Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
ACS Pharmacol Transl Sci ; 4(4): 1390-1407, 2021 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-34423273

RESUMO

Activation-induced cytidine deaminase (AID) initiates antibody diversification by mutating immunoglobulin loci in B lymphocytes. AID and related APOBEC3 (A3) enzymes also induce genome-wide mutations and lesions implicated in tumorigenesis and tumor progression. The most prevalent mutation signatures across diverse tumor genomes are attributable to the mistargeted mutagenic activities of AID/A3s. Thus, inhibiting AID/A3s has been suggested to be of therapeutic benefit. We previously used a computational-biochemical approach to gain insight into the structure of AID's catalytic pocket, which resulted in the discovery of a novel type of regulatory catalytic pocket closure that regulates AID/A3s that we termed the "Schrodinger's CATalytic pocket". Our findings were subsequently confirmed by direct structural studies. Here, we describe our search for small molecules that target the catalytic pocket of AID. We identified small molecules that inhibit purified AID, AID in cell extracts, and endogenous AID of lymphoma cells. Analogue expansion yielded derivatives with improved potencies. These were found to also inhibit A3A and A3B, the two most tumorigenic siblings of AID. Two compounds exhibit low micromolar IC50 inhibition of AID and A3A, exhibiting the strongest potency for A3A. Docking suggests key interactions between their warheads and residues lining the catalytic pockets of AID, A3A, and A3B and between the tails and DNA-interacting residues on the surface proximal to the catalytic pocket opening. Accordingly, mutants of these residues decreased inhibition potency. The chemistry and abundance of key stabilizing interactions between the small molecules and residues within and immediately outside the catalytic pockets are promising for therapeutic development.

2.
Biochim Biophys Acta Gen Subj ; 1863(11): 129415, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31404619

RESUMO

BACKGROUND: AID/APOBEC3 (A3) enzymes instigate genomic mutations that are involved in immunity and cancer. Although they can deaminate any deoxycytidine (dC) to deoxyuridine (dU), each family member has a signature preference determined by nucleotides surrounding the target dC. This WRC (W = A/T, R = A/G) and YC (Y = T/C) hotspot preference is established for AID and A3A/A3B, respectively. Base alkylation and oxidation are two of the most common types of DNA damage induced environmentally or by chemotherapy. Here we examined the activity of AID, A3A and A3B on dCs neighboring such damaged bases. METHODS: Substrates were designed to contain target dCs either in normal WRC/YC hotspots, or in oxidized/alkylated DNA motifs. AID, A3A and A3B were purified and deamination kinetics of each were compared between substrates containing damaged vs. normal motifs. RESULTS: All three enzymes efficiently deaminated dC when common damaged bases were present in the -2 or -1 positions. Strikingly, some damaged motifs supported comparable or higher catalytic efficiencies by AID, A3A and A3B than the WRC/YC motifs which are their most favored normal sequences. Based on the resolved interactions of AID, A3A and A3B with DNA, we modeled interactions with alkylated or oxidized bases. Corroborating the enzyme assay data, the surface regions that recognize normal bases are predicted to also interact robustly with oxidized and alkylated bases. CONCLUSIONS: AID, A3A and A3B can efficiently recognize and deaminate dC whose neighbouring nucleotides are damaged. GENERAL SIGNIFICANCE: Beyond AID/A3s initiating DNA damage, some forms of pre-existing damaged DNA can constitute favored targets of AID/A3s if encountered.


Assuntos
Citidina Desaminase/química , Dano ao DNA , Desoxicitidina/química , Antígenos de Histocompatibilidade Menor/química , Proteínas/química , Citidina Desaminase/metabolismo , Desaminação , Desoxicitidina/metabolismo , Humanos , Antígenos de Histocompatibilidade Menor/metabolismo , Oxirredução , Proteínas/metabolismo
3.
Proc Natl Acad Sci U S A ; 115(14): E3211-E3220, 2018 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-29555777

RESUMO

Cytidine deaminases of the AID/APOBEC family catalyze C-to-U nucleotide transitions in mRNA or DNA. Members of the APOBEC3 branch are involved in antiviral defense, whereas AID contributes to diversification of antibody repertoires in jawed vertebrates via somatic hypermutation, gene conversion, and class switch recombination. In the extant jawless vertebrate, the lamprey, two members of the AID/APOBEC family are implicated in the generation of somatic diversity of the variable lymphocyte receptors (VLRs). Expression studies linked CDA1 and CDA2 genes to the assembly of VLRA/C genes in T-like cells and the VLRB genes in B-like cells, respectively. Here, we identify and characterize several CDA1-like genes in the larvae of different lamprey species and demonstrate that these encode active cytidine deaminases. Structural comparisons of the CDA1 variants highlighted substantial differences in surface charge; this observation is supported by our finding that the enzymes require different conditions and substrates for optimal activity in vitro. Strikingly, we also found that the number of CDA-like genes present in individuals of the same species is variable. Nevertheless, irrespective of the number of different CDA1-like genes present, all lamprey larvae have at least one functional CDA1-related gene encoding an enzyme with predicted structural and chemical features generally comparable to jawed vertebrate AID. Our findings suggest that, similar to APOBEC3 branch expansion in jawed vertebrates, the AID/APOBEC family has undergone substantial diversification in lamprey, possibly indicative of multiple distinct biological roles.


Assuntos
Desaminase APOBEC-1/genética , Citidina Desaminase/classificação , Citidina Desaminase/genética , Variações do Número de Cópias de DNA , Lampreias/genética , Linfócitos/imunologia , Receptores de Antígenos/genética , Desaminase APOBEC-1/química , Desaminase APOBEC-1/imunologia , Sequência de Aminoácidos , Animais , Citidina Desaminase/química , Citidina Desaminase/imunologia , Sequenciamento de Nucleotídeos em Larga Escala , Conformação Proteica , Receptores de Antígenos/classificação , Homologia de Sequência , Sequenciamento Completo do Genoma
4.
Vet Res ; 47: 44, 2016 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-26987959

RESUMO

ß-defensins are an important element of the mucosal innate immune response against bacterial pathogens. Tracheal antimicrobial peptide (TAP) has microbicidal activity against the bacteria that cause bovine respiratory disease, and its expression in tracheal epithelial cells is upregulated by bacterial products including lipopolysaccharide (LPS, a TLR4 agonist), Pam3CSK4 (an agonist of Toll-like receptor 2/1), and interleukin (IL)-17A. The objectives of this study were to identify the signalling pathway by which LPS, Pam3CSK4 and IL-17A induce TAP gene expression, and to determine the effect of glucocorticoid as a model of stress on this epithelial innate immune response. In primary cultures of bovine tracheal epithelial cells (bTEC), LPS, Pam3CSK4 and IL-17A each stimulated TAP gene expression. This effect was abrogated by caffeic acid phenylester (CAPE), an inhibitor of NF-κB. Similarly, western analysis showed that LPS, Pam3CSK4 and IL-17A each induced translocation of NF-κB p65 from the cytoplasm to the nucleus, but pre-treatment with CAPE inhibited this response. Finally, pre-treatment of bTEC with the glucocorticoid dexamethasone abolished the stimulatory effect of LPS, Pam3CSK4 and IL-17A on upregulation of TAP gene expression. These findings indicate that NF-κB activation is necessary for induction of TAP gene expression by LPS (a TLR4 agonist), Pam3CSK4 (a TLR2/1 agonist), or IL-17A. Furthermore, this stimulatory response is inhibited by glucocorticoid, suggesting this as one mechanism by which stress increases the risk of bacterial pneumonia. These findings have implications for understanding the pathogenesis of stress-associated bacterial pneumonia, and for developing methods to stimulate innate immune responses in the respiratory tract of cattle.


Assuntos
Peptídeos Catiônicos Antimicrobianos/genética , Dexametasona/farmacologia , Células Epiteliais/efeitos dos fármacos , Lipopolissacarídeos/farmacologia , Traqueia/efeitos dos fármacos , Regulação para Cima , Animais , Peptídeos Catiônicos Antimicrobianos/metabolismo , Bovinos , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Glucocorticoides/farmacologia , Interleucina-17/farmacologia , Lipopeptídeos/farmacologia , Traqueia/citologia , Traqueia/metabolismo
5.
Vet Res ; 45: 105, 2014 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-25304258

RESUMO

Bovine respiratory disease is a complex of bacterial and viral infections of economic and welfare importance to the beef industry. Although tracheal antimicrobial peptide (TAP) has microbicidal activity against bacterial pathogens causing bovine respiratory disease, risk factors for bovine respiratory disease including BVDV and stress (glucocorticoids) have been shown to inhibit the induced expression of this gene. Lipopolysaccharide is known to stimulate TAP gene expression, but the maximum effect is only observed after 16 h of stimulation. The present study investigated other agonists of TAP gene expression in primary cultures of bovine tracheal epithelial cells. PCR analysis of unstimulated tracheal epithelial cells, tracheal tissue and lung tissue each showed mRNA expression for Toll-like receptors (TLRs) 1-10. Quantitative RT-PCR analysis showed that Pam3CSK4 (an agonist of TLR1/2) and interleukin (IL)-17A significantly induced TAP gene expression in tracheal epithelial cells after only 4-8 h of stimulation. Flagellin (a TLR5 agonist), lipopolysaccharide and interferon-α also had stimulatory effects, but little or no response was found with class B CpG ODN 2007 (TLR9 agonist) or lipoteichoic acid (TLR2 agonist). The use of combined agonists had little or no enhancing effect above that of single agonists. Thus, Pam3CSK4, IL-17A and lipopolysaccharide rapidly and significantly induce TAP gene expression, suggesting that these stimulatory pathways may be of value for enhancing innate immunity in feedlot cattle at times of susceptibility to disease.


Assuntos
Peptídeos Catiônicos Antimicrobianos/genética , Doenças dos Bovinos/imunologia , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/imunologia , Regulação da Expressão Gênica/efeitos dos fármacos , Receptores Toll-Like/genética , Animais , Anti-Infecciosos/metabolismo , Anti-Infecciosos/farmacologia , Bovinos , Células Epiteliais/microbiologia , Imunidade nas Mucosas/efeitos dos fármacos , Ligantes , Lipopolissacarídeos/farmacologia , Receptores Toll-Like/agonistas , Receptores Toll-Like/metabolismo , Traqueia/efeitos dos fármacos , Traqueia/imunologia , Traqueia/microbiologia
6.
Can J Vet Res ; 78(2): 140-4, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24688176

RESUMO

Feline immunodeficiency virus (FIV) and feline leukemia virus (FeLV) are retroviruses found within domestic and wild cat populations. These viruses cause severe illnesses that eventually lead to death. Housing cats communally for long periods of time makes shelters at high risk for virus transmission among cats. We tested 548 cats from 5 different sites across the island of Newfoundland for FIV and FeLV. The overall seroprevalence was 2.2% and 6.2% for FIV and FeLV, respectively. Two sites had significantly higher seroprevalence of FeLV infection than the other 3 sites. Analysis of sequences from the FeLV env gene (envelope gene) from 6 positive cats showed that 4 fell within the FeLV subtype-A, while 2 sequences were most closely related to FeLV subtype-B and endogenous feline leukemia virus (en FeLV). Varying seroprevalence and the variation in sequences at different sites demonstrate that some shelters are at greater risk of FeLV infections and recombination can occur at sites of high seroprevalence.


Le virus de l'immunodéficience féline (FIV) et le virus de la leucémie féline (FeLV) sont des rétrovirus retrouvés chez les populations de chats domestiques et sauvages. Ces virus causent des maladies sévères qui éventuellement mènent à la mort. L'hébergement de chats de façon communautaire pendant de longues périodes rend les refuges à risque élevé pour la transmission du virus parmi les chats. Nous avons testé 548 chats provenant de cinq sites différents à travers l'ile de Terre-Neuve pour FIV et FeLV. La séroprévalence globale était de 2,2 % et 6,2 % pour FIV et FeLV, respectivement. Deux sites avaient une séroprévalence significativement plus élevée d'infection par FeLV que les trois autres sites. L'analyse des séquences du gène env de FeLV (gène de l'enveloppe) provenant de six chats positifs a montré que quatre appartenaient au sous-type A de FeLV, alors que deux séquences étaient plus apparentées au sous-type B de FeLV et du virus endogène de la leucémie féline (en FeLV). Une séroprévalence variable et la variation dans les séquences à différents sites démontrent que certains refuges sont à risque plus élevé d'infections par FeLV et que de la recombinaison peut survenir aux sites avec une séroprévalence élevée.(Traduit par Docteur Serge Messier).


Assuntos
Síndrome de Imunodeficiência Adquirida Felina/virologia , Vírus da Imunodeficiência Felina/genética , Vírus da Leucemia Felina/genética , Leucemia Felina/virologia , Filogenia , Animais , Anticorpos Antivirais/sangue , Sequência de Bases , Gatos , DNA Viral/química , DNA Viral/genética , Síndrome de Imunodeficiência Adquirida Felina/epidemiologia , Síndrome de Imunodeficiência Adquirida Felina/transmissão , Feminino , Leucemia Felina/epidemiologia , Leucemia Felina/transmissão , Masculino , Dados de Sequência Molecular , Terra Nova e Labrador/epidemiologia , Reação em Cadeia da Polimerase/veterinária , Alinhamento de Sequência , Análise de Sequência de DNA , Estudos Soroepidemiológicos , Proteínas do Envelope Viral/química , Proteínas do Envelope Viral/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA