF-1 group (12/14) than in the control group (2/14). These results are consistent with reported temporal relationships among follicular factors during deviation in both species and indicate that IGF-1 plays a key role in controlling the temporal relationships; however, no indication was found that IGF-1 stimulated estradiol production in mares during the 24 h after treatment.


Assuntos
Fator de Crescimento Insulin-Like I/farmacologia , Folículo Ovariano/efeitos dos fármacos , Androstenodiol/metabolismo , Animais , Bovinos , Estradiol/metabolismo , Feminino , Líquido Folicular/metabolismo , Cavalos , Folículo Ovariano/diagnóstico por imagem , Folículo Ovariano/metabolismo , Ovulação/efeitos dos fármacos , Progesterona/metabolismo , Ultrassonografia
7.
Reproduction ; 126(5): 653-60, 2003 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-14611639

RESUMO

Follicle growth and circulating hormone concentrations were compared between an interovulatory interval and the first 60 days of the anovulatory season in pony mares. Daily observations were made from November of three groups: (i) ablation of follicles of >/=6 mm in diameter at day 10 after an ovulation that initiated an interovulatory interval, as determined retrospectively (ovulatory group, n=8), (ii) ablation at day 10 after the last ovulation of the year (anovulatory-10 group, n=6); and (iii) ablation at day 60 after the last ovulation of the year (anovulatory-60 group, n=6). Follicular waves were defined as major (dominant follicle) and minor (no dominant follicle). The percentage of mares with major waves after ablation for the ovulatory, anovulatory-10 and anovulatory-60 groups was 100, 33 and 0%, respectively, and the percentage with minor waves was 0, 67 and 100%, respectively. Minor waves were also detected in 83% of anovulatory mares between day 20 and day 60. Growth of the largest follicle was similar for major waves and minor waves but only until the beginning of deviation in the major waves. FSH surges after ablation were similar for all groups and for surges detected during days 20-60. Concentrations of LH were greater in association with major waves than with minor waves. Both diameter of the largest follicle and LH concentrations for minor waves were greater after ablation at day 10 after the last ovulation of the year than after ablation at day 60. The results of this study indicate that major follicular waves developed in some mares early in the anovulatory season and that minor waves developed throughout the first 2 months. Despite similarities in the wave-stimulating FSH surge, differences in follicle growth occurred and were attributable, on a temporal basis, to differences in LH concentrations. A minor wave developed into a major wave when the largest follicle reached a diameter characteristic of the beginning of deviation in the presence of an adequate LH stimulus for continued growth of a dominant follicle.


Assuntos
Anovulação , Cavalos/fisiologia , Folículo Ovariano/fisiologia , Animais , Estradiol/sangue , Feminino , Hormônio Foliculoestimulante/sangue , Inibinas/sangue , Hormônio Luteinizante/sangue , Microscopia Eletrônica de Varredura , Folículo Ovariano/diagnóstico por imagem , Estações do Ano , Ultrassonografia
8.
Anim Reprod Sci ; 78(3-4): 239-57, 2003 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-12818647

RESUMO

Diameter deviation is a distinctive change in growth rates among the follicles of a wave, heralding the formation of a dominant follicle and subordinate follicles. When the follicles are about 5mm in cattle and 13 mm in horses, the wave-stimulating FSH surge reaches peak concentrations. Follicle and FSH manipulation studies in both species have shown that the declining portion of the surge before the beginning of deviation is a function of multiple growing follicles that require the decreasing FSH. During this time, all follicles of the wave have the potential for future dominance. Deviation begins when the two largest follicles on average are 8.5 and 7.7 mm in cattle and 22.5 and 19.0 mm in horses or about 3 days after the FSH peak in both species. The FSH/follicle relationship is close so that a change in one event soon causes a detectable change in the other. Thus, the difference in diameter between the two largest follicles at the beginning of deviation is compatible with rapid establishment of the destiny of the two follicles before the second-largest follicle can also show dominance. The deviation mechanism is initiated when FSH concentrations are low and the most advanced follicle reaches a specific developmental stage. In cattle, the future dominant follicle develops greater LH-receptor expression than the other follicles about 8 h before the beginning of diameter deviation. Estradiol and free IGF-1 begin to establish higher concentrations in the future dominant follicle than in other follicles and activin-A is transiently elevated in both follicles a few hours before the beginning of diameter deviation. In horses, estradiol, free IGF-1, activin-A, and inhibin-A begin to increase differentially in the future dominant follicle about 1 day before deviation. These changes underlie a greater responsiveness to LH and FSH by the developing dominant follicle than for other follicles, thereby accounting for deviation. Results of in vitro studies, although frequently done in other species, support this conclusion.


Assuntos
Bovinos/fisiologia , Cavalos/fisiologia , Folículo Ovariano/anatomia & histologia , Folículo Ovariano/crescimento & desenvolvimento , Ativinas/fisiologia , Animais , Estradiol/fisiologia , Feminino , Hormônio Foliculoestimulante/fisiologia , Inibinas/fisiologia , Hormônio Luteinizante/fisiologia , Somatomedinas/fisiologia
9.
Reproduction ; 125(6): 847-54, 2003 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-12773107

RESUMO

Follicle deviation is characterized by continued growth of the largest (developing dominant) follicle and reduced growth of the smaller (subordinate) follicles. The aim of the present study was to test the following hypotheses: (1). oestradiol contributes to the depression of circulating FSH encompassing follicle deviation and (2). oestradiol plays a role in the initiation of deviation. Heifers were treated with progesterone (n = 5) or antiserum against oestradiol (n = 7) or given no treatment (control; n = 6). On the basis of previous studies, progesterone treatment would decrease LH and thereby the circulatory and intrafollicular concentrations of oestradiol and the antiserum would reduce the availability of oestradiol. Progesterone was given in six 75 mg injections at 12 h intervals beginning when the largest follicle of wave 1 first reached >or=5.7 mm (t = 0 h). Oestradiol antiserum (100 ml) was given in a single injection at t = 12 h. Follicles of the wave were defined as F1 (largest) and F2, according to the diameter at each examination. Blood samples were collected at 12 h intervals during t = 0-72 h. Treatment with progesterone lowered the circulatory concentrations of LH by 12 h after the start of treatment (P < 0.05), and concentrations remained low compared with those of controls during the treatment period. Treatment with oestradiol antiserum had no effect on LH. Both progesterone and the antiserum treatments increased the FSH concentrations compared with controls (P < 0.05), which supports the first hypothesis. The interval from t = 0 h to the beginning of deviation was longer in the progesterone- (51.0 +/- 7.6 h; P < 0.06) and antiserum (51.4 +/- 6.3 h; P < 0.05)-treated groups than in the controls (38.0 +/- 3.7 h), which supports the second hypothesis. There was no difference among groups in the diameters of F1 and F2 at deviation. Reduced diameter (P < 0.05 or P < 0.06) of both F1 and F2 occurred in both the progesterone- and antiserum-treated groups at t = 36 h and 48 h, compared with controls. Follicle retardation occurred in both the progesterone- and antiserum-treated groups despite the high FSH concentrations, whereas LH was altered only in the progesterone-treated group. Therefore, the follicle effect can be attributed to inadequate intrafollicular oestradiol. This interpretation implies a functional local role for oestradiol in the deviation process, independent of the systemic negative effect on FSH.


Assuntos
Bovinos/fisiologia , Estradiol/fisiologia , Folículo Ovariano/fisiologia , Animais , Estradiol/imunologia , Feminino , Hormônio Foliculoestimulante/metabolismo , Soros Imunes/farmacologia , Hormônio Luteinizante/metabolismo , Folículo Ovariano/diagnóstico por imagem , Progesterona/farmacologia , Ultrassonografia
10.
Biol Reprod ; 68(2): 524-9, 2003 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-12533415

RESUMO

Follicle diameters and concentrations of follicular fluid factors were studied in the two largest follicles (F1 and F2) using F1 diameters in increments of 0.2 mm (equivalent to 4 h intervals) and extending from 7.4 to 8.4 mm (12 heifers in each of 6 groups). Changes were compared between follicles using the F2 associated with each F1-diameter group. Diameter deviation began in the 8.2-mm group as indicated by a greater (P < 0.05) diameter difference between F1 and F2 in the 8.4-mm group than in the 8.2-mm group. In the 8.0-mm group, estradiol concentrations began to increase (P < 0.05) differentially in F1 versus F2, and free insulin-like growth factor-1 (IGF-1) began to decrease differentially in F2 (P < 0.06). Combined for F1 and the associated F2, activin-A concentrations increased (P < 0.05) between the 7.6- and 8.2-mm groups and then decreased (P < 0.05). Results supported the hypothesis that estradiol and free IGF-1 concentrations simultaneously become higher in F1 than in the associated F2 by the beginning of diameter deviation. Results did not support the hypothesis that a transient elevation in activin-A is present in F1 but not in the associated F2 at the beginning of the estradiol and IGF-1 changes; instead, a mean transient elevation in activin-A occurred at this time only when data for the two follicles were combined. Comparisons between F1 and F2 also were made by independently grouping F2 and using diameter groups at 0.2-mm increments for F2 as well as for F1. In the diameter groups common to F1 and F2 (7.4, 7.6, 7.8, and 8.0 mm) there was a group effect (P < 0.003) for estradiol involving an increase (P < 0.05) beginning at the 7.6-mm group averaged over F1 and F2. For free IGF-1 concentrations, a fluctuation (a significant increase followed by a significant decrease) occurred independently in F1 between the 7.4- to 7.8-mm groups and independently in F2 between the 7.0- to 7.4-mm groups.


Assuntos
Bovinos/anatomia & histologia , Bovinos/metabolismo , Folículo Ovariano/anatomia & histologia , Folículo Ovariano/metabolismo , Ativinas/metabolismo , Animais , Estradiol/metabolismo , Feminino , Líquido Folicular/metabolismo , Subunidades beta de Inibinas/metabolismo , Fator de Crescimento Insulin-Like I/metabolismo , Concentração Osmolar
11.
Reproduction ; 124(4): 475-82, 2002 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-12361465

RESUMO

The intervals between emergence of follicular waves 1 (first wave of an oestrous cycle) and 2, and between the associated FSH surges (surges 1 and 2), were studied in control (n = 7) and recombinant bovine (rb)FSH-treated (n = 7) heifers. The expected start of the deviation in follicle diameter between the two largest follicles of wave 1 was defined as the day on which the largest follicle reached 8.5 mm (day 0). In the control heifers, circulating concentrations of FSH decreased and oestradiol increased between day 0 and day 1.5 or day 2.0 in a reciprocal relationship. The opposite reciprocal relationship between an FSH increase and an oestradiol decrease occurred during the next 3 days. This temporal result is consistent with a negative systemic effect of oestradiol on FSH at this time. rbFSH was administered in a dosage regimen that was expected to result in a similarity between FSH surge 2 in the rbFSH-treated group and surge 2 in the control group. On average, surge 2 and wave 2 occurred approximately 2 days earlier in the rbFSH-treated group than in the control group, and characteristics of the FSH surge and follicular wave were similar (no significant differences) between groups. These results support the hypothesis that low circulating FSH concentrations after the deviation in follicle diameter control the interval to emergence of the subsequent follicular wave. However, in one of seven rbFSH-treated heifers, the largest follicle from the apparent stimulation of rbFSH reached only 5.7 mm; therefore, the possibility of involvement of additional mechanisms cannot be dismissed.


Assuntos
Bovinos/fisiologia , Hormônio Foliculoestimulante/fisiologia , Fase Folicular/fisiologia , Animais , Estradiol/sangue , Feminino , Hormônio Foliculoestimulante/sangue , Hormônio Foliculoestimulante/farmacologia , Hormônio Luteinizante/sangue , Folículo Ovariano/efeitos dos fármacos , Folículo Ovariano/fisiologia , Proteínas Recombinantes/farmacologia
12.
Biol Reprod ; 67(3): 862-7, 2002 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-12193395

RESUMO

Deviation during a follicular wave in mares begins when the largest follicle (F1) reaches a mean diameter of 22.5 mm and is characterized by continued growth of F1 to become the dominant follicle and regression of F2 to become the largest subordinate follicle. In the present study, F1 was ablated at the expected beginning of deviation (Hour 0) to provide a reference point for characterizing the intrafollicular changes preceding experimental deviation between F2 and F3. Diameters and concentrations of follicular fluid factors in F2 and F3 were determined in F1-ablated mares at Hours 0, 12, 24, 48, or 72 (n = 8 mares/group). Circulating FSH concentrations were greater (P < 0.05) in the Hour 72 ablation group than in controls 12 h after ablation and then progressively decreased. The diameters of F2 and F3 increased (P < 0.05) during Hours 0 to 24. Thereafter, F2 continued to increase but F3 did not, indicating that experimental deviation began at Hour 24. The diameter of F2 and circulating FSH concentration at Hour 24 were similar (P > 0.1) to the diameter of F1 and FSH concentration at Hour 0, respectively. A differential change between F2 and F3 was not detected in follicular fluid concentrations of estradiol, inhibin-A, and activin-A by the beginning of experimental deviation. However, estradiol was higher in F2 at Hours 0 and 12 and inhibin-A was higher in F2 throughout the experiment, and both factors could have been involved in experimental deviation. Free insulin-like growth factor-1 (IGF-1) increased (P < 0.05) in F2 beginning at Hour 12 and was higher (P < 0.05) in F2 than in F3 by the beginning of experimental deviation. Temporally, this result indicated that intrafollicular IGF-1 was involved in conversion of F2 from a destined subordinate follicle to a dominant follicle.


Assuntos
Cavalos/fisiologia , Folículo Ovariano/fisiologia , Folículo Ovariano/cirurgia , Ativinas/análise , Animais , Estradiol/análise , Feminino , Hormônio Foliculoestimulante/sangue , Líquido Folicular/química , Subunidades beta de Inibinas/análise , Inibinas/análise , Fator de Crescimento Insulin-Like I/análise , Cinética , Folículo Ovariano/anatomia & histologia , Progesterona/análise , Sucção , Ultrassonografia
13.
Biol Reprod ; 67(1): 14-9, 2002 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-12079994

RESUMO

In cattle, the two largest follicles of a wave (F1, F2) begin to deviate into a dominant follicle and a subordinate follicle when F1 is a mean of 8.5 mm in diameter. After the beginning of deviation, F1 and F2 are diameter-defined dominant and subordinate follicles. Changes associated with the conversion of F2 into a future dominant follicle were studied by ablating F1 at the expected beginning of deviation (F1, 8.5 mm; Hour 0) and assessing the follicular-fluid factors in F2. Follicles were designated F1C and F2C in controls and F2A in F1-ablated heifers. Follicular-fluid collections were made at Hours 0, 4, 8, or 12 (n = 7 heifers per hour; fluid from F1C, F2C, and F2A; experiment 1) or at Hours 4, 6, 8, 10, or 12 (n = 9 heifers per hour; fluid from F2A; experiment 2). Postablation concentrations of circulating FSH increased (P < 0.05) between Hours 2 and 6. Diameter of F2A increased (P < 0.05) after Hour 8 in both experiments so that the diameter of F2A at Hours 10 or 12 was not different (P > 0.1) from the diameter of F1 at Hour 0. A transient elevation (P < 0.05) in follicular-fluid activin A occurred in F2A at Hour 8 in both experiments. Concentrations of estradiol (P < 0.05) and insulin-like growth factor I (IGF-I; P < 0.1) decreased in F2C by Hour 8. In F2A, the concentrations of both factors began to increase (P < 0.05) after Hours 4 or 8 so that there was no difference (P > 0.1) between F1C and F2A at Hour 12. Concentrations of IGF-I and IGF binding protein 2 (IGFBP-2) in F2A changed in opposite directions at the same hours. No differences between follicles were found for concentrations of progesterone, androstenedione, inhibin A, and inhibin B. The order of events in the conversion of a future subordinate follicle to a future dominant follicle was an increase in systemic FSH, a transient elevation in follicular-fluid activin A, and a simultaneous increase in follicular-fluid estradiol and restoration of an apparent growth-compatible balance of free IGF-I and IGFBP-2.


Assuntos
Ativinas/metabolismo , Estradiol/metabolismo , Líquido Folicular/metabolismo , Subunidades beta de Inibinas/metabolismo , Fator de Crescimento Insulin-Like I/metabolismo , Folículo Ovariano/fisiologia , Androstenodiona/farmacologia , Animais , Bovinos , Feminino , Hormônio Foliculoestimulante/sangue , Líquido Folicular/química , Fase Folicular/fisiologia , Hormônios/sangue , Inibinas/metabolismo , Proteína 2 de Ligação a Fator de Crescimento Semelhante à Insulina/sangue , Folículo Ovariano/anatomia & histologia , Folículo Ovariano/crescimento & desenvolvimento , Gravidez , Progesterona/farmacologia
14.
Biol Reprod ; 66(1): 120-6, 2002 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-11751273

RESUMO

Follicle diameter deviation during follicular waves in cattle begins with a reduction in growth rates of developing subordinate follicles, in contrast to the maintenance of a constant growth rate by a developing dominant follicle. In experiment 1, the temporal changes encompassing deviation in concentrations of follicular fluid factors relative to one another in the three largest follicles (F1, F2, and F3) were studied. Follicular fluid samples were collected when F1 reached diameter ranges of 7.0-7.9, 8.0-8.9, 9.0-9.9, and 10.0-10.9 mm (n = 12 per range). The first increase (P < 0.05) in the difference between F1 and F2 for estradiol occurred at the 8.0- to 8.9-mm range, which was one range earlier than for diameter (P < 0.05). Free insulin-like growth factor (IGF)-1 concentrations in F1 were similar among diameter ranges, but concentrations in F1 were higher (P < 0.05) than in F2 for each range except 7.0-7.9 mm. Concentrations of free IGF-1 in F2 decreased (P < 0.05). No significant differences were detected in concentrations of progesterone, androstenedione, total inhibin, and inhibin-A. Averaged over follicles, inhibin-B decreased (P < 0.05) between the 8.0- to 8.9- and 10.0- to 10.9-mm ranges, and activin-A increased (P < 0.05) between the 7.0- to 7.9- and 9.0- to 9.9-mm ranges. However, no differences were found among follicles. In experiment 2, changes associated with the development of dominance by F2 were studied using ablation of F1 at the beginning of expected deviation (F1, 8.5 mm; Hour 0) as the reference point. Follicular fluid factors were compared at Hour 12 between F2 of a control group (F1 intact; n = 10) and an ablated group (F1 ablated; n = 10). Diameter (P < 0.02), estradiol (P < 0.001), free IGF-1 (P < 0.002), and progesterone (P < 0.003) were greater and IGF-binding protein-2 was lower (P < 0.01) in F2 of the ablated group at Hour 12. No differences were detected in concentrations of androstenedione, total inhibin, and inhibin-A. The results of the two experiments indicated, on a temporal basis, that intrafollicular changes in estradiol and the IGF system, but not in the inhibin/activin system, could account for a reported greater FSH responsiveness by the future dominant follicle than by the future subordinate follicles by the beginning of diameter deviation in cattle.


Assuntos
Líquido Folicular/fisiologia , Folículo Ovariano/fisiologia , Animais , Bovinos , Ensaio de Imunoadsorção Enzimática , Feminino , Líquido Folicular/metabolismo , Hormônios Esteroides Gonadais/sangue , Hormônios/metabolismo , Fator de Crescimento Insulin-Like I/metabolismo , Folículo Ovariano/anatomia & histologia , Folículo Ovariano/metabolismo , Ovulação/fisiologia , Gravidez , Fatores de Tempo
15.
Biol Reprod ; 65(3): 638-47, 2001 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-11514323

RESUMO

Follicle deviation is proposed to be the eminent event in follicle selection in monovular species. At deviation, the largest follicle establishes dominance apparently before the second-largest follicle can reach a similar diameter. In cattle, based on diameters of the two follicles at the beginning of deviation, the mechanism becomes established in <8 h. An FSH:follicle-coupling hypothesis has been supported as the essence of follicle selection. According to the hypothesis, the growing follicles cause the FSH decline from the peak of the wave-stimulating FSH surge until deviation, even though the follicles continue to require FSH (two-way functional coupling involving multiple follicles). During multiple-follicle coupling, inhibin is the primary FSH suppressant. Near the beginning of deviation, the largest follicle secretes increased estradiol, and apparently both estradiol and inhibin contribute to the continuing FSH decline; only the more-developed largest follicle is able to utilize the low FSH concentrations (single-follicle coupling). Deviation is encompassed by a transient elevation in LH in heifers and by a component, often distinct, of the long ovulatory LH surge in mares. In heifers, receptors for LH appear in the granulosa cells of the future dominant follicle about 8 h before the beginning of deviation. The LH stimulates the production of estradiol and insulin-like growth factor-1. These intrafollicular factors and perhaps others account for the responsiveness of the largest follicle to the low concentrations of FSH. The smaller follicles have not reached a similar developmental stage and because of their continued and close dependency on FSH become susceptible to the low concentrations. Thereby, follicle selection is established.


Assuntos
Folículo Ovariano/fisiologia , Ovulação , Animais , Estradiol/fisiologia , Feminino , Hormônio Foliculoestimulante/fisiologia , Hormônio Luteinizante/fisiologia , Folículo Ovariano/anatomia & histologia , Somatomedinas/fisiologia , Fatores de Tempo
16.
Biol Reprod ; 65(3): 839-46, 2001 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-11514349

RESUMO

Follicle deviation during bovine follicular waves is characterized by continued growth of a developing dominant follicle and reduction or cessation of growth of subordinate follicles. Characteristics of follicle deviation for waves with a single dominant follicle were compared between wave 1 (begins near ovulation; n = 15) and wave 2 (n = 15). Follicles were defined as F1 (largest), F2, and F3, according to maximum diameter. No mean differences were found between waves for follicle diameters at expected deviation (F1, > or =8.5 mm; Hour 0) or observed deviation or in the interval from follicle emergence at 4.0 mm to deviation. For both waves, circulating FSH continued to decrease (P < 0.05) after Hour 0, estradiol began to increase (P < 0.05) at Hour 0, and immunoreactive inhibin began to decrease (P < 0.05) before Hour 0. A transient elevation in circulating LH reached maximum concentration at Hour 0 (P < 0.01) in both waves and was more prominent (P < 0.0001) for wave 1. Waves with codominant follicles (both follicles >10 mm) were more common (P < 0.02) for wave 1 (35%) than for wave 2 (4%). Codominants (n = 6) were associated with more (P < 0.05) follicles > or=4 mm and a greater concentration (P < 0.04) of circulating estradiol at Hours -48 to -8 than were single dominant follicles (n = 15). A mean transient increase in FSH and LH occurred in the codominant group at Hour -24 and may have interfered with deviation of F2. In codominant waves, deviation of F3 occurred near Hour 0 (F1, approximately 8.5 mm). A second deviation involving F2 occurred in four of six waves a mean of 50 h after the F3 deviation and may have resulted from a greater suppression (P < 0.05) of FSH in the codominant group after Hour 0. In conclusion, follicle or hormone differences were similar for waves 1 and 2, indicating that the deviation mechanisms were the same for both waves. Waves that developed codominant follicles differed in hormone as well as follicle dynamics.


Assuntos
Bovinos/fisiologia , Folículo Ovariano/fisiologia , Ovulação , Animais , Estradiol/sangue , Feminino , Hormônio Foliculoestimulante/sangue , Cinética , Hormônio Luteinizante/sangue , Folículo Ovariano/diagnóstico por imagem , Fatores de Tempo , Ultrassonografia
17.
Biol Reprod ; 65(2): 426-32, 2001 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-11466210

RESUMO

The increase in LH concentrations at the time of the decrease in FSH concentrations during follicle deviation in mares was studied to determine the role of LH in the production of estradiol and immunoreactive inhibin (ir-inhibin). Ten days after ovulation, all follicles > or =6 mm were ablated, prostaglandin F(2 alpha) was given, and either 0 mg (control group, n = 15) or 100 mg of progesterone in safflower oil (treated group, n = 16) was given daily for 14 days, encompassing the day of diameter deviation. The follicular and hormonal data were normalized to the expected day of the beginning of diameter deviation when the largest follicle first reached > or =20 mm (Day 0). The experimentally induced decrease in LH concentrations during follicle deviation beginning on Day -4 delayed and stunted the increase in circulating concentrations of ir-inhibin and estradiol beginning on Days -3 and -1, respectively, but did not alter the predeviation FSH surge and the initiation of diameter deviation between the two largest follicles. Combined for both groups, the interval to the expected day of deviation was 16.6 days after ovulation when the largest follicle was a mean of 21.6 mm. After deviation, the largest follicle started to regress in the treated group beginning on Day 1 and was associated with decreased concentrations of ir-inhibin and estradiol, and increased concentrations of FSH. The negative influence of the dominant follicle on the postdeviation decrease in FSH observed in the control group was alleviated and concentrations resurged in the treated group. Apparently this is the first in vivo evidence that the increase in LH that precedes follicle deviation has a positive effect in supporting the production of inhibin during diameter deviation. It was concluded that the increase in LH concentrations before diameter deviation played a role in the production of estradiol and inhibin by the largest follicle during deviation.


Assuntos
Estradiol/sangue , Cavalos/fisiologia , Inibinas/sangue , Hormônio Luteinizante/sangue , Folículo Ovariano/fisiologia , Animais , Dinoprosta/administração & dosagem , Dinoprosta/farmacologia , Feminino , Hormônio Foliculoestimulante/sangue , Cinética , Folículo Ovariano/anatomia & histologia , Progesterona/administração & dosagem , Progesterona/farmacologia
18.
Reproduction ; 122(1): 103-10, 2001 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-11425334

RESUMO

Progesterone was used to reduce LH concentrations starting at the time when the largest follicle was > or = 5.7 mm in diameter or well before the expected start of follicle deviation (largest follicle > or = 8.5 mm in diameter). Plasma concentrations of LH, FSH and oestradiol were determined at 4 h intervals in control and progesterone-treated heifers (n = 8 per group). Concentrations of LH were lower (P < 0.05) in the progesterone-treated group, reflecting an absence of the transient increase in LH concentrations that encompasses follicle deviation. An increase in oestradiol and a continued decrease in FSH occurred at the start of follicle deviation in the control cows but not in the treated heifers. In a second experiment, follicular fluid of the two largest follicles of control and progesterone-treated heifers was sampled at the expected start of deviation (n = 8--10 per group). The concentrations of oestradiol, but not androstenedione and free insulin-like growth factor I (IGF-I), in follicular fluid were higher (P < 0.001) in the largest follicle than in the second largest follicle. Progesterone treatment reduced (P < or = 0.02) the concentrations of all three factors in follicular fluid and increased (P < 0.05) the concentrations of insulin-like growth factor binding protein 2 (IGFBP-2). These results confirm that oestradiol contributes to the continued decrease in FSH concentrations after the start of follicle deviation. Prevention of the transient LH increase, the oestradiol increase and the continued FSH decrease did not significantly alter the mean time or follicle diameters characteristic of expected follicle deviation. However, in some treated individuals (three of eight), the observed follicle deviation was delayed. In addition, these results indicate that the secretion of oestradiol into the circulation and the increase in oestradiol and IGF-I and decrease in IGFBP-2 concentrations in the follicular fluid at the start of deviation are functions of the transient increase in LH concentrations that encompasses follicle deviation.


Assuntos
Bovinos/fisiologia , Estradiol/sangue , Líquido Folicular/química , Hormônio Luteinizante/farmacologia , Folículo Ovariano/fisiologia , Androstenodiona/análise , Animais , Estradiol/análise , Feminino , Hormônio Foliculoestimulante/sangue , Proteína 2 de Ligação a Fator de Crescimento Semelhante à Insulina/análise , Fator de Crescimento Insulin-Like I/análise , Hormônio Luteinizante/sangue , Folículo Ovariano/anatomia & histologia , Progesterona/farmacologia
19.
Biol Reprod ; 64(2): 432-41, 2001 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-11159344

RESUMO

Intrafollicular changes in the largest follicle (F1) and second-largest (F2) follicle were examined in relation to follicle diameter deviation. Deviation is characterized by continued growth of the largest follicle and the cessation of growth of the smaller follicles. Granulosa cells and follicular fluid were obtained from slaughterhouse ovaries (n = 95 pairs, experiment 1), and follicular fluid was collected in vivo (n = 28 heifers, experiment 2). Several ranges in the diameter of F1 were used to represent the progressive growth of the follicle. The diameter range with the first significant increase in the difference between F1 and F2 was determined for each end point and was used as an indicator of the sequence of events associated with diameter deviation. An increased difference for diameter and for estradiol concentration occurred (P: < 0.05) simultaneously at the 8.5- to 8.9-mm range in both experiments. In experiment 1, the increased difference between F1 and F2 in LH receptor (LHr) mRNA expression occurred (P: < 0.05) at the 8.0- and 8.4-mm range. In F2 of experiment 2, there was a progressive decrease (P: < 0.05) in free insulin-like growth factor (IGF)-1 and a progressive increase (P: < 0.05) in IGF binding protein (BP)-2 across the follicle-diameter ranges (7.5-11.2 mm). No differences were detected between F1 and F2 for 3beta-hydroxysteroid dehydrogenase mRNA expression in experiment 1 and testosterone, total inhibin, and dimeric inhibin-A concentrations in experiment 2. The results indicated that the acquisition of granulosa cell LHrs by F1, as indicated by increased LHr mRNA expression, occurred one diameter range before an increased difference between F1 and F2 for diameter or estradiol concentrations. On a temporal basis, it is concluded that LHr acquisition plays a role in the establishment of diameter deviation. In addition, the reduced growth of F2 may have involved the reduced bioavailability of IGF-1 in association with elevated IGFBPs.


Assuntos
Líquido Folicular/fisiologia , Células da Granulosa/fisiologia , Folículo Ovariano/fisiologia , 3-Hidroxiesteroide Desidrogenases/biossíntese , 3-Hidroxiesteroide Desidrogenases/genética , Animais , Bovinos , Estradiol/farmacologia , Feminino , Hormônios Esteroides Gonadais/metabolismo , Hormônios/metabolismo , Folículo Ovariano/anatomia & histologia , Gravidez , RNA Mensageiro/biossíntese , Receptores do LH/biossíntese
20.
Biol Reprod ; 64(1): 197-205, 2001 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-11133675

RESUMO

The circulating concentrations of LH were reduced by administration of 50 mg of progesterone every 8 h for 72 h, beginning when the largest follicle was 6.0 mm (experiment 1; n = 10). Progesterone treatment prevented the transient increase in LH that accompanied deviation (partitioning into dominant and subordinate categories) in control heifers (n = 10). The reduced LH concentrations were associated with reduced growth of the largest follicle, beginning a mean of 31 h after deviation, but did not alter the time of deviation or the growth and regression of the second-largest follicle. In experiment 2, 0 mg (controls) or 50 mg of progesterone was given every 8 h for three injections, beginning when the largest follicle was 7.0 mm (predeviation group) or 9.0 mm (postdeviation group; n = 8 for each of the four groups). Blood samples from the jugular vein and follicular-fluid samples from the two largest follicles were taken 8 h after the last treatment when the largest follicle was a mean of 8.7 mm in the predeviation group and 10.8 mm in the postdeviation group. In the controls, follicular-fluid concentrations of estradiol and free insulin-like growth factor (IGF)-1 in the largest follicle and IGF binding protein (IGFBP)-2 in the second-largest follicle were higher (P: < 0.05) in the postdeviation group than in the predeviation group. Progesterone treatment lowered (P: < 0.006) the circulating LH concentrations to a similar extent in both groups. In the predeviation group, progesterone treatment did not have a significant effect on any of the characteristics of the largest follicle. In the postdeviation group, the largest follicle of the progesterone-treated heifers had significant reductions in diameter and in follicular-fluid concentrations of estradiol and free IGF-1. Follicular-fluid concentrations of immunoreactive inhibin were not different for any of the comparisons. The results supported the hypothesis that LH has a positive effect on diameter of the largest follicle but not until after the beginning of diameter deviation. In addition, the results indicated that LH is involved in the production of estradiol by the largest follicle and that free IGF-1 concentrations increase in the largest follicle during deviation.


Assuntos
Bovinos/fisiologia , Hormônio Luteinizante/fisiologia , Folículo Ovariano/fisiologia , Animais , Estradiol/análise , Feminino , Líquido Folicular/química , Proteína 2 de Ligação a Fator de Crescimento Semelhante à Insulina/análise , Fator de Crescimento Insulin-Like I/análise , Hormônio Luteinizante/sangue , Folículo Ovariano/anatomia & histologia , Folículo Ovariano/química , Progesterona/administração & dosagem , Progesterona/análise , Progesterona/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA